AN ASYMPTOTIC EXPRESSION FOR THE NUMBER
OF SOLUTIONS OF A GENERAL CLASS OF
DIOPHANTINE EQUATIONS()

BY
GEORGE E. ANDREWS

Consider a closed, strictly convex body C defined by f(x1, - - -, x,) SR. If
Sf(x1, - -+, xa) is a homogeneous function, it is easily verified that NV, the num-
ber of solutions of f(xi, - o, %) =R in integers, satisfies the inequality
¢R*1> N. The object of this paper is to show that this inequality may be re-
placed by ¢cR®=D»/t+D> N, This result will be derived from the following
theorem.

THEOREM. We are given a closed, strictly convex body C with N lattice points
(i.e. points with integer coordinates) on its surface. If S(C) denotes the surface
content of the boundary of C, then there exists a constant k(n) depending only on

n such that
S(C) > k(n) NtDin

where n denotes the dimensionality of space.

We shall now prove four lemmas and then prove this theorem.

Lemma 1. If

a a+1

Z ra(m) = N < Z rn(m),
then ' 1

D mM 2 (m) > c(n)NtDin,
1

By ra(m), we mean the number of representations of m as the sum of n squares.

Proof. We have

M

Z ta(m) = 7 2M™12/T(n/2 + 1) + O(M —D12)

1
[3, p. 271]. Hence it is clear that the a defined in the lemma is such that

a ~ c;(n)N2/»,
Thus

This paper has been submitted to and accepted for publication by the Proceedings of the
American Mathematical Society. It has been transferred to these Transactions, with the con-
sent of the author, for technical reasons. Received by the editors June 6, 1960.

(*) This paper is a condensation of the author’s Master's thesis submitted at Oregon State
College.

272



A GENERAL CLASS OF DIOPHANTINE EQUATIONS 273

a

memm=wﬂinma—§&m+nW—mwwimw}

1 m=1 m=1 fem]
1rn/2an/2
_ae| TN T O
(2 4+ 1)
¢
a—1 1 1rn/2mn/2
- Z( + O(m—3/2)> ——————— 4+ O(mV12)
me1 \2m1/2 n
. (L
2
7'.n/2a(n+1)/2 a—1 1rn/2m(n—l)/2
=t 0@ = 3 | ————— + O(me-D1)
n n
*(3+1) (G )
nl2g(nt1)/2 1r"/2(a — 1)(n+l)l2
=—— 4+ 0(a"?) — + O(an'?)

r(Z 41 1)r(" + 1)
(7 ) (v + DI
= c(m) N@+DIn 4 O(N).

Since Q_{ m'?r,(m) is a positive, increasing function of N, we have
1

a

> mi2r,(m) > c(n)N@+Din for all V. q.e.d.

1
The following lemmas will concern a closed, strictly convex body C.
We shall be given the fact that C contains NV lattice points on its boundary.
We shall call the set of boundary lattice points B(N) and shall assume that
not all members of B(N) are linearly dependent. If all members of B(N) were

linearly dependent, we would only need to consider a space of lower dimen-
sionality.

LEMMA 2. The members of B(N) are the vertices of a convex polytope entirely
in the interior of C.

Proof. Since a convex polytope is defined as the convex cover of a finite
number of points, we see that the convex cover of B(XN) is a polytope entirely
in the interior of C. Call this polytope (Po);. Clearly all vertices of (Po)j are
members of B(N) [2, pp. 24 and 29].

We need only show that all members of B(N) are vertices of (Po);. Let
P&EB(N). Choose a regular supporting hyperplane S,_; to C at P. Any two-
dimensional segment s; which contains P either lies in S,_; or it does not. If
s1 lies in S,_3, then the only point of (Po); contained by s; is P. Thus points
of the exterior of (Po); are contained by s;. If s; doesn’t lie on S,_1, the part of
51 lies on the opposite of S,_1 from (Po);. Thus, again, points of the exterior
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of (Po), are contained by s;. Hence no segment completely on the boundary
of (Po);, contains P. Thus P is a vertex of (Po)s. q.e.d.

In the next lemma, we multiply each linear dimension of space by 3. In
this way, (Po)g is transformed into a similar polytope (Po)%. We shall denote
the set of vertices of (Po)% by B’(N). Since every vertex of (Po)’ will be con-
gruent with all the other members of B’(NN) modulo 3, the surface content of
(Po)? will be 3»! times that of (Po)2.

LeEMMA 3. It is possible to form from (Po) a convex polytope, (Po)s, in the
interior of (Po)y, with lattice point vertices and with at least N (n—1)-boundaries
where N is the number of vertices of (Po)l.

Proof. In forming (Po)%, we have multiplied every linear dimension of
space by 3. Thus, each segment between two vertices of (Po)’ will be divided
into thirds by two lattice points. Let us form a set £ consisting of these
two lattices points taken from each segment between two vertices of (Po)l.
We define (Po);, as the convex cover of Z. The polytope (Po); is in the interior
of (Po)’ by construction. Clearly only members of = are vertices of (Po)S
[2, pp. 24 and 29].

Pick a point X in the interior of (Po);. Clearly (Po); has an interior for no
edge of (Po)? is completely destroyed in the formation of (Po), and not all
members of B’(N) are linearly dependent so that (Po)) has an interior.

We shall now show that any member of B’(N) is in the exterior of (Po)s.
Let us choose a regular supporting hyperplane S/_; to (Po)} at any member of
B’(N), say P. We see that all members of 2 lie on one side of S,/_; and none
onS,1. Therefore, P is neither in nor on the convex cover of Z.

