
PARITY IN PARTITION IDENTITIES

GEORGE E. ANDREWS

Abstract. This paper considers a variety of parity questions connected with

classical partition identities of Euler, Rogers, Ramanujan and Gordon. We

begin by restricting the partitions in the Rogers-Ramanujan-Gordon identities
to those wherein even parts appear an even number of times. We then take up

questions involving sequences of alternating parity in the parts of partitions.

This latter study leads to: (1) a bi-basic q-binomial theorem and q-binomial
series, (2) a new interpretation of the Rogers-Ramanujan identities, and (3) a

new natural interpretation of the fifth-order mock theta functions f0(q) along

with a new proof of the Hecke-type series representation.

1. Introduction

Parity has played a role in partition identities from the beginning. For example
[7; p. 5]

Euler’s Partition Identity. The number of partitions of any positive integer n
into distinct parts equals the number of partitions of n into odd parts.

Equivalently in terms of generating functions: for |q| < 1, [7; p. 5, eq. (1.2.5)]

(1.1)
∞∏
n=1

(1 + qn) =
∞∏
n=1

1
1− q2n−1

.

Now the Rogers-Ramanujan identities [7; p. 109] do not immediately involve
parity.

First Rogers-Ramanujan Identity. The number of partitions of any positive
integer n into distinct non-consecutive parts equals the number of partitions of n
into parts congruent to ±1 (mod 5).

Equivalently in terms of generating functions: for |q| < 1, [7; p. 113, Cor. 7.9]

(1.2) 1 +
∞∑
n=1

qn
2

(1− q)(1− q2) · · · (1− qn)
=
∞∏
n=1

1
(1− q5n−1)(1− q5n−4)

.

However B. Gordon [15], [17] and H. Göllnitz [13], [14] independently introduced
parity considerations as follows:

First Göllnitz-Gordon Identity. The number of partitions of n into distinct
non-consecutive parts with no even parts differing by exactly 2 equals the number
of partitions of n into parts ≡ 1, 4, or 7 (mod 8).

2000 Mathematics Subject Classification. Primary 11P83, 11P81, 05A19, 05A17.
Key words and phrases. partitions, Rogers-Ramanujan, parity index.
Partially supported by National Science Foundation Grant DMS 0200097.

1



2 GEORGE E. ANDREWS

Equivalently in terms of generating functions: for |q| < 1,

(1.3) 1 +
∞∑
n=1

qn2
(1 + q)(1 + q3) · · · (1 + q2n−1)

(1− q2)(1 − q4) · · · (1− q2n)
=
∞∏
n=1

1

(1− q8n−1)(1 − q8n−4)(1 − q8n−7)
.

There are several results of this sort related to the Rogers-Ramanujan identities
[14]. In addition, in his Lost Notebook [8], [10] Ramanujan found q series identities
such as [8; p. 57, eq. (1.10)R]

(1.4)
∞∑
n=1

(1− qn)
(1 + qn)

(
1 +

∞∑
m=1

qm(m+1)/2

(1− q2)(1− q4) · · · (1− q2m)

)
+

∞∑
n=0

(−1)nqn(n+1)/2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
= 2

∞∑
n=0

(−q)n(n+1)/2

(1 + q2)(1 + q4) · · · (1 + q2n)
.

It was noted in [5; p. 55], that

(1.5)
∞∑
n=0

OE(n)qn := 1 +
∞∑
n=1

qn(n+1)/2

(1− q2)(1− q4) · · · (1− q2n)

is the generating function for OE(n), the number of partitions of n into distinct
parts in which the parity of parts alternates and the smallest part is odd.

These examples from the literature foreshadow the deeper examination of parity
in partition identities that will be undertaken here.

Our first major exploration will concern parity in the celebrated Rogers-Raman-
ujan-Gordon identities [1], [16]:

Rogers-Ramanujan-Gordon identities. Let Bk,a(n) denote the number of par-
titions of n for the form

b1 + b2 + · · ·+ bj ,

where bi = bj+1, bi − bi+k−1 = 2 and at most a − 1 of the bi are equal to 1 and
1 5 a 5 k. Let Ak,a(n) denote the number of partitions of n into parts 6≡ 0,±a
(mod 2k + 1). Then for all n = 0,

Ak,a(n) = Bk,a(n).

After Gordon’s proof of this theorem in 1961 [16], there was subsequently dis-
covered a generating function version in 1974 [6]: for |q| < 1

(1.6)
∑

n1,...,nk−1=0

qN
2
1+N2

2+···+N2
k−1+Na+Na+1+···+Nk−1

(q; q)n1(q; q)n2 · · · (q; q)nk−1

=
∞∏
n=1

n 6≡0,±a (mod 2k+1)

1
1− qn

where
Nj = nj + nj+1 + · · ·+ nk−1,

and
(A; q)n = (A)n = (1−A)(1−Aq) · · · (1−Aqn−1).

We now involve parity restrictions:

Theorem 1. Suppose k = a = 1 are integers with k ≡ a (mod 2). Let Wk,a(n)
denote the number of those partitions enumerated by Bk,a(n) with the added restric-
tion that even parts appear an even number of times. If k and a are both even, let
Gk,a(n) denote the number of partitions of n in which no odd part is repeated and
no even part ≡ 0,±a (mod 2k + 2). If k and a are both odd, let Gk,a(n) denote
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the number of partitions of n into parts that are neither ≡ 2 (mod 4) nor ≡ 0,±a
(mod 2k + 2). Then for all n = 0,

Wk,a(n) = Gk,a(n).

Theorem 2. Suppose k = a = 1 with k odd and a even. Let W k,a(n) denote the
number of those partitions enumerated by Bk,a(n) with added restriction that odd
parts appear an even number of times. Then

(1.7)
∑
n=0

W k,a(n)qn =
∞∏
m=1

1
1 + q2m−1

∞∏
n=1

n 6≡0,±a (mod 2k+2)

1
1− qn

.

In analogy with (1.4), we shall prove equivalent generating function identities.

Theorem 3. For k = a = 1, k ≡ a (mod 2),∑
n1,n2,...,nk−1

qN
2
1+N2

2+···+N2
k−1+2Na+2Na+2+...2Nk−2

(q2; q2)n1(q2; q2)n2 · · · (q2; q2)nk−1

=
∑
n=0

Wk,a(n)qn

=
∑
n=0

Gk,a(n)qn

=
(−q; q2)∞(qa; q2k+2)∞(q2k+2−a; q2k+2)∞(q2k+2; q2k+2)∞

(q2; q2)∞
(1.8)

and if k = a = 2, k odd, a even, then∑
n1,...,nk−1=0

qN
2
1+···+N2

k−1+n1+n3+···+na−3+Na−1+Na+···+Nk−1

(q2; q2)n1(q2; q2)n2 · · · (q2; q2)nk−1

=
(−q2; q2)∞(qa; q2k+2)∞(q2k+2−a; q2k+2)∞(q2k+2; q2k+2)∞

(q2; q2)∞

=
(qa; q2k+2)∞(q2k+2−a; q2k+2)∞(q2k+2; q2k+2)∞

(−q; q2)∞(q; q)∞
.(1.9)

The second part of our investigation concerns the alternating parity of parts
related to partition functions like OE(n) from (1.5). There will be numerous results
derived on this topic. We sample the flavor of these results with the following
unexpected variation on the first Rogers-Ramanujan identity. To do this we require
the following definition:

The upper even index of a partition λ1 + λ2 + · · · + λs is the number of terms
in the longest decreasing subsequence of parts λi beginning with an even part and
alternating in parity.

Corollary 15. The number of partitions of n into distinct parts each larger than
upper even index equals the number of partitions of n into parts ≡ ±1 (mod 5).

Beyond this variation on the first Rogers-Ramanujan identity, we are led natu-
rally to Ramanujan’s mock theta functions [9].

Let us define RUE partitions of n to be those described in the first part of
Corollary 15.
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Theorem 17. Let rue(n) (resp. ruo(n)) denote the number of RUE partitions of
n with an even (resp. odd) upper even index. Then for the fifth order mock theta
function f0(q), we have

f0(q) :=
∞∑
n=0

qn
2

(−q; q)n
=
∞∑
n=0

(
rue(n)− ruo(n)

)
qn.

We shall, in addition, look at a variety of alternating parity questions, and shall
be led inexorably to improving the development of the Hecke type series for f0(q).
Surprisingly there is a nice relationship of f0(q) with the little q-Jacobi polynomials
[12; p. 27].

It should be emphasized that there is more in common than just parity consid-
erations between the refinements of Gordon’s Theorem (Sections 2-5) and parity
indices (Sections 6-12). Indeed comparison of Theorem 4 at k = 2 and Theorem 18
reveals that we are considering instances of

∞∑
n=0

qn
2
xnfn(y; q)

(q2; q2)n

where we want fn(0; q) = 1 and fn(1; q) = (−q; q)n.
For such polynomials we see that y = 0 leads to Euler’s series

∞∑
n=0

qn
2
xn

(q2; q2)n

and y = 1 leads to the Rogers-Ramanujan series

∞∑
n=0

qn
2
xn

(q; q)n
.

This entire project began with the observation that there are two obvious choices for
f , namely Hn, the Rogers-Szegö polynomial (defined in Section 5) and (−yq; q)n.
The first choice leads naturally to Theorem 4 and subsequently to everything in
Sections 2-5; the latter choice leads to the material in Sections 6-12.

Finally we note that K. Kursungoz has made an extensive combinatorial study
of many of the the theorems in this paper and has obtained corresponding bijective
or sieve-theoretic proofs. We will catalog his achievements in Section 13.

2. Background

In subsequent sections, we require a number of results and techniques from the
literature. We shall collect all those elements in this section.

Our proof of Theorems 1 and 2 will require the following. As in [1], we define

Ck,i(x; q) =
∞∑
n=0

(−1)nxknq
1
2 (2k+1)n(n+1)−in

(
1− xiq(2n+1)i

)
(xq; q)n

(q; q)n
,(2.1)

Qk,i(x; q) =
Ck,i(x; q)
(xq; q)∞

.(2.2)
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It was shown in [1] and [3], that

Qk,0(x; q) = 0,(2.3)

Qk,k+1(x; q) = Qk,k(x; q),(2.4)

Qk,−i(x; q) = −(xq)−iQk,i(x; q),(2.5)

Qk,i(x; q)−Qk,i−1(x; q) = xi−1qi−1Qk,k−i+1(xq; q).(2.6)

The functions Qk,i(x; q) play a vital role in the proof of the Rogers-Ramanujan-
Gordon identities given in the introduction. Namely, if we let bk,a(m,n) denote the
number of partitions enumerated by Bk,a(n) that have exactly m parts, then [1]

(2.7) Qk,a(x; q) =
∑
m,n=0

bk,a(m,n)xmqn.

In addition (cf. [1] or [3])

(2.8) Qk,a(1; q) =
(qa; q2k+1)∞(q2k+1−a; q2k+1)∞(q2k+1; q2k+1)∞

(q; q)∞
.

In [6], it was shown that

(2.9) Qk,i(x; q) =
∑

n1,...,nk=0

qN
2
1+N2

2+···+N2
k−1+Ni+Ni+1+···+Nk−1xN1+N2+···+Nk−1

(q; q)n1(q; q)n2 · · · (q; q)nk−1

.

We also require the q-binomial coefficients

(2.10)
[
N

M

]
k

=

0 if M < 0 or M > N`
qk; qk

´
N`

qk; qk
´
M

`
qk; qk

´
N−M

otherwise
.

These satisfy two basic recurrences [7; p. 35, eqs. (3.3.4) and (3.3.3)][
N

M

]
k

=
[
N − 1
M − 1

]
k

+ qkM
[
N − 1
M

]
k

(2.11) [
N

M

]
k

=
[
N − 1
M

]
k

+ qk(N−M)

[
N − 1
M − 1

]
k

(2.12)

We conclude this section with some remarks about standard methods used for
partition generating functions.

Often we will refer to f(x; q) as the generating function for all partitions sub-
ject to certain constraints C. By this we mean that if PC(m,n) is the number of
partitions of n into m summands subject to the constraint C, then

f(x; q) =
∑
m,n=0

PC(m,n)xmqn.

