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ABSTRACT. Partitions with no repeated even parts (DE-partitions) are con-
sidered. A DE-rank for DE-partitions is defined to be the integer part of half
the largest part minus the number of even parts. A(n) denotes the excess of
the number of DE-partitions with even DE-rank over those with odd DE-rank.
Surprisingly A(n) is (1) always non-negative, (2) almost always zero, and (3)
assumes every positive integer value infinitely often. The main results follow
from the work of Corson, Favero, Liesinger and Zubairy. Companion theorems
for DE-partitions counted by exceptional parts conclude the paper.

1. INTRODUCTION

In [4] Ramanujan’s series [16; p. 14]
© n(n+1)/2 e
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was examined. Here
(1.2) (A;q)n=(1—A)(1—Aq)--- (1 - Ag" ).

It was shown [4] that S(n) is almost always equal to zero and also assumes every
integral value infinitely often. Combinatorially S(n) is the excess of the number of
partitions of n into distinct parts with even rank over those with odd rank. The
rank of a partition is the largest part minus the number of parts [7], [5]. A similar
theorem was proven [4; Sec. 5] for partitions into odd parts without gaps.

The results for S(n) rely crucially on the identity [4; p. 392]

(13) R(q) _ Z (_1)n+jqn(3n+l)/2fj2(1 _ q2n+1).

n=0

lil<n
It was noted at the end of [4] that there are numerous series similar in form to the
right-hand expression in (1.3).

Indeed, results of this nature were given for Ramanujan’s fifth order mock theta
functions [2] (c.f. [17]), and such identities formed the basis for pathbreaking work
by Zwegers [18] and Bringmann, Ono and Rhoades [6].

The object of this paper is to reveal a similar phenomenon connected to DE-
partitions, i.e. partitions with no repeated even parts. Now DE-partitions have
been examined previously. R. Honsberger [13] proved the following Euler-type
theorem.
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Theorem 1. Let Ppg(n) denote the number of partitions of n with no repeated even
parts. Let P-4(n) denote the number of partitions of n in which no part appears
more than thrice. Let Py(n) denote the number of partitions of n into parts not
divisible by 4. Then

Pois(n) = Pes(n) = Pa(n)
for each n 2 0.

Honsberger’s proof is immediate from the following identification of the related
generating functions
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The fact that P.4(n) = Py(n) is due to J. W. L. Glaisher [10], and the asymptotics
of these partition functions has been completely examined by P. Hagis [11].

From here on, our focus will be on the DE-rank of DE-partitions which is defined
to be the integer part of half the largest part minus the number of even parts.

We let §(m,n) denote the number of DE-partitions of n with DE-rank m.

Theorem 2.

(1.4) Z 5(m,n)2"q" = 1+Z ) qu2j+1(1+q).
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Next we write

(1.5) A(n) = Z(—l)mé(m, n).

m=0

Theorem 3.

(1.6) S Am) (-9 =3 (=1)"q" " V2 (g q)n

n=0 n=0 (_q)n

Fortunately, the expression on the right-hand side of (1.6) is, in fact, W7 (—¢q), a
function studied extensively by Corson et al. in [7]. In particular, their Theorem 2.3
combined with our Theorem 3 yields

Theorem 4.

(1.7) Y A i( ) +) Z g

n>0 j=—n
Theorem 3.2 of Corson et al. [7], may be restated here as:

Theorem 5. A(n) is the number of inequivalent elements of the ring of integers
of Q(\/2) with norm 8n + 1.

It immediately follows that
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Corollary 6. A(n) is always non-negative.

Finally, Corson et al. [7] in the Remark just before their Corollary 5.3 make an
assertion equivalent to

Corollary 7. A(n) is almost always equal to zero.
The Corollary 5.3 of Corson et al. [7] is equivalent to
Corollary 8. A(n) is equal to any given positive integer infinitely often.

The above results in some sense relate only half of the Corson et al. [7] paper
to DE-partitions. In order to consider their companion function Ws(g), we need a
new definition related to DE-partitions. We shall say that a part of a DE-partition
is exceptional if it is either even or one of the smallest parts or both. For example,
544+ 241+ 1is a DE-partition with four exceptional parts.

We let e(m,n) denote the number of DE-partitions of n with m exceptional
parts, and we write

(1.8) E(n) =Y (-1)""'e(m,n).

m20

Our main result for E(n) requires the W5(q) of Corson et al. [7]:

(1.9) Walg) =S (=L:)n(=0)"

(4 6®)n
Theorem 9.

(1.10) N E(n)g" = Wa(—q) — > ¢("3).
n=1 n=1

This assertion allows us to utilize Theorem 3.3 of Corson et al. [7] to establish
immediately that

Theorem 10. )
Z E(n)q" = Z (q(22ﬂ) + q(%g—l)) Z q*j2*j.

n=1 n>1 Jj=—n

= J#0

The three results following Theorem 4 now have perfect analogs as consequences
of Theorem 10. These follow for Theorem 3.3 of [7], the Remark preceeding Corol-
lary 5.3 and the proof of Corollary 5.3.

