AN ANALYTIC PROOF OF THE ROGERS-RAMANUJAN-GORDON
IDENTITIES.

By GrorGgE E. ANDREWS.

1. Introduction. In [R], Gordon gives a combinatorial proof of the
following beautiful generalization of the Rogers-Ramanujan identities.

THEOREM. Let a and k be integers with 0 < a=Fk. Let Ayq(n) denote
the number of partitions of n into parts not of the forms (%% 4 1)m,
2k +1)m == a; Ayqe(0) =1. Let By.(n) denote the number of partitions
of n of the form
n=>by—+--+bs

with by = biy1, bi— by =R, and with 1 appearing as a summand at most
a—1 times; Byqo(0) =1. Then

Apo(n) = Byqe(n).

Gordon states, however, [2; p. 394] that he has been unable to deduce
this theorem from the corresponding identities of Alder [1] which generalize
the Rogers-Ramanujan identities analytically.

The object of this paper is to give an analytic proof of Gordon’s theorem
along the lines of Ramanujan’s proof of the original identities [4].

2. Proof of the theorem. We define
O i(z) =1 —2zig?

2 Z ; 1—zq)- - - (1—zg")
2 — 1) rglagrCre)u(ur)-ip (1 — pigut1)d ( .
+M:1( ) kg ( q ) =g (=g

Selberg [5; p. 4, equation 3] has proved
(-1) Opi(2) = Opia(2) +27¢7 (1 —2q) Cp i (24) -
If we define
Qus(@) = O (@) IT (1—2g/) %,
then
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(2.2) Qri(7) = Qria (2) + 277 Qrorina (29) -
We may expand Q:(z) as follows

(2.3) Qua(e) = 3 3 oea(M, N)a¥gV, |2 =1, lgl <1
We then easily verify by means of the definition of Qy;(z) and (2.2) that
(2.4) cro(M,N) =0 for all k, M, N.

1ifM=0and N=0,1=i=%
0 if either M =< 0 or N = 0 and not both are 0

(2.6) Cus(M, N) — s (M, N) = s (M —i+1,N—M), 1=i=Fk.

(25) Ck,i(M,N) = {

One easily verifies by methematical induction that the cz,:(M, N) are uniquely
determined by (2.4), (2.5), and (.6).

Let pri(M,N) denote the number of partitions of N into M parts of
the form N =b, ++ - - 4 by, with b; = b1, bs— bins == 2, and 1 appearing
as a summand at most ¢—1 times. The py:(M,N) clearly satisfy (2.4)
and (2.5). We now show that they satisfy (.6).

Pioi (M, N) — pria (M, N) enumerates the number of partitions of the
form given in the previous paragraph with the added condition that 1 appears
exactly i—1 times as a summand. We note that if 1 appears exactly ¢—1
times then 2 can appear at most k—1 times. Let us now subtract 1 from
every summand of the partition under consideration. Since 1 appeared
exactly i— 1 times we have reduced the number of summands to M —+--1.
Since we have subtracted M ones from our partition, we are now partitioning
N—M. Since 2 could appear at most k¥ —1 times formerly, now 1 appears
at most k—1 times. Thus we now have a partition of the form enumerated
by prwiss(M —i 41, N—M). The above procedure clearly establishes a one-
to-one correspondence between the partitions enumerated by pi(M, N)
— pria (M, N) and the partitions enumerated by pr,p-iu (M —i -+ 1, N—M).
Therefore

Pioi (M, N) — pia (M, N) = projjion (M — i+ 1, N —M).

Thus the py:(M,N) fulfill (2.4), (2.5), and (2.6). Therefore by the
remark following (2.6) we have

(2.7) Proi (M, N) = cri(M, N).
Thus
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Sde@e'— T (1—g)"

nZ0,+g(mod 2k+1)
=@re(1) =3 3 pra(M,N)¢¥N =3 Bro(N)g",
N=—o0 M=-x N=0

where the second equality follows from Jacobi’s identity [3; p. 282]. There-
fore Ap,q(N) = By,o(N).
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