Next we shall often use the Shift Rule. Namely

f(xqj ; q)

is the generating function for partitions subject to C wherein each part has had j
added to it.

Additionally we often shall consider that the partitions subject to constraint C
must also have all their summands 5 N . The generating function will now be
denoted by f(N, x; q).
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Often we will obtain recurrences for f(N, x; q) utilizing the Largest Part Decom-
position Principle as follows:

f(N, x; q) = f(N − 1, x; q)
+ generating function for those partitions subject to C and

having N as a summand.
Next let us suppose that adding a given j to each part of every partition con-

strained by C produces exactly all those partitions constrained by C whose parts
are > j. Under these circumstances we may have a Smallest Parts Decomposition
Principle as follows:

f(x; q) = f(xqj ; q)
+ generating function for those partitions subject to C and

having at least one summand 5 j.

Finally suppose that we have two sets of functions fi(x, q), 1 5 i 5 r and gi(x, q),
1 5 i 5 r which are analytic in x and q for |q| < 1 and |x| < |q|−1. Furthermore
suppose that for each i, fi(0, q) = gi(0, q),

(2.13) fi(x, q) =
r∑
j=1

hi,j(x, q)fj
(
xqe(i,j), q

)
and

(2.14) gi(x, q) =
r∑
j=1

hi,j(x, q)gj
(
xqe(i,j), q

)
,

where the e(i, j) are all positive integers and the hi,j(x, q) are polynomials in x and
q. Then it follows by a double induction on the double power series coefficients that

fi(x, q) = gi(x, q), 1 5 i 5 r.

We shall refer to this process of identifying two sets of functions as the Defining
q-Difference Equations Principle.

When we invoke this principle, it may be the case that linear combinations of
the given functional equations are necessary to fulfill precisely (2.13) and (2.14).

3. Theorems 1 and 2

Suppose we let wk,a(m,n) (resp. wk,a(m,n)) denote the number of partitions of
the type enumerated by Wk,a(n) (resp. W k,a(n)) that have exactly m parts. The
related generating functions are

(3.1) Wk,a(x; q) :=
∑
m,n=0

wk,a(m,n)xmqn,

and

(3.2) Wk,a(x; q) :=
∑
m,n=0

wk,a(m,n)xmqn.

Our first object will be to show that

(3.3) Wk,a(x; q) = (−xq; q2)∞Q k
2 ,

a
2
(x2; q2)

provided k ≡ a (mod 2), and when k is odd and a even,

(3.4) Wk,a(x; q) = (−xq; q2)∞Q k
2 ,

a
2
(x2; q2).
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We begin with k even (and thus only consider (3.3).

Case 1. The even case. Here we replace k by 2k and a by 2a, and consequently we
need (3.2) to show that

(3.5) W2k,2a(x; q) := (−xq; q2)∞Qk,a(x2; q2).

We start off by adding together instances of (2.6) for 1 5 i 5 a and noting
Qk,0(x2; q2) = 0 by (2.3), thus by (2.6)

Qk,a(x2; q2) =
a∑
i=1

(x2q2)i−1Qk,k−i+1(x2q2; q2)

=
a∑
i=1

(x2q2)i−1
k−i+1∑
h=1

(x2q4)h−1Qk,k−h+1(x2q4; q2).(3.6)

Now defining

(3.7) V2k,2a(x; q) = (−xq; q2)∞Qk,a(x2; q2),

we see that (3.6) implies

(3.8)

V2k,2a(x; q) =

(1 + xq)
a∑
i=1

x2(i−1)q

2i−2 times︷ ︸︸ ︷
1+1+. . .+1

k−i+1∑
h=1

x2(h−1)q

2h−2 times︷ ︸︸ ︷
2+2+. . .+2V2k,2k−2h+2(xq2; q).

However, we may establish combinatorially that
(3.9)
W2k,2a(x; q) =

a∑
i=1

(
x2(i−1)q

2i−2 times︷ ︸︸ ︷
1+1+. . .+1 + x2i−1q

2i−1 times︷ ︸︸ ︷
1+1+. . .+1

) k−i+1∑
h=1

x2(h−1)q

2h−2 times︷ ︸︸ ︷
2+2+. . .+2W2k,2a(xq2; q).

To see this we note that if in the partitions enumerated by wk,a(m,n) 1 appears
2i−2 times and 2 appears 2h−2 times, then 3 can appear at most 2k−(2h−2)−1 =
(2k − 2h+ 2)− 1 times. Thus by the Shift Rule, this particular set of partitions is
generated by

x2i−2q2i−2x2h−2q4h−4W2k,2k−2h+2(xq2; q).

In precisely the same way, those partitions enumerated by wk,a(m,n) in which 1
appears 2i− 1 times and 2 appears 2h− 2 times have as their generating function

x2i−1q2i−1x2h−2q4h−4W2k,2k−2h+2(xq2; q).

Now summing over 1 5 i 5 a and 1 5 h 5 k − i + 1, we obtain (3.9). Thus by
Defining q-Difference Equations Principle

(3.10) V2k,2a(x; q) =W2k,2a(x; q)

which establishes (3.3) in the even case.

Case 2. The odd case. This case is somewhat less intricate because we can combine
the proof of (3.3) and (3.4) in this case. Namely replacing k by 2k + 1 and a by
2a+ 1 in (3.3) and by 2a in (3.4), we see that we need to prove

(3.11) W2k+1,2a+1(x; q) = (−xq; q2)∞Qk+ 1
2 ,a+

1
2
(x2; q2)
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and

(3.12) W2k+1,2a(x; q) = (−xq2; q2)∞Qk+ 1
2 ,a

(x2; q2).

Following the example of the previous case, we define

(3.13) V2k+1,2a+1(x; q) = (−xq; q2)∞Qk+ 1
2 ,a+

1
2
(x2; q2)

and

(3.14) V 2k+1,2a(x; q) = (−xq2; q2)∞Qk+ 1
2 ,a

(x2; q2).

We shall next derive a defining set of q-difference equations and initial conditions
for the V ’s and V ’s. First by (2.3)

(3.15) V 2k+1,0(x; q) = 0

and otherwise

(3.16) 1 = V2k+1,2a+1(0; q) = V2k+1,2a+1(x; 0) = V 2k+1,2a(0; q) = V 2k+1,2a(x; 0).

As for the q-difference equations

V2k+1(x; q) = (−xq; q2)Qk+ 1
2 ,

1
2
(x2; q2),

and by (2.5) and (2.6),

Qk+ 1
2 ,

1
2
(x2; q2)

(
1 + (x2q2)−

1
2
)

= (x2q2)−
1
2Qk+ 1

2 ,k+1(x2q2; q2);

so

(3.17) V2k+1,1(x; q) = V 2k+1,2k+2(xq; q).

For 0 < a 5 k

V2k+1,2a+1(x; q)− V2k+1,2a−1(x; q)

= (−xq; q2)∞
(
Qk+ 1

2 ,a+
1
2
(x2; q2)−Qk+ 1

2 ,a−
1
2
(x2; q2)

)
= (−xq; q2)∞Qk+ 1

2 ,k−a+1(x2q2; q2)(x2q2)a−
1
2

= (xq)2a−1(1 + xq)V 2k+1,2k−2a+2(xq; q),(3.18)

and

V 2k+1,2a+2(x; q)− V 2k+1,2a(x; q)

= (−xq2; q2)∞
(
Qk+ 1

2 ,a+1(x2; q2)−Qk+ 1
2 ,a

(x2; q2)
)

= (−xq2; q2)∞(x2q2)aQk+ 1
2 ,k−a+

1
2
(x2q2; q2)

= (xq)2aV2k+1,2k−2a+1(xq; q).(3.19)

The initial conditions (3.15) and (3.16) plus the q-difference equations (3.17) and
(3.18) will allow us to identify the V ’s with the W ’s provided we prove that the
W ’s satisfy the same conditions.

Clearly

(3.20) W 2k+1,0(x; q) = 0

because there are no partitions with 5 −1 appearances of 1.
Also

(3.21)1 = W2k+1,2a+1(0; q) = W2k+1,2a+1(x; 0) = W 2k+1,2a(0; q) = W 2k+1,2a(x; 0)

because in each case the only partition allowed is the empty partition of 0.
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Now

w2k+1,2a+1(m,n)− w2k+1,2a−1(m,n)

counts those partitions enumerated by w2k+1,2a+1(m,n) with the added condition
that 1 appears either 2a times or 2a − 1 times. We transform these partitions by
deleting all the 1’s and subtracting 1 from each of the remaining summands. If
there were initially 2a ones, then there were initially at most (2k− 2a+ 1)− 1 twos
(remember two cannot appear an odd number of times), and subtracting 1 from
each part changes the parity of each part. Hence this first class of partitions is
enumerated by

w2k+1,2k−2a+2(m− 2a, n−m).

If there were initially 2a− 1 ones, then there were at most (2k − 2a+ 2)− 1 twos.
Hence this second class of partitions is enumerated by

w2k+1,2k−2a+2(m− 2a+ 1, n−m).

Putting this all together, we see that

(3.22) w2k+1,2a+1(m,n)− w2k+1,2a−1(m,n)

= w2k+1,2k−2a+2(m− 2a, n−m) + w2k+1,2k−2a+2(m− 2a+ 1, n−m),

and (3.22) may be translated to the related generating functions:

(3.23) W2k+1,2a+1(x; q)−W2k+1,2a−1(x; q)

= (xq)2a−1(1 + xq)W2k+1,2k−2a+2(xq; q),

which is (3.18) for the W ’s. Finally

w2k+1,2a+2(m,n)− w2k+1,2a(m,n)

counts those partitions enumerated by w2k+1,2a+2(m,n) with the added condition
that 1 appear 2a times (keep in mind that 1, being odd, cannot appear 2a+1 times).
We transform these partitions by deleting the 1’s and subtracting 1 from each of
the remaining summands. Since 1 appears 2a times, then there were initially at
most (2k + 1− 2a)− 1 twos. As before, subtracting 1 from each part changes the
parity. Hence the transformed partitions are enumerated by

w2k+1,2k−2a+1(m− 2a, n−m).

Therefore

(3.24) w2k+1,2a+2(m,n)− w2k+1,2a(m,n) = w2k+1,2k−2a+1(m− 2a, n−m),

and (3.24) may be translated to the related generating functions

W 2k+1,2a+1(x; q)−W 2k+1,2a−1(x; q) = (xq)2aW2k+1,2k−2a+1(xq; q)(3.25)

which is (3.19) for the W ’s.
Hence by the Defining q-Difference Equations Principle, the W ’s and the V ’s are

identical. I.e. (3.3) and (3.4) are valid.
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The proofs of Theorem 1 and 2 are now quite straight forward.
∞∑
n=0

Wk,a(n)qn =
∑
n,m=0

wk,a(m,n)qn

= Wk,a(1, q) = (−q; q2)∞Q k
2 ,

a
2
(1; q2)

=
(−q; q2)∞(qa; q2k+2)∞(q2k+2−a; q2k+2)∞(q2k+2; q2k+2)∞

(q2; q2)∞
(by (2.8))

=
(qa; q2k+2)∞(q2k+2−a; a2k+2)∞(q2k+2; q2k+2)∞

(q; q2)∞(q4; q4)∞

=
∞∑
n=0

Gk,a(n)qn.(3.26)

The last line follows from the antepenultimate line if k an a are both even and
from the penultimate line if k and a are both odd. Comparing coefficients in the
extremes of (3.26), we see that Theorem 1 is proved.

Finally for k odd and a even,
∞∑
n=0

Wk,a(n)qn =
∑
n,m=0

wk,a(n)qn

= W k,a(1, q) = (−q2; q2)∞Q k
2 ,

a
2
(1; q2)

=
(qa; q2k+2)∞(q2k+2−a; q2k+2)∞(q2k+2; q2k+2)∞

(−q; q2)∞(q; q)∞
,(3.27)

by (2.8) as asserted in Theorem 2.
While there is no really clean classical partition-theoretic interpretation of (3.27),

it can be interpreted via overpartitions (cf. [11], [18]). Also the equivalent assertion(
1 + 2

∞∑
n=1

(−1)nq2n
2

) ∞∑
n=0

Wk,a(n)qn =
∞∑

n=−∞
(−1)nq(k+1)n(n−1)+an

yields a very nice recurrence for Wk,a(n).

