
PARTITIONS WITH DISTINCT EVENS

GEORGE E. ANDREWS

In honor of the 70th birthday of Georgy Egorychev

Abstract. Partitions with no repeated even parts (DE-partitions) are con-

sidered. A DE-rank for DE-partitions is defined to be the integer part of half
the largest part minus the number of even parts. ∆(n) denotes the excess of

the number of DE-partitions with even DE-rank over those with odd DE-rank.

Surprisingly ∆(n) is (1) always non-negative, (2) almost always zero, and (3)
assumes every positive integer value infinitely often. The main results follow

from the work of Corson, Favero, Liesinger and Zubairy. Companion theorems

for DE-partitions counted by exceptional parts conclude the paper.

1. Introduction

In [4] Ramanujan’s series [16; p. 14]

(1.1) R(q) =
∞∑

n=0

qn(n+1)/2

(−q; q)n
=
∞∑

n=0

S(n)qn

was examined. Here

(1.2) (A; q)n = (1−A)(1−Aq) · · · (1−Aqn−1).

It was shown [4] that S(n) is almost always equal to zero and also assumes every
integral value infinitely often. Combinatorially S(n) is the excess of the number of
partitions of n into distinct parts with even rank over those with odd rank. The
rank of a partition is the largest part minus the number of parts [7], [5]. A similar
theorem was proven [4; Sec. 5] for partitions into odd parts without gaps.

The results for S(n) rely crucially on the identity [4; p. 392]

(1.3) R(q) =
∑
n=0
|j|<n

(−1)n+jqn(3n+1)/2−j2
(1− q2n+1).

It was noted at the end of [4] that there are numerous series similar in form to the
right-hand expression in (1.3).

Indeed, results of this nature were given for Ramanujan’s fifth order mock theta
functions [2] (c.f. [17]), and such identities formed the basis for pathbreaking work
by Zwegers [18] and Bringmann, Ono and Rhoades [6].

The object of this paper is to reveal a similar phenomenon connected to DE-
partitions, i.e. partitions with no repeated even parts. Now DE-partitions have
been examined previously. R. Honsberger [13] proved the following Euler-type
theorem.
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Theorem 1. Let PDE(n) denote the number of partitions of n with no repeated even
parts. Let P<4(n) denote the number of partitions of n in which no part appears
more than thrice. Let P-4(n) denote the number of partitions of n into parts not
divisible by 4. Then

PDE(n) = P<4(n) = P-4(n)
for each n = 0.

Honsberger’s proof is immediate from the following identification of the related
generating functions∑

n=0

PDE(n)qn =
(−q2; q2)∞

(q; q2)∞
=

(q4; q4)∞
(q; q2)∞(q2; q2)∞

=
(q4; q4)∞
(q; q)∞

=
∑
n=0

P-4(n)qn

=
∞∏

n=1

(1 + qn + q2n + q3n) =
∑
n=0

P<4(n)qn.

The fact that P<4(n) = P-4(n) is due to J. W. L. Glaisher [10], and the asymptotics
of these partition functions has been completely examined by P. Hagis [11].

From here on, our focus will be on the DE-rank of DE-partitions which is defined
to be the integer part of half the largest part minus the number of even parts.

We let δ(m,n) denote the number of DE-partitions of n with DE-rank m.

Theorem 2.

(1.4)
∑

m,n=0

δ(m,n)zmqn = 1 +
∑
j=0

(−z−1q2; q2)jz
jq2j+1(1 + q)

(q; q2)j+1
.

Next we write

(1.5) ∆(n) =
∑
m=0

(−1)mδ(m,n).

Theorem 3.

(1.6)
∑
n=0

∆(n)(−q)n =
∑
n=0

(−1)nqn(n+1)/2(q; q)n

(−q)n
.

Fortunately, the expression on the right-hand side of (1.6) is, in fact, W1(−q), a
function studied extensively by Corson et al. in [7]. In particular, their Theorem 2.3
combined with our Theorem 3 yields

Theorem 4.

(1.7)
∑
n=0

∆(n)qn =
∞∑

n=0

(
q(

2n+1
2 ) + q(

2n+2
2 )
) n∑

j=−n

q−j2
.