Theorem 11. E(n) is the number of inequivalent elements of the ring of integers
of Q(v/2) with norm 8n — 1 or one less if n is a triangular number.

Corollary 12. E(n) is always non-negative.
Corollary 13. E(n) is almost always equal to 0.

The analog of Corollary 8 is quite plausible but it does not follow directly because
of the second term in (1.10).

The remainder of the paper will be devoted to proofs of theorems 3 and 9. All
the other results are, as noted, direct consequences of these two results and results
in Corson et al. [7].
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I thank Dean Hickerson for an extensive set of comments on this paper. In
particular he has noted that A(n) is also the number of divisors of 8n + 1 which
are congruent to 1 modulo 8 minus the number which are congruent to 3 or 5
modulo 8. Consequently, A(n) is the coefficient of 8n + 1 in

)
n=1 1- q" ’
n odd

where (%) is the Legendre symbol.

Finally I note that A. Patkowski [15] has recently found two related theorems
for DE-partitions. His theorems provide other lacunary series arising from DE-
partition statistics other than the rank.

2. PROOF THEOREM 2

For those DE-partitions with largest part 2j+1, the DE-rank generating function
is

(1427 1¢2) (1 + 27 1gh) -+ (1 + 2~ 1q%) 20 g2 1
1= —¢%)--(1—g¥*) '
For those DE-partitions with largest part 2542, the DE-rank generating function
is
(1427 12)(1+ 27 1gh) -+ (1 + 2~ Lg% )i g2 42,71
(=)= (= @) |
We take the empty partition to have DE-rank 0, and so adding together the
empty case, the odd case and the even case we find

Z 5( i -z 2) 23 (g% 4 ¢%72)
m,n) e ,
o = (4:6%)j+1
which is equivalent to Theorem 2. (I

3. PROOF OF THEOREM 3

By Theorem 2 with z replaced by —1 and g replaced by —q, we see that

S AR (=" = Y s(m,n)(-1)" "

n>0 m,n>0
:1+Z q q )] 1q23+1(1 q)
= —4:¢%)j+1

q(1—q) (q2; 0*); (% ¢%);(—4*)
1+gq jz;o (¢%42); (=% 4?);

— (430%)41(
_ Z”

—q)’*

J+1
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(by [9; eq. (IIL.2), p. 241 with ¢ — ¢?,
then a =b=¢? 2= —¢*, c= —¢?))

_ (¢;q ) ((123‘12)3' 3\ 252 —2j 4542
a (qq)(q;q%(q)q (+a%7)

320
(by [3; eq. (9.1.1), p. 223, ¢ — ¢>, then
a=gq,=—¢1=—q)
_ ( (Q§Q))27‘ q2j2+j (1 +q2j+1 _q2j+1(1 _q2j+1))
>0 q;9)25+1
0o 2541 00 2542
-y (:0)2:0"7 ) S (@:9)250100F)
=0 (—=q:9)2; =0 (=€ 9)2j+1
_ i (=1)"q""TD2(g; q),n -
n—0 (_q; q)n )
4. PROOF OF THEOREM 9
We require two results from the literature:
(i _ (a%d
(4.1) Zq qq)) [9; p. 6, eq. (7.321)]
and
a,b; ,t aizt’q g’g; 7t
(4.2) 2¢1< Cq ) = ((t q)) 2051(“ bcq > [10; p. 10, weq. (1.4.6)]
where
a0t = (a5 @)n(b; @)t
13 6 ( ) =y (@@n(bignt”
(4.3) e 2 (4 4)n(c; O

n=0

Thus starting from (1.9)

q q o “q?) q q )nq2"
— by (4.2
Z (42%¢®)n )n y (42)
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Consequently
(qz;qz)oo
_ Z 1+q71 2n (q2n+2’q )
n>1 1 + q2n 1 <q2n+17 q )oo
Z 1 +q2n 1 + q71(1 _ q )) o (q2n+2;q2)oo
I G+ @)

2n+2 2n—1(q2n. q2)

)oo q o0
= -
g 2n+1 oo T; (]_ + q2n71)(q2n+1; q2)00

Now the first sum above counts DE-partitions with smallest part even and a
weight of 41 if there are an odd number of exceptional parts and —1 if there are
an even number. The second sum counts DE-partitions with smallest part odd and
a weight of +1 if there are an odd number of exceptional parts and —1 if there are
an even number. Thus the right-hand side of (4.4) is the generating function for
E(n). Invoking (4.1), we see that

i E(n)q" = i ("2") O
n=1 n=1

5. CONCLUSION

There are a number of natural questions that arise from this study. First, com-
binatorial proofs of Theorems 4 and 10 might be possible and are much to be
desired.

In addition, the ordinary rank of Dyson has led both to explications of the
Ramanujan congruence for p(n) (cf. [5] and [8]) and to surprising and appealing
combinatorial theorems (cf. [9; egs. (2.3.91) and (2.4.6)]. These aspects of the
DE-rank and of exceptional parts of DE-partitions are completely unexplored.
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