4. Theorem 3

In light of (3.2) and Theorem 1 we shall first prove that

(4.1) (−q; q2)∞Q k
2 ,

a
2
(1; q2)

=
∑

n1,...,nk−1=0

qN
2
1+N2

2+···+N2
k−1+2Na+2Na+2+···+2Nk−2

(q2; q2)n1(q2; q2)n2 · · · (q2; q2)nk−1

,

where, as noted earlier, Ni = ni + ni+1 + · · ·+ nk−1.

Case 1. The even case. As before we replace k by 2k and a by 2a. We shall prove
that

(4.2) (−xq; q2)∞Qk,a(x2; q2)

=
∞∑

n1,...,n2k−1=−∞

qN
2
1+N2

2+···+N2
k−1+2N2a+2N2a+2+···+2N2k−2xN1+N2+···+N2k−1

(q2; q2)n1(q2; q2)n2 · · · (q2; q2)n2k−1

.
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Note that we sum from −∞ to ∞ for convenience; indeed the extended definition
(q; q)n =

∏∞
j=1(1 − qj)/(1 − qn+j), means that 1/(q; q)n = 0 if n < 0. First we

replace each n2i by n2i − n2i+1 for 1 5 i 5 k − 1. With this change of indices

N2i−1 = n2i−1 + n2i + n2i+2 + · · ·+ n2k−2

and
N2i = n2i + n2i+2 + · · ·+ n2k−2.

Thus we may rewrite the left-hand side of (4.2) as
∞∑

n2,n4,...,n2k−2=−∞

q2N
2
2+2N2

4+···+2N2
2k−2+2N2a+2N2a+2+···+2N2k−2x2N2+2N4+···+2N2k−2

(q2; q2)n2(q2; q2)n4 · · · (q2; q2)n2k−2

×
∑

n1,n3,...,n2k−1=0

qn
2
1+2n1N2+n

2
3+2n3N4+···+n2

2k−3+2n2k−3N2k−2+n
2
2k−1xn1+n3+···+n2k−1

× 1
(q2; q2)n1

[
n2

n3

]
2

[
n4

n5

]
2

· · ·
[
n2k−2

n2k−1

]
2

=
∑

n2,n4,...,n2k−2=−∞

q2N
2
2+2N2

4+···+2N2
2k−2+2N2a+···+2N2k−2x2N2+···+2N2k−2

(q2; q2)n2(q2; q2)n4 · · · (q2; q2)n2k−2

×
(
−xq1+2N2 ; q2

)
∞

(
−xq1+2N4 ; q2

)
n2

(
−xq1+2N6 ; q2

)
n4
· · ·
(
−xq; q2

)
n2k−2

= (−xq; q2)∞Qk,a(x2; q2),

(by [10; p. 36, eq. (3.3.6)])

where we have combined the inner numerator factors into the single infinite product
(−xq; q2)∞ and have invoked (2.9).

Finally setting x = 1 in (4.2) yields (4.1) in the even case.

Case 2. The odd case. Now we replace k by 2k+1 and a by 2a+1. We shall prove
that

(4.3) (−xq; q2)∞Qk+ 1
2 ,a+

1
2
(x2; q2)

=
∑

n1,...,n2k=0

qN
2
1+N2

2+···+N2
2k+2N2a+1+2N2a+3+···+2N2k−1xN1+N2+···+N2k

(q2; q2)n1(q2; q2)n2 · · · (q2; q2)n2k

.

We now define

(4.4) R2k+1,2a+1(x) = (−xq; q2)∞Qk+ 1
2 ,a+

1
2
(x2; q2),

and

(4.5) R2k+1,2a+2(x) = (−xq2; q2)∞Qk+ 1
2 ,a+1(x2; q2).

Hence for k + 1 = a > 0,

R2k+1,2a+1(x)−R2k+1,2a−1(x)

= (−xq; q2)∞
(
Qk+ 1

2 ,a+
1
2
(x2; q2)−Qk+ 1

2 ,a−
1
2
(x2; q2)

)
= (−xq; q2)∞(x2q2)a−

1
2Qk+ 1

2 ,k−a+1(x2q2; q2)

= (xq)2a−1(1 + xq)R2k+1,2k−2a+2(xq)(4.6)
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(note that for a = k+1, this implies R2k+1,2k+3(x) = R2k+1,2k+1(x)), for k = a = 0

R2k+1,2a+2(x)−R2k+1,2a(x) = (−xq2; q2)∞
(
Qk+ 1

2 ,a+1(x2; q2)−Qk+ 1
2 ,a

(x2; q2)
)

= (xq)2a(−xq2; q2)∞Qk+ 1
2 ,k−a+

1
2
(x2q2; q2)

= (xq)2aR2k+1,2k−2a+1(xq),(4.7)

and for a = 0

R2k+1,1(x)(1 + x−1q−1) = R2k+1,1(x)−R2k+1,−1(x)

= (xq)−1(1 + xq)R2k+1,2k+2(xq),

or

(4.8) R2k+1,1(x) = R2k+1,2k+2(xq).

Now equations (4.6) – (4.8) are a defining set of q-difference equations once we note
the obvious initial conditions for x = 0 and q = 0.

Furthermore, when k = 0, the unique solutions are

R1,1(x) = R1,2(x) = 1, R1,0(x) = 0.

We shall now prove that if for 0 5 a 5 k

(4.9) R2k+1,2a+1(x) =
∑
n=0

(−xq; q2)nq(2k−1)n2+2(k−a)nx(2k−1)nR2k−1,2a+1(xq2n)
(q2; q2)n

,

and for a = k + 1

R2k+1,2k+3(x) =
∑
n=0

(−xq; q2)nq(2k−1)n2
x(2n−1)nR2k−1,2k−1(xq2n)

(q2; q2)n

= R2k+1,2k+1(x),(4.10)

and if for 0 5 a 5 k
(4.11)

R2k+1,2a(x) =
∑
n=0

(−xq2; q2)nq(2k−1)n2+(2k−2a+1)nx(2k−1)nR2k−1,2a(xq2n)
(q2; q2)n

,

while

(4.12) R2k+1,2k+2(x) =
∑
n=0

(−x; q2)nq(2k−1)n2+nx(2k−1)nR2k−1,2k(xq2n)
(q2; q2)n

,

then for 0 5 A 5 2k + 3, k > 0,

(4.13) R2k+1,A(x) = R2k+1,A(x).
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We now proceed to the base case, k = 1, in order to establish (4.13) by mathe-
matical induction on k. The asserted expansions for the R’s are:

R3,1(x) =
∑
n=0

(−xq; q2)nqn
2+2nxn

(q2; q2)n
(4.14)

R3,2(x) =
∑
n=0

(−xq2; q2)nqn
2+nxn

(q2; q2)n
(4.15)

R3,5(x) = R3,3(x) =
∑
n=0

(−xq; q2)nqn
2
xn

(q2; q2)n
(4.16)

R3,4(x) =
∑
n=0

(−x; q2)nqn
2+nxn

(q2; q2)n
.(4.17)

By inspection we see that,

R3,5(x)−R3,3(x) = 0 = x3(1 + xq)R3,0(xq)(4.18)

R3,1(x) = R3,4(xq)(4.19)

R3,2(x) = R3,3(xq).(4.20)

Also

R3,3(x)−R3,1(x) =
∑
n=1

(−xq; q2)nqn
2
xn

(q2; q2)n−1

= xq(1 + xq)
∑
n=0

(
− (xq)q2; q2)

)
n
qn

2+n(xq)n

(q2; q2)n

= xq(1 + xq)R3,2(xq),(4.21)

and

R3,4(x)−R3,2(x) =
∑
n=0

(−xq2; q2)n−1q
n2+nxn

(
(1 + x)− (1 + xq2n)

)
(q2; q2)n

= x
∑
n=1

(
− xq2; q2

)
n−1

qn
2+nxn

(q2; q2)n−1

= x2q2
∑
n=0

(
− (xq)q; q2

)
n
qn

2+2n(xq)n

(q2; q2)n

= x2q2R3,1(xq).(4.22)

Now (4.18) – (4.22) are just (4.6), (4.7) and (4.8) in the case k = 1. Thus, noting
the concurrent initial conditions, we see that by the Defining q-Difference Equation
Principle, (4.13) is valid for k = 1.
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We now assume that (4.13) is valid up to but not including a fixed k. Hence

R2k+1,1(x) =
∑
n=0

(−xq; q2)nq(2k−1)n2+2knx(2k−1)nR2k−1,1(xq2n)
(q2; q2)n

=
∑
n=0

(−xq; q2)nq(2k−1)n2+n(xq)(2k−1)nR2k−1,2k(xq2n+1)
(q2; q2)n

(by (4.8))

= R2k+1,2k+2(xq).(4.23)

So (4.8) is valid with the R’s replaced by R’s.
Next for 1 5 a < k,

R2k+1,2a+1(x)−R2k+1,2a−1(x)

=
∑
n=0

(−xq; q2)nq(2k−1)n2+2(k−a)nx(2k−1)n

(q2; q2)n

`
R2k−1,2a+1(xq2n) − q2nR2k−1,2a−1(xq2n)

´

=
∑
n=0

(−xq; q2)nq(2k−1)n2+2(k−a)nx(2k−1)n

(q2; q2)n

×
(
R2k−1,2a−1(xq2n) + (xq2n+1)2a−1(1 + xq2n+1)R2k−1,2k−2a(xq2n+1)

− q2nR2k−1,2a−1(xq2n)
)(by (4.6))

=
∑
n=1

(−xq; q2)nq(2k−1)n2+2(k−a)nx(2k−1)nR2k−1,2a−1(xq2n)
(q2; q2)n−1

+ (xq)2a−1(1 + xq)
∑
n=0

(−(xq)q2; q2)nq(2k−1)n2+(2a−1)nx(2k−1)nR2k−1,2k−2a(xq2n)

(q2; q2)n

=
∑
n=1

(−xq; q2)n+1q
(2k−1)(n+1)2+2(k−a)(n+1)x(2k−1)(n+1)R2k−1,2a−1(xq2n+2)

(q2; q2)n

+ (xq)2a−1(1 + xq)
∑
n=0

(−xq3; q2)nq(2k−1)n2+(2a−1)n(xq)(2k−1)n

(q2; q2)n

×
(
R2k−1,2k−2a+2(xq2n+1)− (xq2n+2)2(k−a)R2k−1,2a−1(xq2n+2)

)(by (4.7))

= (xq)2a−1(1 + xq)R2k+1,2k−2a+2(xq),
(4.24)

where the sums involving R2k−1,2a−1(xq2n+1) cancel each other. Hence we have
(4.6) proved with R’s replacing R’s as long as 1 5 a 5 k. At a = k + 1

R2k+1,2k+3(x)−R2k+1,2k+1(x) = 0(by (4.10))

= (xq)2k+1(1 + xq)R2k+1,0(xq)(4.25)

(by (4.5) because Qk+ 1
2 ,0

(x2; q2) = 0). Hence (4.6) is proved in all cases with R’s
replacing R’s.
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Next for 0 5 a < k

R2k+1,2a+2(x)−R2k+1,2a(x)

=
∑
n=0

(−xq2; q2)nq(2k−1)n2+(2k−2a−1)nx(2k−1)n

(q2; q2)n

×
(
R2k−1,2a+2(xq2n)− q2nR2k−1,2a(xq2n)

)
=
∑
n=0

(−xq2; q2)nq(2k−1)n2+(2k−2a−1)nx(2k−1)n

(q2; q2)n

×
(
R2k−1,2a(xq2n) + (xq2n+1)2aR2k−1,2k−2a−1(xq2n+1)− q2nR2k−1,2a(xq2n)

)

=
∑
n=1

(−xq2; q2)nq(2k−1)n2+(2k−2a−1)nx(2k−1)nR2k−1,2a(xq2n)
(q2; q2)n−1

(by (4.7))

+ (xq)2a
∑
n=0

(−xq2; q2)nq(2k−1)n2+(2k−2a−1)n+4nax(2k−1)n

(q2; q2)n

×
(
R2k−1,2k−2a+1(xq2n+1)− (xq2n+2)2k−2a−1(1 + xq2n+2)R2k−1,2a(xq2n+2)

)
= (xq)2aR2k+1,2k−2a+1(xq),

(by (4.6))

where the two sums involving R2k−1,2a cancel each other out once n has been
replaced by n+ 1 in the first of the two. Hence we have (4.7) proved for 0 5 a < k.