Theorem 3.2 of Corson et al. [7], may be restated here as:

Theorem 5. ∆(n) is the number of inequivalent elements of the ring of integers
of Q(

√
2) with norm 8n+ 1.

It immediately follows that
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Corollary 6. ∆(n) is always non-negative.

Finally, Corson et al. [7] in the Remark just before their Corollary 5.3 make an
assertion equivalent to

Corollary 7. ∆(n) is almost always equal to zero.

The Corollary 5.3 of Corson et al. [7] is equivalent to

Corollary 8. ∆(n) is equal to any given positive integer infinitely often.

The above results in some sense relate only half of the Corson et al. [7] paper
to DE-partitions. In order to consider their companion function W2(q), we need a
new definition related to DE-partitions. We shall say that a part of a DE-partition
is exceptional if it is either even or one of the smallest parts or both. For example,
5 + 4 + 2 + 1 + 1 is a DE-partition with four exceptional parts.

We let ε(m,n) denote the number of DE-partitions of n with m exceptional
parts, and we write

(1.8) E(n) =
∑
m=0

(−1)m−1ε(m,n).

Our main result for E(n) requires the W2(q) of Corson et al. [7]:

(1.9) W2(q) =
∞∑

n=1

(−1; q2)n(−q)n

(q; q2)n
.

Theorem 9.

(1.10)
∞∑

n=1

E(n)qn = W2(−q)−
∞∑

n=1

q(
n+1

2 ).

This assertion allows us to utilize Theorem 3.3 of Corson et al. [7] to establish
immediately that

Theorem 10.
∞∑

n=1

E(n)qn =
∑
n=1

(
q(

2n
2 ) + q(

2n+1
2 )
) n−1∑

j=−n
j 6=0

q−j2−j .

The three results following Theorem 4 now have perfect analogs as consequences
of Theorem 10. These follow for Theorem 3.3 of [7], the Remark preceeding Corol-
lary 5.3 and the proof of Corollary 5.3.

Theorem 11. E(n) is the number of inequivalent elements of the ring of integers
of Q(

√
2) with norm 8n− 1 or one less if n is a triangular number.

Corollary 12. E(n) is always non-negative.

Corollary 13. E(n) is almost always equal to 0.

The analog of Corollary 8 is quite plausible but it does not follow directly because
of the second term in (1.10).

The remainder of the paper will be devoted to proofs of theorems 3 and 9. All
the other results are, as noted, direct consequences of these two results and results
in Corson et al. [7].
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I thank Dean Hickerson for an extensive set of comments on this paper. In
particular he has noted that ∆(n) is also the number of divisors of 8n + 1 which
are congruent to ±1 modulo 8 minus the number which are congruent to 3 or 5
modulo 8. Consequently, ∆(n) is the coefficient of 8n+ 1 in

∞∑
n=1

n odd

(
2
n

)
qn

1− qn
,

where
(

2
n

)
is the Legendre symbol.

Finally I note that A. Patkowski [15] has recently found two related theorems
for DE-partitions. His theorems provide other lacunary series arising from DE-
partition statistics other than the rank.

2. Proof Theorem 2

For those DE-partitions with largest part 2j+1, the DE-rank generating function
is

(1 + z−1q2)(1 + z−1q4) · · · (1 + z−1q2j)zjq2j+1

(1− q)(1− q3) · · · (1− q2j+1)
.

For those DE-partitions with largest part 2j+2, the DE-rank generating function
is

(1 + z−1q2)(1 + z−1q4) · · · (1 + z−1q2j)zjq2j+2z−1

(1− q)(1− q3) · · · (1− q2j+1)
.