It follows from the above that the segment PX intersects the boundary of
(Po);, in a single point for each PEB’(N).

Assume that PEB’(N) and QEB’(N). We shall now show that the seg-
ments PX and QX do not intersect the same (z—1)-boundary of (Po);. As-
sume that PX and QX intersect the same (#—1)-boundary f./_1 of (Po). Let
us consider the hyperplane S,_; containing f4—1. The segment PQ contains
two members of 2 by definition. However, the convex cover of 2 is either on
S,/ or on the opposite side of S,_; from P and Q, a contradiction. Hence to
each segment PX for P&EB’'(N) corresponds a single (#—1)-boundary of
(Po)s.

Thus (Po);, satisfies all the conditions of the lemma. g.e.d.

Levma 4. We are given an (n—1)-dimensional simplex with lattice point
vertices. This simplex lies in the hyperplane S, defined by

Az — p1) + Ado(we — p2) + -+ - + Au(xn — $2) =0

where all the A’s are integers, P(p1, b2, - - -, Pn) 1S @ vertex of the simplex, and
g.cd. (A1, A, - - -, A,) =1. Then the content of the above simplex is at least
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1 2 2 2.1/2
———— (A1 + A2+ - - -+ 4,) .
(n— 1)!
Proof. Let us assume that P is the origin. If this is not so, we merely
translate P into the origin. The equation of S;”, is now

Ay + Asxs + - - - 4+ Az, = 0.

Since such a translation transforms lattice points into lattice points, we see
that all the vertices of the considered simplex are still lattice points. Let us
consider the (n—1) edges of this simplex emanating from the origin as fixed
position vectors of the form (a1, @iz, - -« , @:n). The end points of these vectors
lie on the hyperplane

X1 X9 s Xy
a1 a2 *** Qua
@21 Qa2 * * * Q2 = 0.

C(n—-1)1 G(r—-1)2 CQ(n-1)n

But this hyperplane is merely S,”,. Hence the above determinant must ex-
pand into

B(Aixy + Aswe + - - - + Agux,) = 0.

Since the components of all the vectors considered are integers and since

g.cd. (4,, 4q, - -+, A;)=1, we have k=1.

Let us consider the content of a parallelotope defined by the unit normal
vector to S, and the (n—1) vectors of the form (a., @s, - - -, @:n). The con-
tent of this parallelotope will be numerically equal to the (z—1)-dimensional
content of its base. Thus if (b1, bs, - - -, b,) denotes the unit normal vector,
we have

b, by - .- by,
1 an a1z Qua
(7:'1)—! t.l21 l.lm e (.1275 = V.a

Cn—-1)1 G(r—1)2 Q(n—1)n

where V,_, is the content of the simplex under consideration. However,

(bI; b2; Tt bn) = (Af + A:+ ce Ai)_l/2(A1) A2) Tt An)

Substituting this into the above determinant, we obtain
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BAL+ As+ -+ A)

Vool =
Y= DA+ ARt - AR

2.1/2

(Ar+ Az + -+ 4" qge.d.

>
T (n—1)!

We are now in a position to prove the main theorem. We shall restate it
here for convenience.

THEOREM. We are given ¢ closed, strictly convex body C with N lattice points
on its surface. If S(C) denotes the surface content of the boundary of C, then there
exists a constant k(n) depending only on n such that

S(C) > k(n) N@+D/n,
where n denotes the dimensionality of space.

NotE. In this proof we shall use the fact that if one convex body is con-
tained in another, then the first has smaller surface area (content) than the
second [1, p. 47]. This follows from Cauchy’s surface area formula.

We shall start the proof assuming that from C we have constructed
(Po)Z, (Po)), and (Po):.

Proof. By Lemma 2, (Po) is in the interior of C. Thus

S(C) z S[(Po)].

From the remarks prefacing Lemma 3, we have

S[(Po)a] = 37"V [(Po)al.

From Lemma 3, we have

S[(Po)n] = S[(Po)s].
Hence

—(n—1)

S(C) = 37 S[(Po).).

Let us pick one (z—1)-dimensional simplex from each (#z —1)-boundary of
(Po);. By Lemma 3, (Po); has at least N (z—1)-boundaries. Hence if S(m)
denotes the (z—1)-dimensional content of the mth simplex chosen, then

N
S[(Po).] = 22 S(m).
m==1
However, no three (#—1)-boundaries of (Po); may have the same direction
numbers. If three (z—1)-boundaries of (Po); had the same direction num-
bers, then two of these ( —1)-boundaries would be on opposite sides of the
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hyperplane containing the third. By Lemma 4, we know that any simplex
on a hyperplane of direction numbers (41:4,: - - - :4,) has content not less
than

1 2 P 2
m(A1+A2+-"+An)-

Thus by Lemma 4, there will be no more than 7,(1) simplexes among those
chosen of content 1/(n—1)!; there will be no more than r,(2) simplexes among
those chosen of content 2/(n—1)!, etc. Thus, if

a a+1

2 ra(m) S N < 32 ru(m),

m=1 m=1
then
N 1 a
2 S(m) = > mli2r,(m).
m=1 (n - 1)!m=1
Hence by Lemma 1,
N c2(n)
Sim) =2 ———
mz=:1 (m) (n— 1)!
Thus combining the above results, we obtain

S(C) = k(m) N@+DIn, q.e.d.

N (1) /n,

We may now easily verify the inequality stated at the beginning of this
paper. Since f(x1, - - - , %a) = R is homogeneous we see that its surface content
is given by ¢’ R*~L. Thus by the above theorem,

¢/Rr1 > k(n)N(""’l)/",

or
cR=Dnl(n+) > N
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