Finally for a = k

R2k+1,2k+2(x)−R2k+1,2k(x)

=
∑
n=1

(−xq2; q2)n−1q
(2k−1)n2+nx(2k−1)nR2k−1,2k(xq2n)

(q2; q2)n

(
(1 + x)− (1 + xq2n)

)
= x2kq2k

∑
n=0

(−xq2; q2)nq(2k−1)n2+2kn(xq)(2k−1)nR2k−1,2k(xq2n+2)
(q2; q2)n

= x2kq2k
∑
n=0

(−(xq)q; q2)nq(2k−1)n2+2kn(xq)(2k−1)nR2k−1,1(xqq2n)
(q2; q2)n

= (xq)2kR2k+1,1(xq)
(by (4.8))

which establishes (4.7) with the R’s replaced by R’s. Hence by the Defining q-
Difference Equations Principle (4.13) is true.

Hence (4.9) – (4.13) are valid if R is replaced by R.

I now claim that for 0 5 a 5 k

(4.26) R2k+1,2a+1(x) =
∑

n1,...,n2k=0

qN
2
1+···+N2

2k+2
Pk

j=a+1N2j−1xN1+···+N2k

(q2; q2)N1−N2 · · · (q2; q2)N2k−1−N2k
(q2; q2)N2k

,
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and

(4.27) R2k+1,2a(x)

=
∑

n1,...,n2k=0

qN
2
1+···+N2

2k+N2a−1+N2a+···+N2k+n1+n3+n2a−3xN1+···+N2k

(q2; q2)N1−N2 · · · (q2; q2)N2k−2−N2k−1(q2; q2)N2k−1−N2k
(q2; q2)N2k

,

where Ni = ni + ni+1 + · · ·+ n2k and empty sums are 0.
If we denote the right hand side of (4.26) by ρ2k+1,2a+1(x), we see that by

summing the n2k series using the q-binomial theorem [7; p. 36, eq. (3.3.6)] and
letting n = n2k−1 we obtain

ρ2k+1,2a+1(x) =
∑
n=0

(−xq; q2)nq(2k−1)n2+2(k−a)nx(2k−1)n

(q2; q2)n
ρ2k−1,2a+1(xq2n),

an exact replica of (4.9) where we add the caveat that ρ2k+1,2k+3(x) = ρ2k+1,2k+1(x)
(i.e. (4.10)).

If we denote the right hand side of (4.7) by ρ2k+1,2a(x), we see that by summing
the n2k series using the q-binomial theorem [7; p. 36, eq. (3.36)] and letting
n = n2k−1, we obtain

ρ2k+1,2a(x) =
∑
n=0

(−xq2; q2)nq(2k−1)n2+(2k−2a+1)nx(2k−1)nρ2k−1,2a(xq2n)
(q2; q2)n

and

ρ2k+1,2k+2(x) =
∑
n=0

(−x; q2)nq(2k−1)n2+nx(2k−1)nρ2k−1,2k(xq2n)
(q2; q2)n

.

Thus we have exactly the same functional equations for the ρ’s as for the R’s and
exactly the same argument shows that

(4.28) ρ2k+1,A(x) = R2k+1,A(x)

for 0 5 A 5 2k + 3.
Now (4.4), (4.26) and (4.28) prove (4.2) in the odd case and consequently we

have proved (4.1).
Finally to prove (1.9), the final assertion in Theorem 3, we need only set x = 1

in (4.5) and invoke (2.8). �

5. Evens Appearing Oddly in Gordon’s Partitions

Our object in this section is to prove the following result:

Theorem 4. If k = 2 or 3, then the coefficient of qnxmyj in

(5.1)
∑

n1,n2,...,nk−1=0

qN
2
1+N2

2+···+N2
k−1xN1+···+Nk−1Hn1Hn2 · · ·Hnk−1

(q2; q2)n1(q2; q2)n2 · · · (q2; q2)nk−1

is the number of partitions enumerated by Bk,k(n) with exactly m parts and exactly
j different even parts that appear an odd number of times. In (5.1),

Hn =
n∑
j=0

yjqj
[
n

j

]
2

,
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and as before
Ni = ni + ni+1 + · · ·+ nk−1.

Noting that Hn = 1 when y = 0 and Hn = (−q; q)n when y = 1 [4; p. 49, Ex.
5], we see that the theorem is true for all k when y = 1 (it is the case i = k of (2.9))
and when y = 0 (it is the case i = k of Theorem 3).

Remark. K. Kursungoz has found a combinatorial proof of (5.1) valid for all k = 2.
The proof here is purely analytic. The possibility of a fully analytic proof will be
considered in Section 13.

To set up our proof we require a couple of lemmas. First we define

Sk(ak−1, ak−2, . . . , a1;x; q)

(5.2)

=
∑

n1,...,nk−1=0

qN
2
1+N2

2+···+N2
k−1+2a1n1+···+2ak−1nk−1xN1+···+Nk−1Hn1Hn2 · · ·Hnk−1

(q2; q2)n1(q2; q2)n2 · · · (q2; q2)nk−2

=
∑
n=0

q(k−1)n2+2ak−1nx(k−1)nHn

(q2; q2)n
Sk−1(ak−2, . . . , a1;xq2n; q).

(5.3)

Lemma 5. For 1 5 i 5 k − 1, k = 2,

(5.4)
Sk(ak−1, ak−2, . . . , ak−i, . . . , a1;x; q)− Sk(ak−1, ak−2, . . . , ak−i + 1, . . . , a1;x; q)
= xk−i(1 + yq)q(k−i)+2ak−iSk(ak−1 − i + 1, ak−2 − i + 2, . . . , ak−i+1 − 1, ak−i, . . . , a1; xq2; q)

−x2(k−i)yq4(ak−i+k−i)+1Sk(ak−1 − 2i + 2, ak−2 − 2i + 4, . . . , ak−i+1 − 2, ak−i, . . . , a1; xq4; q).

Proof. We proceed by mathematical induction on k. First k = 2. Consequently
i = 1. In the proof, we need the following recurrence for the H’s [4; p. 49, Ex. 6]

(5.5) Hn+1 = (1 + yq)Hn − (1− q2n)yqHn−1.

Hence

S2(a1;x; q)− S2(a1 + 1;x; q)

=
∑
n=0

qn
2+2a1nxnHn(1− q2n)

(q2; q2)n

=
∑
n=0

q(n+1)2+2a1(n+1)xn+1Hn+1

(q2; q2)n

=
∑
n=0

q(n+1)2+2a1(n+1)xn+1
(
(1 + yq)Hn − (1− q2n)yqHn−1

)
(q2; q2)n

= xq2a1+1(1 + yq)S2(a1;xq2; q)− yq
∑
n=0

q(n+2)2+2a1(n+2)xn+2Hn

(q2; q2)n

= x(1 + yq)q1+2a1S2(a1;xq2; q)− x2yq4(a1+1)+1S2(a1;xq4; q).
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Thus the case k = 2 is established.
We now assume the theorem is true up to but not including a specific k.
When i = 1

Sk(ak−1, ak−2, . . . , a1;x; q)− Sk(ak−1 + 1, ak−2, . . . , a1;x; q)

=
∑
n=0

q(k−1)n2+2ak−1nx(k−1)nHn(1− q2n)Sk−1(ak−2, . . . , a1;xq2n; q)
(q2; q2)n

=
∑
n=0

q(k−1)(n+1)2+2ak−1(n+1)x(k−1)(n+1)Sk−1(ak−2, . . . , a1;xq2n+2; q)
(q2; q2)n

×
(
(1 + yq)Hn − yq(1− q2n)Hn−1

)
= xk−1(1 + yq)qk−1+2ak−1Sk(ak−1, ak−2, . . . , a1;xq2; q)

− yq
∑
n=0

q(k−1)(n+2)2+2ak−1(n+2)x(k−1)(n+2)Hn

(q2; q2)n
Sk−1(ak−2, . . . , a1;xq2n+4; q)

= xk−1(1 + yq)qk−1+2ak−1Sk(ak−1, . . . , a1;xq2; q)

− x2(k−1)yq1+4(k−1)+4ak−1Sk(ak−1, . . . , a1;xq4; q)

which is the desired result at k with i = 1. Now assume k − 1 = i > 1,

Sk(ak−1, . . . , ak−i, . . . , a1;x; q)− Sk(ak−1, . . . , ak−i + 1, . . . , a1;x; q)

=
∑
n=0

q(k−1)n2+2ak−1nx(k−1)nHn

(q2; q2)n

{
Sk−1(ak−2, . . . , ak−1−(i−1), . . . , a1;xq2n; q)

− Sk−1(ak−2, . . . , ak−1−(i−1) + 1, . . . , a1;xq2n; q)
}

=
∑
n=0

q(k−1)n2+2ak−1nx(k−1)nHn

(q2; q2)n

×
“
(xq2n)k−i(1 + yq)qk−i+2ak−iSk−1(ak−2 − i + 2, ak−3 − i + 3, . . ., ak−i, . . ., a1; xq2n+2; q)

−(xq2n)2(k−i)yq4(k−i)+4ak−i+1Sk−1(ak−2−2i+4, ak−3−2i+6, . . ., ak−i, . . ., a1; xq2n+4; q)
”

= xk−i(1 + yq)qk−i+2ak−i

(by the induction hypothesis)

×
∑
n=0

q(k−1)n2+2(ak−1−i+1)n(xq2)(k−1)nHnSk−1(ak−2 − i+ 2, . . . ;xq2n+2; q)
(q2; q2)n

− x2(k−i)yq4(k−i)+4ak−i+1

×
∑
n=0

q(k−1)n2+2(ak−1−2i+2)n(xq4)(k−1)nHnSk−1(ak−2 − 2i+ 4, . . . ;xq2n+4; q)

= xk−i(1 + yq)qk−i+2ak−iSk(ak−1 − i+ 1, ak−2 − i+ 2, . . . , ak−i, . . . , a1;xq2; q)

− x2(k−i)yq4(k−i)+4ak−i+1Sk(ak−1 − 2i+ 2, ak−2 − 2i+ 4, . . . , ak−i, . . . , a1;xq4; q)

and so we have proved every instance at k thus proving the lemma. �

Next,
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Lemma 6.
(5.6) Sk(ak−1+k−1, ak−2+k−2, . . . , a1+1;x; q) = Sk(ak−1, ak−2, . . . , a1;xq2; q).

Proof. This follows immediately from inspection of (5.2). �

Finally,

Proof of Theorem 4. We begin with k = 2. Let us define Gk(x, y, q) to be the
generating function for the partitions named in the statement of the theorem. It is
easy to see that

(5.7) G2(x, y, q) = (1 + xq + xyq2)G2(xq2, y, q)− x2yq2+3G2(xq4, y, q).

The first term on the right exhibits the allowable partitions accordingly as there are
no parts smaller than 3 (the “1”), 1 is a part (the “xq”), or 2 is a part (the “xyq2”).
However partitions with smallest parts 2+3 have been inadmissably allowed. Thus
the second term (with “x2yq2+3”) removes these partitions.

On the other hand, by Lemmas 5 and 6,

S2(0;x; q) = S2(1;x; q) + x(1 + yq)qS2(0;xq2; q)− x2yq5S2(0;xq4; q)

= (1 + xq + xyq2)S2(0;xq2; q2)− x2yq5S2(0;xq4; q).(5.8)

Comparing (5.8) and (5.7), we see by the Defining q-Difference Equation Principle
that

G2(x, y, q) = S2(0;x; q).
This proves the case k = 2.