We take the empty partition to have DE-rank 0, and so adding together the
empty case, the odd case and the even case we find

∑
m,n=0

δ(m,n)zmqn = 1 +
∞∑

j=0

(−z−1q2; q2)jz
j(q2j+1 + q2j+2)

(q; q2)j+1
,

which is equivalent to Theorem 2. �

3. Proof of Theorem 3

By Theorem 2 with z replaced by −1 and q replaced by −q, we see that∑
n=0

∆(n)(−q)n =
∑

m,n=0

δ(m,n)(−1)m+nqn

= 1 +
∑
j=0

(q2; q2)j(−1)j−1q2j+1(1− q)
(−q; q2)j+1

= 1− q(1− q)
1 + q

∑
j=0

(q2; q2)j(q2; q2)j(−q2)j

(q2; q2)j(−q3; q2)j

= 1 +
∞∑

j=0

(q; q2)j+1(−q)j+1

(−q2; q2)j+1
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(by [9; eq. (III.2), p. 241 with q → q2,
then a = b = q2, z = −q2, c = −q3])

=
∞∑

j=0

(q; q2)j(−q)j

(−q2; q2)j

=
∑
j=0

(q; q2)j(q2; q2)j

(−q2; q2)j(−q; q2)j
(q3)jq2j2−2j(1 + q4j+2)

(by [3; eq. (9.1.1), p. 223, q → q2, then
α = q, β = −q2, τ = −q])

=
∑
j=0

(q; q)2j

(−q; q)2j+1
q2j2+j

(
1 + q2j+1 − q2j+1(1− q2j+1)

)
=
∞∑

j=0

(q; q)2jq
(2j+1

2 )

(−q; q)2j
−
∞∑

j=0

(q; q)2j+1q
(2j+2

2 )

(−q; q)2j+1

=
∞∑

n=0

(−1)nqn(n+1)/2(q; q)n

(−q; q)n
. �

4. Proof of Theorem 9

We require two results from the literature:

∞∑
n=0

q(
n+1

2 ) =
(q2; q2)∞
(q; q2)∞

[9; p. 6, eq. (7.321)](4.1)

and

2φ1

(
a, b; q, t

c

)
=

(
abt
c ; q

)
∞

(t; q)∞
2φ1

( c
a ,

c
b ; q, t
c

)
[10; p. 10, weq. (1.4.6)](4.2)

where

(4.3) 2φ1

(
a, b; q, t

c

)
=
∞∑

n=0

(a; q)n(b; q)nt
n

(q; q)n(c; q)n
.

Thus starting from (1.9)

W2(−q) + 1 =
∞∑

n=0

(−1; q2)nq
n

(−q; q2)n

= 2φ1

(
−1, q2; q2, q
−q

)
=

(q2; q2)∞
(q; q2)∞

∑
n=0

(−q−1; q2)n(q; q2)nq
2n

(q2; q2)n(−q; q2)n
by (4.2)
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Consequently

W2(−q) + 1− (q2; q2)∞
(q; q2)∞

(4.4)

=
∑
n=1

(1 + q−1)
(1 + q2n−1)

q2n (q2n+2; q2)∞
(q2n+1; q2)∞

=
∑
n=1

(
1 + q2n−1 + q−1(1− q2n)

)
(1 + q2n−1)

q2n (q2n+2; q2)∞
(q2n+1; q2)∞

=
∑
n=1

q2n(q2n+2; q2)∞
(q2n+1; q2)∞

+
∑
n=1

q2n−1(q2n; q2)∞
(1 + q2n−1)(q2n+1; q2)∞

.

Now the first sum above counts DE-partitions with smallest part even and a
weight of +1 if there are an odd number of exceptional parts and −1 if there are
an even number. The second sum counts DE-partitions with smallest part odd and
a weight of +1 if there are an odd number of exceptional parts and −1 if there are
an even number. Thus the right-hand side of (4.4) is the generating function for
E(n). Invoking (4.1), we see that

∞∑
n=1

E(n)qn = W2(−q)−
∞∑

n=1

q(
n+1

2 ). �

5. Conclusion

There are a number of natural questions that arise from this study. First, com-
binatorial proofs of Theorems 4 and 10 might be possible and are much to be
desired.

In addition, the ordinary rank of Dyson has led both to explications of the
Ramanujan congruence for p(n) (cf. [5] and [8]) and to surprising and appealing
combinatorial theorems (cf. [9; eqs. (2.3.91) and (2.4.6)]. These aspects of the
DE-rank and of exceptional parts of DE-partitions are completely unexplored.
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