We now consider k = 3. We note that by Lemma 5

S3(0, 0;x; q)− S3(1, 0;x; q) = x2q2(1 + yq)S3(0, 0;xq2; q)− x4yq9S3(0, 0;xq4; q)
(5.9)

S3(1, 0;x; q)− S3(2, 0;x; q) = x2q4(1 + yq)S3(1, 0;xq2; q)− x4yq13S3(1, 0;xq4; q)
(5.10)

S3(2, 0;x; q)− S3(2, 1;x; q) = xq(1 + yq)S3(1, 0;xq2; q)− x2yq5S3(0, 0;xq4; q),
(5.11)

and by Lemma 6:

(5.12) S3(2, 1;x; q) = S3(0, 0;xq2; q).

We may obtain S3(1, 0;x; q) in terms of instances of S3(0, 0;xq2i; q) from (5.9).
Then the same can be done for S3(2, 0;x; q) from (5.10). Finally all of these results
plus (5.12) can be substituted in (5.11) to obtain the following q-difference equation
for S3(0, 0;x; q):

(5.13) S3(0, 0;x; q) =
(
1 + qx(1 + qy)(1 + xq + xq3)

)
S3(0, 0;xq2; q)

+
(
x2yq5 + x3q7(1 + qy)2 + x4q9(q + y + 2q2y + yq4 + y2q3)

)
S3(0, 0;xq4; q)

− x5q18y(1 + yq)(1 + xq3 + xq5)S3(0, 0;xq6; q) + x8y2q38S3(0, 0;xq8; q).

Now we need a q-difference equation for G3(x, y, q). This may be obtained as
follows: G3(x, 1, q) is the generating function for the original Gordon partition
b3,3(m,n). Following [3; p. 443, eqs. (5.6)–(5.9)], we see that the Smallest Parts
Decomposition Principle may be invoked to yield
(5.14)
G3(x, 1, q) = (1 + xq)G3(xq, 1, q)− x2q1+1G3(xq2, 1, q) + x3q2+2+1G3(xq3, 1, q).
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But in instances of G3(xq2j+1, y, q) we see that y would be counting instances of
different odd parts appearing an odd number of times. Hence we must do several
applications of the shift rule in order to eliminate instances of G3(xq2j+1, 1, q).
Thus with G3(x) = G3(x, 1, q), we have that

G3(xq) = (1 + xq2)G3(xq2)− x2q2+2G3(xq3) + x3q3+3+2G3(xq4)

G3(xq2) = (1 + xq3)G3(xq3)− x2q3+3G3(xq4) + x3q4+4+3G3(xq4)

G3(xq3) = (1 + xq4)G3(xq4)− x2q4+4G3(xq5) + x4q5+5+4G3(xq6)

We now have four linear equations which can be solved for G3(x), G3(xq),
G3(xq3) and G3(xq5) in terms of G3(xq2), G3(xq4) and G3(xq6). As a result

(5.15) G3(x) = (1 + xq + x2q1+1 + xq2 + x2q2+1 + x2q2+2)G3(xq2)

−
(
x3q3+2+2 + x3q3+3+2 + x4q3+3+2+2 + x4q3+3+2+1 + x4q4+3+2+2

)
G3(xq4)

+ x6q5+5+4+3+2+2G3(xq6).

Now equation (5.15) may be viewed as an application of the Smallest Parts De-
composition Principle considering the partitions starting with parts 5 2. Thus to
extend (5.15) to the full G3(x, y, q) we need only insert y’s to account for appear-
ances of evens an odd number of times. Hence

(5.16) G3(x, y, q) = (1 + xq + x2q1+1 + xyq2 + x2yq2+1 + x2q2+2)G3(xq2, y, q)

− (x3q3+2+2 +x3yq3+3+2 +x4q3+3+2+2 +x4yq3+3+2+1 +x4yq4+3+2+2)G3(xq4, y, q)

+ x6yq5+5+4+3+2+2G3(xq6, y, q).

So if we define E3(x, q) to be the left-hand side of (5.16) minus the right-hand side,
then we see that E3(x, q) is identically equal to 0. Therefore

0 = E3(x, q)− x2yq5E3(xq2, q)

= G3(x, y, q)−
(
1 + qx(1 + qy)(1 + xq + xq3)

)
G3(xq2, y, q)

+
(
x2yq5 + x3q7(1 + qy)2 + x4q9(q + y + 2q2y + yq4 + y2q3)

)
G3(xq4, y, q)

− x5q18y(1 + yq)(1 + xq3 + xq5)G3(xq6, y, q) + x8y2q38G3(xq8, y, q).
(5.17)

Comparing (5.17) with (5.13) we see that the Defining q-Difference Equations Prin-
ciple implies that

G3(x, y, q) = S3(0, 0;x; q). �

6. The Parity Indices

The next few sections will be devoted to considerations of partitions subject to
constraints on the following partition parameters.

Definition. Let λ be a partition λ : λ1+λ2+· · ·+λj where λ1 = λ2 = · · · = λj . We
define IUE(λ) (resp. IUO) to be the maximum length of nonincreasing subsequences
of {λ1, λ2, . . . , λj} whose terms alternate in parity starting with an even (resp. odd)
λi.

Definition. Let λ be a partition λ : λ1+λ2+· · ·+λj where λ1 = λ2 = · · · = λj . We
define ILE(λ) (resp. ILO) to be the maximum length of nondecreasing subsequences
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of {λ1, λ2, . . . , λj} whose terms alternate in parity starting with an even (resp. odd)
λi.

It is immediate from these definitions that if λ1 is even, then IUO(λ) = IUE(λ)−
1, and if λ1 is odd, then IUE(λ) = IUO(λ)− 1. In the same way, if λj is even, then
ILO(λ) = ILE(λ)− 1, and if λj is odd, then ILE(λ) = ILO(λ)− 1.

For example, if λ = 7+7+5+4+4+3+2+1+1, then IUE(λ) = 4, IUO(λ) = 5,
ILE(λ) = 4, ILO(λ) = 5.

7. Lower Parity Indices in Partitions With Distinct Parts

We begin with notation for the relevant partition functions:
pe(r,m, n) (resp. po(r,m, n)) is to denote the number of partitions of n into m

distinct parts with lower even (resp. odd) parity index equal to r.
Next,

(7.1) Pe(y, x; q) =
∑

r,m,n=0

pe(r,m, n)yrxmqn,

and

(7.2) Po(y, x; q) =
∑

r,m,n=0

po(r,m, n)yrxmqn.

Theorem 7.
Pe(y, x; q) = (1 + xq)Po(y, xq; q),(7.3)

Po(y, x; q) =
∑
n=0

xnynqn(n+1)/2(−q/y)n
(q2; q2)n

,(7.4)

= (−xq)∞
∑
n=0

(y)n(−xq)n

(q2; q2)n
.(7.5)

Proof. By the Smallest Parts Decomposition Principle

Pe(y, x; q) = Po(y, xq; q) + xqPo(y, xq; q)(7.6)

Po(y, x; q) = Pe(y, xq; q) + xqyPo(y, xq; q).(7.7)

Equation (7.6) immediately establishes (7.3). We now substitute (7.6) into (7.7) to
obtain

(7.8) Po(y, x; q) = (1 + xq2)Po(y, xq2; q) + xqyPo(y, xq; q).

We now expand Po(y, x; q) in a power series in x:

(7.9) Po(y, x; q) =
∑
n=0

Anx
n.

Substituting (7.9) into (7.8) and noting that A0 = 1, we see that

An = q2nAn + q2nAn−1 + yqnAn−1,

or

An =
yqn(1 + qn/y)

(1− q2n)
An−1.
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Iteration then reveals that

(7.10) An =
ynqn(n+1)/2(−q/y)n

(q2; q2)n
.

Combining (7.10) with (7.9), we see that (7.4) is established.
Finally by (7.4) using the basic hypergeometric series notation [12; p. 4]

Po(y, x; q) = lim
τ→0

2φ1

(
−q/τ,−q/y; q, xyτ

−q

)
= lim
τ→0

(−xq)∞
(xyτ)∞

2φ1

(
τ, y; q,−xq
−q

)
(by [12; p. 10, eq. (1.4.6)])

= (−xq)∞
∞∑
n=0

(y)n(−xq)n

(q2; q2)n
,

which proves (7.5). �

8. Lower Parity Indices in Unrestricted Partitions

Again we start with the relevant notation:
Let ue(r,m, n) (resp. uo(r,m, n)) denote the number of partitions of n into m

parts with lower even (resp. odd) parity index equal to r.
Next

(8.1) Ue(y, x; q) =
∑

r,m,n=0

ue(r,m, n)yrxmqn,

and

(8.2) Uo(y, x; q) =
∑

r,m,n=0

uo(r,m, n)yrxmqn.

Theorem 8.

Ue(y, x; q) =
Uo(y, xq; q)

1− xq
,(8.3)

Uo(y, x; q) =
1

(xq)∞

∑
n=0

xnynqn(n+1)/2(1/y)n
(q2; q2)n

,(8.4)

= (1− x)
∑
n=0

(−qy)nxn

(q2; q2)n
.(8.5)

Proof. By the Smallest Parts Decomposition Principle

Ue(y, x; q) = Uo(y, xq; q) +
xq

1− xq
Uo(y, xq; q),(8.6)

Uo(y, x; q) = Ue(y, xq; q) +
xqy

1− xq
Uo(y, xq; q).(8.7)

Equation (8.6) immediately establishes (8.3). We now substitute (8.6) into (8.7) to
obtain

(8.8) Uo(y, x; q) =
Uo(y, xq2; q)

1− xq2
+

xqy

1− xq
Uo(y, xq; q).

Let us now define

(8.9) v(y, x; q) = (xq)∞Uo(y, x; q).
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Substituting (8.9) into (8.8), we see that

(8.10) v(y, x; q) = (1− xq)v(y, xq2; q) + xqyv(y, xq; q).

We now expand v(y, x; q) in a power series in x:

(8.11) v(y, x; q) =
∑
n=0

αnx
n.

Substituting (8.11) in (8.10) and noting that α0 = 1, we see that

αn = αnq
2n − αn−1q

2n−1 + αn−1yq
n,

or

αn =
yqn(1− qn−1/y)

(1− q2n)
αn−1.

Iteration then reveals that

(8.12) αn =
ynqn(n+1)/2(1/y)n

(q2; q2)n
.

Combining (8.12) with (8.11) and (8.9), we see that (8.4) is established.
Finally by (8.4) using the notation of [12; p. 4]

Uo(y, x; q) =
1

(xq)∞
lim
τ→0

2φ1

(
−q/τ, 1/y; q, τxy

−q

)
=

1
(xq)∞

lim
τ→0

(x)∞2φ1

(
τ,−qy; q, x
−q

)
(by [9; p. 10, eq. (1.4.6)])

= (1− x)
∞∑
n=0

(−qy)nxn

(q2; q2)n
. �

Corollary 9.

(8.13) Uo(y, x; q) =
1

(xq)∞
Po(−yq,−x/q; q).

Proof. This follows immediately by comparison of (8.4) and (7.4). �

9. Upper Parity Indices in Partitions With Distinct Parts

As before, we begin with notation for the relevant partition functions:
δe(N, r,m, n) (resp. δo(N, r,m, n)) denotes the number of partitions of n into m

distinct parts each 5 N and with upper even (resp. odd) parity index equal to r.
Next

De(N, y, x; q) := De(N) =
∑

r,m,n=0

δe(N, r,m, n)yrxmqn,(9.1)

Do(N, y, x; q) := Do(N) =
∑

r,m,n=0

δo(N, r,m, n)yrxmqn.(9.2)
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Theorem 10.

Do(2n− 1) =
∑
i,j=0

xiy2jq(i−j)
2+j2+i+j

[
n+ j − 1

i

]
2

[
i

2j

]
1

+
∑
i,j=0

xiy2j−1q(i−j)
2+j2+i−j

[
n+ j − 1

i

]
2

[
i

2j − 1

]
1

,(9.3)

De(2n) =
∑
i,j=0

xiy2jq(i−j)
2+j2+j

[
n+ j

i

]
2

[
i

2j

]
1

+
∑
i,j=0

xiy2j+1q(i−j)
2+j2+3j+1

[
n+ j

i

]
2

[
i

2j + 1

]
1

.(9.4)

Proof. By the Largest Part Decomposition Principle, we see that

De(2N) = De(2N − 1) + xyq2NDo(2N − 1),(9.5)

Do(2N) = (1 + xq2N )Do(2N − 1),(9.6)

De(2N − 1) = (1 + xq2N−1)De(2N − 2),(9.7)

Do(2N − 1) = Do(2N − 2) + xyq2N−1De(2N − 2).(9.8)

In addition, we note the initial values De(0) = 1, Do(1) = 1 + xyq.
In order to prove our result we must reduce (9.5) – (9.8) to two recurrences only

involving Do(2N − 1) and De(2N). By (9.5) and (9.7)

De(2N) = (1 + xq2N−1)De(2N − 2) + xyq2NDo(2N − 1),(9.9)

and by (9.6) and (9.8)

Do(2N − 1) = (1 + xq2N−2)Do(2N − 3) + xyq2N−1De(2N − 2).(9.10)

Clearly (9.9) and (9.10) plus the initial values completely define De(2N) and
Do(2N−1). To complete the proof of the theorem we need only show that the right-
hand sides of (9.3) and (9.4) satisfy the same recurrences. The initial conditions
are clear by inspection.

Let us define do(2n− 1) as the right-hand side of (9.3) and de(2n) as the right-
hand side of (9.4).

First we note that

de(2n)− de(2n− 2)

=
∑
i,j=0

xiy2jq(i−j)
2+j(j+1)q2(n+j−i)

[
n+ j − 1
i− 1

]
2

[
i

2j

]
1

+
∑
i,j=0

xiy2j+1q(i−j)
2+(j+1)(j+2)−1q2(n+j−i)

[
n+ j − 1
i− 1

]
2

[
i

2j + 1

]
1

= xq2n−1

{ ∑
i,j=0

xiy2jq(i−j)
2+2(i−j)+j(j+1)+2j−2i

[
n+ j − 1

i

]
2

[
i+ 1
2j

]
1

(9.11)

+
∑
i,j=0

xiy2j+1q(i−j)
2+2(i−j)+(j+1)(j+2)−1+2j−2i

[
n+ j − 1

i

]
2

[
i+ 1

2j + 1

]
1

}
.
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So to complete the proof of (9.9) with D replaced by d, we need only identify
de(2n− 2) + yqdo(2n− 1) with the expression inside the above curly brackets.

Now

de(2n− 2)− yqdo(2n− 1)

=
∑
i,j=0

xiy2jq(i−j)
2+j(j+1)

[
n+ j − 1

i

]
2

[
i

2j

]
1

+
∑
i,j=0

xiy2j+1q(i−j)
2+(j+1)(j+2)−1

[
n+ j − 1

i

]
2

[
i

2j + 1

]
1

+
∑
i,j=0

xiy2j+1qi
2−(2j−1)i+(2j+1

2 )+1

[
n+ j − 1

i

]
2

[
i

2j

]
1

+
∑
i,j=0

xiy2jqi
2−(2j−1)i+(2j

2 )+1

[
n+ j − 1

i

]
2

[
i

2j − 1

]
1

=
∑
i,j=0

xiy2jqi
2−2ij+2j2+j

[
n+ j − 1

i

]
2

([
i

2j

]
1

+ qi−2j+1

[
i

2j − 1

]
1

)

+
∑
i,j=0

xiy2j+1qi
2−2ij+2j2+3j+1

[
n+ j − 1

i

]
2

([
i

2j + 1

]
1

+ qi−2j

[
i

2j

]
1

)
(where we have combined the first with the
fourth sum and the second with the third)

=
∑
i,j=0

xiy2jqi
2−2ij+2j2+j

[
n+ j − 1

i

]
2

[
i+ 1
2j

]
1

(by (2.12))

+
∑
i,j=0

xiy2j+1qi
2−2ij+2j2+3j+1

[
n+ j − 1

i

]
2

[
i+ 1

2j + 1

]
1

.(9.12)

Now inspection reveals that this last entry in (9.12) is identical with the final
expression in curly brackets in (9.11). Hence (9.9) has been established with the
D’s replaced by the d’s.

To conclude we must do the same for (9.10). Now we see that

do(2n− 1)− do(2n− 3)

=
∑
i,j=0

xiy2jqi
2−(2j−1)i+(2j+1

2 )q2(n+j−1−i)
[
n+ j − 2
i− 1

]
2

[
i

2j

]
1

+
∑
i,j=0

xiy2j−1qi
2−(2j−1)i+(2j

2 )q2(n+j−1−i)
[
n+ j − 2
i− 1

]
2

[
i

2j − 1

]
1

(by (2.11))

= xq2n−2

{ ∑
i,j=0

xiy2jqi
2−(2j−1)i+(2j+1

2 )
[
n+ j − 2

i

]
2

[
i+ 1
2j

]
1

+
∑
i,j=0

xiy2j−1qi
2−(2j−1)i+(2j

2 )
[
n+ j − 2

i

]
2

[
i+ 1

2j − 1

]
1

}
,(9.13)
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where in the final line we have shifted i to i+ 1 in each sum.
So to finish the proof of (9.10) with D replaced by d, we need only identify

do(2n−3)+yqde(2n−2) with the above expression contained in the curly brackets.

do(2n− 3) + yqde(2n− 2)

=
∑
i,j=0

xiy2jqi
2−(2j−1)i+(2j+1

2 )
[
n+ j − 2

i

]
2

[
i

2j

]
1

+
∑
i,j=0

xiy2j−1qi
2−(2j−1)i+(2j

2 )
[
n+ j − 2

i

]
2

[
i

2j − 1

]
1

+
∑
i,j=0

xiy2j+1q(i−j)
2+j(j+1)+1

[
n+ j − 1

i

]
2

[
i

2j

]
1

+
∑
i,j=0

xiy2j+2q(i−j)
2+(j+1)(j+2)

[
n+ j − 1

i

]
2

[
i

2j + 1

]
1

=
∑
i,j=0

xiy2jqi
2−(2j−1)i+(2j+1

2 )
[
n+ j − 2

i

]
2

([
i

2j

]
1

+ qi−2j+1

[
i

2j − 1

]
1

)

+
∑
i,j=0

xiy2j−1qi
2−(2j−1)+(2j

2 )
[
n+ j − 2

i

]
2

([
i

2j − 1

]
1

+ qi−2j+2

[
i

2j − 2

]
1

)
(where we replaced j by j−1 in the third and
fourth sums and then combined sum 1 with
sum 4 and sum 2 with sum 3)

=
∑
i,j=0

xiy2jqi
2−(2j−1)i+(2j+1

2 )
[
n+ j − 2

i

]
2

[
i+ 1
2j

]
1

(by (2.12))

+
∑
i,j=0

xiy2j−1qi
2−(2j−1)i+(2j

2 )
[
n+ j − 2

i

]
2

[
i+ 1

2j − 1

]
1

.

(9.14)

As before, the last entry in (9.14) is identical with the final expression in curly
brackets in (9.13). Hence (9.10) is established with D replaced by d. Thus our
theorem is proved. �

Corollary 11.

Do(∞) =
∑
i,j=0

xiy2jq(i−j)
2+j2+i+j

(−q; q)i(q)2j(q)i−2j
+
∑
i,j=0

xiy2j−1q(i−j)
2+j2+i−j

(−q; q)i(q)2j−1(q)i−2j+1
(9.15)

De(∞) =
∑
i,j=0

xiy2jq(i−j)
2+j2+j

(−q; q)i(q)2j(q)i−2j
+
∑
i,j=0

xiy2j+1q(i−j)
2+j2+3j+1

(−q; q)i(q)2j+1(q)i−2j−1
.(9.16)

Proof. Let N →∞ in the theorem and then algebraically simplify each term. �

We note that if we set y = 0 in (9.16), then De(∞) must be the generating
function for partitions into distinct odd parts, and in this instance the right-hand
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side of (9.16) reduces to the familiar sum in Euler’s identity

(9.17)
∑
i=0

xiqi
2

(q2; q2)i
= (−xq; q2)∞.

(cf. [12; p. 9, eq. (1.3.16)]).
Also if we set y = 0 in (9.15) then Do(∞) must be the generating function for

partitions into distinct even parts, and in this instance the right-hand side of (9.15)
reduces to a change of x to xq in (9.17).

However, setting y = 1 in either Do(∞) or De(∞) must produce the generating
function for all partitions into distinct parts. Consequently

(−xq; q)∞ =
∑
i,j=0

xiq(i−j)
2+j2+i+j

(−q; q)i(q)2j(q)i−2j
+
∑
i,j=0

xiq(i−j)
2+j2+i−j

(−q; q)i(q)2j−1(q)i−2j+1

=
∑
i,j=0

xiq(i−j)
2+j2+j

(−q; q)i(q)2j(q)i−2j
+
∑
i,j=0

xiq(i−j)
2+j2+3j+1

(−q; q)i(q)2j+1(q)i−2j−1
,(9.18)

which appear to be new.
We note that similar finite results can be obtained by setting y = 0 and y = 1

in Theorem 10. The y = 0 case is the classical q-binomial theorem [7; p. 36, eq.
(3.3.6)]. The y = 1 case also appears to be new.

10. Upper Parity Indices With Unrestricted Parts

Again we begin with notation for the relevant partition functions:
φe(N, r,m, n) (resp. φo(N, r,m, n)) denotes the number of partitions of n into

m parts each 5 N and with upper even (resp. odd) parity index equal to r.
Next

Fe(N, y, x; q) := Fe(N) =
∑

r,m,n=0

φe(N, r,m, n)yrxmqn,(10.1)

and

Fo(N, y, x; q) := Fo(N) =
∑

r,m,n=0

φo(N, r,m, n)yrxmqn.(10.2)

Theorem 12.

Fe(2n− 1) =
∑
i,j=0

xiy2jq(
2j
2 )+i

[
n+ i− j − 1

i

]
2

[
i

2j

]
1

+
∑
i,j=0

xiy2j+1q(
2j+1

2 )+2i

[
n+ i− j − 2

i

]
2

[
i

2j + 1

]
1

,(10.3)

Fo(2n) =
∑
i,j=0

xiy2jq(
2j
2 )+2i

[
n+ i− j − 1

i

]
2

[
i

2j

]
1

+
∑
i,j=0

xiy2j+1q(
2j+1

2 )+i
[
n+ i− j − 1

i

]
2

[
i

2j + 1

]
1

.(10.4)
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Proof. By the Largest Part Decomposition Principle, we see that

Fe(2n) = Fe(2n− 1) + xyq2nFo(2n),(10.5)

Fo(2n) = Fo(2n− 1) + xq2nFo(2n),(10.6)

Fe(2n− 1) = Fe(2n− 2) + xq2n−1Fe(2n− 1),(10.7)

Fo(2n− 1) = Fo(2n− 2) + xyq2n−1Fe(2n− 1).(10.8)

Now we eliminate Fo(2n− 1) and Fe(2n) from (10.5) – (10.8). This yields

Fe(2n− 1) = Fe(2n− 3) + xyq2n−2Fo(2n− 2) + xq2n−1Fe(2n− 1),(10.9)

and

Fo(2n) = Fo(2n− 2) + xyq2n−1Fe(2n− 1) + xq2nFo(2n).(10.10)

At first glance, it would appear that these are not defining recurrences for the
F ’s in that the left-hand side of each equation also appears on the right. However,
the offending expression on the right can easily be moved to the left to overcome
this objection. Of course, this means that the F ′s will be rational functions not
polynomials as were the D’s of Section 9.

Thus (10.9) and (10.10) together with the initial values Fo(0) = 1 and Fe(1) =
1

1−xq uniquely determine Fo(2n) and Fe(2n− 1). Inspection reveals that for n = 0,
the right-hand side of (10.4) = 1, and for n = 1, the right-hand side of (10.3) is

∑
i=0

xiqi =
1

1− xq
.

Consequently in order to complete the proof of our theorem we need only show that
the right-hand sides of (10.3) and (10.4) satisfy (10.9) and (10.10).

Let us define fe(2n− 1) as the right-hand side of (10.3) and fo(2n) as the right-
hand side of (10.4).

We treat (10.9) first noting that

fe(2n− 1)− fe(2n− 3)

=
∑
i,j=0

xiy2jq(
2j
2 )+i

[
n+ i− j − 2

i− 1

]
2

q2(n−j−1)

[
i

2j

]
1

+
∑
i,j=0

xiy2j+1q(
2j+1

2 )+2i

[
n+ i− j − 3

i− 1

]
2

q2(n−j−2)

[
i

2j + 1

]
1

(by (2.12))

= xq2n−2

{ ∑
i,j=0

xiy2jq(
2j−1

2 )+i
[
n+ i− j − 1

i

]
2

[
i+ 1
2j

]
1

+
∑
i,j=0

xiy2j+1q(
2j
2 )+2i

[
n+ i− j − 2

i

]
2

[
i+ 1

2j + 1

]
1

}
.(10.11)
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Therefore to conclude our treatment of (10.9) we must show that yfo(2n − 2) +
qfe(2n− 1) is equal to this last expression in curly brackets.

yfo(2n− 2) + qfe(2n− 1)

=
∑
i,j=0

xiy2j+1

[
n+ i− j − 2

i

]
2

[
i

2j

]
1

q2i+(2j
2 )

+
∑
i,j=0

xiy2j+2

[
n+ i− j − 2

i

]
2

[
i

2j + 1

]
1

qi+(2j+1
2 )

+
∑
i,j=0

xiy2jq(
2j
2 )+i+1

[
n+ i− j − 1

i

]
2

[
i

2j

]
1

+
∑
i,j=0

xiy2j+1q(
2j+1

2 )+2i+1

[
n+ i− j − 2

i

]
2

[
i

2j + 1

]
1

=
∑
i,j=0

xiy2j

[
n+ i− j − 1

i

]
2

qi+(2j−1
2 )
([

i

2j − 1

]
1

+ q2j
[
i

2j

]
1

)

+
∑
i,j=0

xiy2j+1

[
n+ i− j − 2

i

]
2

q2i+(2j
2 )
([

i

2j

]
1

+ q2j+1

[
i

2j + 1

]
1

)
(where we have combined the second and third
sums into the new first sum and the first and
fourth in to the new second sum)

=
∑
i,j=0

xiy2jqi+(2j−1
2 )
[
n+ i− j − 1

i

]
2

[
i+ 1
2j

]
1

(by (2.11))

+
∑
i,j=0

xiy2j+1q2i+(2j
2 )
[
n+ i− j − 2

i

]
2

[
i

2j + 1

]
1

,(10.12)

which is precisely the expression inside the curly brackets in the final entry in
(10.11).

We now move to (10.10) for the f ’s noting that

fo(2n)− fo(2n− 2)

=
∑
i,j=0

xiy2j

[
n+ i− j − 2

i− 1

]
2

q2(n−j−1)

[
i

2j

]
1

q2i+(2j
2 )

+
∑
i,j=0

xiy2j+1

[
n+ i− j − 2

i− 1

]
2

q2(n−j−1)

[
i

2j + 1

]
1

qi+(2j+1
2 )(by (2.12))

= xq2n−1

{ ∑
i,j=0

xiy2j

[
n+ i− j − 1

i

]
2

[
i+ 1
2j

]
1

q(
2j−1

2 )+2i

+
∑
i,j=0

xiy2j+1

[
n+ i− j − 1

i

]
2

[
i+ 1

2j + 1

]
1

q(
2j
2 )+i

}
.(10.13)
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In order to complete (10.10) for the f ’s, we must identify this last expression in
curly brackets with yfe(2n− 1) + qfo(2n).

yfe(2n− 1)) + qfo(2n)

=
∑
i,j=0

xiy2j+1q(
2j
2 )+i

[
n+ i− j − 1

i

]
2

[
i

2j

]
1

+
∑
i,j=0

xiy2j+2q(
2j+1

2 )+2i

[
n+ i− j − 2

i

]
2

[
i

2j + 1

]
1

+
∑
i,j=0

xiy2jq2i+(2j
2 )+1

[
n+ i− j − 1

i

]
2

[
i

2j

]
1

+
∑
i,j=0

xiy2j+1qi+(2j+1
2 )+1

[
n+ i− j − 1

i

]
2

[
i

2j + 1

]
1

=
∑
i,j=0

xiy2jq(
2j−1

2 )+2i

[
n+ i− j − 1

i

]
2

([
i

2j − 1

]
1

+ q2j
[
i

2j

]
1

)

+
∑
i,j=0

xiy2j+1q(
2j
2 )+i

[
n+ i− j − 1

i

]
2

([
i

2j

]
1

+ q2j+1

[
i

2j + 1

]
1

)
(combining the second and third sums into the
first new sum, and the first and fourth into the
second new sum)

=
∑
i,j=0

xiy2jq(
2j−1

2 )+2i

[
n+ i− j − 1

i

]
2

[
i+ 1
2j

]
1

(by (2.11))

+
∑
i,j=0

xiy2j+1q(
2j
2 )+i

[
n+ i− j − 1

i

]
2

[
i+ 1

2j + 1

]
1

,(10.14)

and this is indeed the expression inside curly brackets in (10.13). So (10.10) is
proved for the f ’s, and, as a result, our theorem is proved. �

Corollary 13.

Fe(∞) =
∑
i,j=0

xiy2jq(
2j
2 )+i

(−q; q)i(q)2j(q)i−2j
+
∑
i,j=0

xiy2j+1q(
2j+1

2 )+2i

(−q; q)i(q)2j+1(q)i−2j−1
,(10.15)

Fo(∞) =
∑
i,j=0

xiy2jq(
2j
2 )+2i

(−q; q)i(q)2j(q)i−2j
+
∑
i,j=0

xiy2j+1q(
2j+1

2 )+i

(−q; q)i(q)2j+1(q)i−2j−1
.(10.16)

Proof. Let n→∞ in (10.3) and (10.4) respectively. �

We note that setting y = 0 in (10.15) yields the generating function for partitions
into odd parts (cf. [12; p. 9, eq. (1.3.15)])

(10.17)
∑
i=0

xiqi

(q2; q2)i
=

1
(xq; q2)∞

,
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while setting y = 0 in (10.16) yields the generating function for partitions into even
parts

(10.18)
∑
i=0

xiq2i

(q2; q2)i
=

1
(xq2; q2)∞

.

Identities (10.17) and (10.18) both go back to Euler.
However setting y = 1 in either Fe(∞) or Fo(∞) must produce the generating

function for all partitions.

1
(xq)∞

=
∑
i,j=0

xiq(
2j
2 )+i

(−q; q)i(q)2j(q)i−2j
+
∑
i,j=0

xiq(
2j+1

2 )+2i

(−q; q)i(q)2j+1(q)i−2j−1

=
∑
i,j=0

xiq(
2j
2 )+2i

(−q; q)i(q)2j(q)i−2j
+
∑
i,j=0

xiq(
2j+1

2 )+i

(−q; q)i(q)2j+1(q)i−2j−1
,(10.19)

which appear to be new.
We note that, as in Section 9, similar finite results can be obtained by setting

y = 0 and y = 1 in Theorem 12. The y = 0 case reduces to instances of the classical
q-binomial series [7; p. 36, eq. (3.3.7)]. The y = 1 case again appears to be new.

11. Part Size and Parity Indices

The previous two sections were devoted to considerations of partitions enumer-
ated according to parity indices. Surprisingly, when we connect part size to a parity
index, we come upon a new interpretation of the Rogers-Ramanujan identities.

Definition. We say that a partition λ has even (resp. odd) ample part size if each
part λi is larger than IUE(λ) (resp. IUO(λ)).

Let Re(N, r,m, n) denote the number of partitions of n into m distinct parts
each 5 2N ; in addition, we require even ample part size with upper even parity
index = r.

Next

(11.1) ρe(N, y, x, q) =
∑

r,m,n=0

Re(N, r,m, n)yrxmqn.

Theorem 14.

(11.2) ρe(N, y, x, q) =
N∑
j=0

[
N

j

]
q2
qj

2
xi(−yq)j .

Proof. We note by the Largest Part Decomposition Principle, that

ρe(N, y, x, q) = (1 + xq2N−1)ρe(N − 1, y, x, q) + xyq2Nρe(N − 1, y, xq, q).(11.3)

The last term in the above by accounts for those partitions in which 2N appears;
the xq in ρe(N − 1, y, xq, q) both increases the part size by 1 (which is necessary
because the xyq2N out front accounts for an increase in the upper even parity index)
and changes the upper even index to the upper odd index to which 2N is attached
to recover the upper even index.

In addition, we see that

(11.4) ρe(0, y, x, q) = 1
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We observe that (11.3) and (11.4) completely determine ρe(N, y, x, q).
Now we consider

(11.5) ρ(N, y, x, q) =
N∑
j=0

[
N

j

]
q2
qj

2
zj(−yq)j .

ρ(N, y, x, q)− ρ(N − 1, y, x, q)

=
∑
j=0

([
N

j

]
q2
−
[
N − 1
j

]
q2

)
qj

2
xj(−yq)j

=
∑
j=0

q2(N−j)
[
N − 1
j − 1

]
q2
qj

2
xj(−yq)j(by (2.12))

= xq2N−1
∑
j=0

[
N − 1
j

]
q2
qj

2
xj(−yq)j(1 + yqj+1)

= xq2N−1ρ(N − 1, y, x, q) + xyq2N
∑
j=0

[
N − 1
j

]
q2
qj

2
(xq)j(−yq)j

= xq2N−1ρ(N − 1, y, x, q) + xyq2Nρ(N − 1, y, xq, q).(11.6)

Thus in light of the fact that ρ(0, y, x, q) = ρe(0, y, x, q) and that (11.3) and (11.6)
are identical recurrences, we see by mathematical induction that for each N = 0

ρe(N, y, x, q) = ρ(N, y, x, q),

and this proves our theorem. �

It is now a straightforward matter to connect partitions into distinct parts of
ample size with the Rogers-Ramanujan identities [7; p. 113].

Corollary 15. The number of partitions of n into distinct parts of even ample size
equals the number of partitions of n into parts ≡ ±1 (mod 5).

Proof. Setting x = y = 1 in (11.2) and letting N →∞, we see that the generating
function for partitions into distinct parts with even ample part size is

(by [4; p. 113, Cor. 7.9])
∑
j=0

qj
2

(q2; q2)j
(−q)j =

∑
j=0

qj
2

(q)j
=

1
(q; q5)∞(q4; q5)∞

,

and the infinite product expression is just the generating function for partitions
with parts ≡ ±1 (mod 5). �

It is also easy to obtain a similar interpretation for the second Rogers-Ramanujan
identity.

Corollary 16. The number of partitions of n into distinct parts of odd ample size
equals the number of partitions of n into parts ≡ ±2 (mod 5).

Proof. If we replace x by xq in (11.1), we see that the exponent on y now measures
the odd upper index. Thus setting x = q, y = 1 in (11.2) and letting N → ∞, we
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see that the generating function for partitions into distinct parts with odd ample
part size is

(by [7; p. 113, Cor. 7.10])
∑
j=0

qj
2+j(−q)j
(q2; q2)j

=
∑
j=0

qj
2+j

(q)j
=

1
(q2; q5)∞(q3; q5)∞

,

and the infinite product expression is just the generating function for partitions
with parts ≡ ±2 (mod 5). �

12. Mock Theta Functions and Little q-Jacobi Polynomials

In the last section we saw that

(12.1) ρe(∞, y, x, q) =
∑
N=0

qn
2
xn(−yq; q)n
(q2; q2)n

is the generating function for partitions into distinct parts with even ample part
size. Setting y = 1 yielded the connection with the Rogers-Ramanujan identities.
Setting x = 1, y = −1 yields

(12.2) fo(q) =
∑
n=0

qn
2

(−q; q)n
= 1 + q − q2 + q3 − q6 + q7 + q9 − 2q10 + · · ·

one of Ramanujan’s fifth order mock theta functions (cf. [9]). Thus fo(q) is the
generating function for the excess of the number of partitions of n into distinct
parts of even ample part size and an even upper parity index over those with an
odd upper parity index. This is Theorem 17 as stated in the introduction.

For example, at n = 10, the six partitions in question are 10, 9 + 1, 8 + 2, 7 + 3,
6 + 4, 5 + 3 + 2. Of these 9 + 1 and 7 + 3 have even upper parity index 0 while the
other four have index 1.; thus the coefficient of q10 in fo(q) must be 2− 4 = −2.

In this section, we shall relate ρe(∞, y, a, q) to an identity involving the little
q-Jacobi polynomials [9; p. 27].

Theorem 18.

ρe(∞, y, a, q) =
∑
n=0

qn
2
an(−yq; q)n
(q2; q2)n

=
1

(aq; q)∞

∑
n=0

(−1)nanq2n
2
(a2; q2)n(1− aq2n)

(q2; q2)n(1− a)
pn(y;−a

q
,−1 : q),(12.3)

where the little q-Jacobi polynomial is given by [12; p. 27]

(12.4) pn(y;A,B : q) = 2φ1

(
q−n, ABqn+1; q, qy

Aq

)
.

Proof. We recall the weak Bailey lemma [9; p. 116, eq. (2.5) with n, ρ1, ρ2 → ∞]
(cf. [9; p. 116, eq. (3.1) corrected])

(12.5)
∞∑
n=0

qn
2
anβn =

1
(aq; q)∞

∞∑
n=0

qn
2
anαn,

where

βn =
n∑
r=0

αr
(q; q)n−r(aq; q)n+r

.
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So if we take βn = (−yq; q)n/(q2; q2)n, then by [9; p. 115, eq. (2.7)]

αn = (1− aq2n)
n∑
j=0

(aq; q)n+j−1(−1)n−jq(
n−j

2 )(−yq; q)j
(q; q)n−j(q2; q2)j

=
(−1)nq(

n
2)(1− aq2n)(a; q)n

(1− a)(q; q)n
3φ2

(
q−n, aqn,−yq; q, q

−q, 0

)

=
(−1)nqn

2
(a2; q2)n(1− aq2n)

(q2; q2)n(1− a) 2φ1

(
q−n, aqn; q, yq

−a

)(by [12; p. 241, eq. (III.7)])

= (−1)nqn
2
(a2; q2)n(1− aq2n)pn(y;−a

q
,−1 : q),

and substituting these values for αn and βn into (12.5), we obtain the theorem. �

Our first corollary is the classical identity of Rogers and Ramanujan [9; pp.
36-37, eq. (2.7.5) with n → ∞] from which one deduces both Rogers-Ramanujan
identities (the cases a = 1 and a = q).

Corollary 19.

(12.6)
∞∑
n=0

qn
2
an

(q; q)n
=

1
(aq; q)∞

∞∑
n=0

(a; q)n(−1)nanqn(5n−1)/2(1− aq2n)
(q; q)n(1− a)

.

Proof. Setting y = 1, and noting by [12; p. 11, eq. (1.5.3)] that

pn(1;A,B : q) =
(ABqn+1)n(B−1q−n; q)n

(Aq; q)n
=
Anq(

n+1
2 )(Bq; q)n

(Aq; q)n
,

we find that (12.3) simplifies to (12.6). �

In order to obtain the formula [9; p. 114, eq. (1.4)] for fo(q), we need some
lemmas concerning the little q-Jacobi polynomials.

Lemma 20.

pn(−1;−1,−1 : q) = (−1)nq(
n+1

2 )
n∑

j=−n
(−1)jq−j

2
.

Proof. This result follows directly by mathematical induction provided we can show
that

(−1)nq−(n+1
2 )pn(−1;−1,−1 : q)−(−1)n−1q−(n

2)pn−1(−1;−1,−1 : q) = 2(−1)nq−n
2
,

or equivalently

2φ1

(
q−n, qn+1; q,−q

−q

)
+ qn2φ1

(
q−n+1, qn; q,−q

−q

)
= 2q−(n

2).
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But

2φ1

(
q−n, qn+1; q,−q

−q

)
+ qn2φ1

(
q−n+1, qn; q,−q

−q

)
=

n∑
j=0

(q−n+1; q)j−1(qn+1; q)j−1(−q)j

(q; q)j(−q; q)j

“
(1− q−n)(1− qn+j) + qn(1− q−n+j)(1 − qn)

”

= (1 + qn)2φ1

(
q−n, qn; q,−q

−q

)
= 2q−(n

2)

by [12; p. 11, eq. (1.5.2)]. �

Lemma 21.
2pn(−1;−1

q
,−1 : q)− 2pn(−1;−1

q
,−1

q
: q) = (1− qn)pn−1(−1;−1,−1 : q).

Proof.

2pn(−1;−1
q
,−1 : q)− 2pn(−1;−1

q
,−1

q
: q)

= 22φ1

(
q−n, qn; q,−q

−1

)
− 22φ1

(
q−n, qn−1; q,−q

−1

)
= 2

n∑
j=0

(q−n, q)j(−q)j

(q; q)j(−1; q)j

(
(1− qn+j−1)− (1− qn−1)

)
= 2

n∑
j=1

(q−n, q)j(−q)j(qn)j−1

(q; q)j−1(−1; q)j

= (1− qn)2φ1

(
q−n+1, qn; q,−q

−q

)
= (1− qn)pn−1(−1;−1,−1 : q). �

Lemma 22.

2pn(−1;−1
q
,−1 : q) = (−1)nq(

n+1
2 )

n∑
j=−n

(−1)jq−j
2
− (−1)nq(

n
2)

n−1∑
j=−n+1

(−1)iq−j
2
.

Proof. Noting that by [12; p. 11, eq. (1.5.2)]

pn(−1;−1
q
,−1

q
: q) = 2φ1

(
q−n, qn−1; q,−q

−1

)
=

(−q1−n; q)n
(−1; q)n

= q−(n
2),

we combine Lemmas 20 and 21 to see that

2pn(−1;−1
q
,−1 : q) = 2q−(n

2) + (1− qn)(−1)n−1q(
n
2)

n−1∑
j=−n+1

(−1)jq−j
2

= (−1)nq(
n+1

2 )
n∑

j=−n
(−1)jq−j

2
− (−1)nq(

n
2)

n−1∑
j=−n+1

(−1)jq−j
2
,

as desired. �
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Corollary 23 ([9; p. 114, eq. (1.4)]).

f0(q) =
1

(q; q)∞

∞∑
n=0

∑
|j|5n

(−1)nqn(5n+1)/2−j2(1− q4n+2).

Proof. Setting y = −1, a = 1 in (12.3) and invoking Lemma 22, we see that

f0(q) =
∞∑
n=0

qn
2

(−q; q)n

=
1

(q; q)∞

∞∑
n=0

qn2(−1)n
(

(−1)nq(
n+1

2 )
n∑

j=−n
(−1)jq−j2−(−1)nq(

n
2)
n−1∑

j=−n+1

(−1)jq−j2
)

=
1

(q; q)∞

∞∑
n=0
|j|5n

(−1)jqn(5n+1)/2−j2(1− q4n+2),

where we have replaced n by n+ 1 in the second double sum. �

13. Conclusion and Open Problems

As was mentioned in Section 1 and again in Section 5, K. Kursungoz has found
combinatorial proofs of many of the results in this paper. In particular, he has
sieve-theoretic proofs of equations (7.4), (7.5), (8.4), (8.5) and (8.12); i.e. all the
theorems in Sections 7 and 8. He has bijective proofs of (9.3), (9.4), (10.3), (10.4)
and (11.2); i.e. all the theorems in Sections 9-11. Additionally, as was noted in
Section 5 he has a combinatorial, bijective proof of Theorem 4 for all k, not just
k = 2 or 3, and has beautifully generalized the result to cover all specializations to
(1.6) with 1 5 a 5 k. On top of this he has bijective explanations of each of the
multiple series generating functions given in Sections 3 and 4.

Furthermore, he has found a reasonably natural interpretation for∑
n1,...,nk−1=0

qN
2
1+···+N2

k−1xN1+···+Nk−1(−yq; q)n1 · · · (−yq; q)nk−1

(q2; q2)n1(q2; q2)n2 · · · (q2; q2)nk−1

.

The following are further problems that suggest themselves either from compar-
ison of this work with results in the literature or from empirical studies.

1. Show bijectively that W3,3(n) is equal to the number of partitions of n into
parts that differ by at least two and by more than 2 if the parts are even.

2. Show bijectively that W3,1(n) is equal to the number of partitions of n into
parts (each > 2) that differ by at least two and by more than 2 if the parts are
even.

We know from Theorem 1 and a comparison of it with the Göllnitz-Gordon
identities that in each case the sets of partitions involved are equinumerous. Thus
the important word in each problem is “bijectively.” More generally

3. Prove bijectively that

W2k−1,2a−1(n) = Dk,a(n),

where Dk,a(n) denotes the number of partitions of n of the form n =
∑
i=1 fi − i

(here we use the frequency notation fi for the appearances of i in the partition)
with f1 + f2 5 a− 1 and for all i = 1,

f2i−1 5 1 and f2i + f2i+1 + f2i+2 5 k − 1.
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The assertion is true by comparing Theorem 1 here in the odd case with Theo-
rem 1 in [2]. This problem and this observation leads naturally to a more general
topic.

4. The overriding theme of this paper is parity. Can one generalize these the-
orems to moduli other than 2? In light of the fact that the above Dk,a(n) is the
special case λ+1 = 2 of the general partition theorem from [4] and [5], it would seem
that theorems comparable to those in Sections 3-5 might be found by attempting
to generalize the observation in Problem 3 to these more general results.

5. It follows from an old formula of Rogers [19; p. 333, eq. (6)] that

Po(−1, 1; q) =
∞∑
n=0

qn(3n+1)/2(1− q2n+1).

Prove combinatorially that

∑
r,m=0

po(r,m,N)(−1)r =


1 if N = n(3n+ 1)/2
−1 if N = n(3n+ 5)/2 + 1
0 otherwise

.

6. Prove combinatorially that Uo(−1,−1; q) is equal to the third order mock
theta function

f(q) = 1 +
∑
n>0

qn
2

((−q; q)n)2
.

In Problems 7 and 8, let uc(n) denote the coefficient of qn in the series for
(q, q)∞Uo(−1,−1; q).

7. Prove that uc(n) = 8 if n is a prime congruent to 7 or 11 mod 12, −uc(2) =
uc(3) = uc(5) = 4, and for all other primes uc(n) = 0.

8. Prove that uc(n2) = 0 if n is an odd prime power and that uc(2n) = −4.
9. Prove that if y = 1 and x = −1 in the second sum in (9.15) the result is

∞∑
n=1

(−1)nqn
2
.

10. Prove that if y = 1 and x = −1 in the first sum in (9.16) the result is

∞∑
n=1

(−1)nqn
2
.

11. Extend the parity indices to overpartitions in a manner that will provide
natural generalizations of the work of Corteel and Lovejoy [11], [18].

12. Provide a combinatorial proof of Lemma 20.
13. Noting that the theorems in Sections 9 and 10 are devoted to bi-basic

generalizations of the q-binomial theorem and q-binomial series, find a full bi-basic
generalization to bases other than q and q2.

14. An appealing, long-term project would be a full analytic proof of Theorem 4
and its extension to a more general q-hypergeometric series. We note that (5.1) can
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be rewritten as∑
n1,...,nk−1=0

j1,...jk−1=0

q(N1+J1)
2+(N2+J2)

2+···+(Nk−1+Jk−1)
2

× xN1+···+Nk−1+J1+···Jk−1yj1+···+jk−1

(q2; q2)n1 · · · (q2; q2)nk−1(q2; q2)j1 · · · (q2; q2)jk−1

.

where Ni = ni + ni+1 + · · · + nk−1 and Ji = ji + ji+1 + · · · + jk−1. This latter
formulation seems likely to be a limiting case of series analogous to those considered
in [3].

15. Find a combinatorial interpretation for

(−xq2; q2)∞Q k
2 ,

a
2
(x2; q2)

with k even and a odd. This is the “missing case” in Sections 3 and 4.
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