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Abstract. December 22, 2010 marks the 123th anniversary of Ramanujan’s

birth. In this paper we pay homage to this towering figure whose mathematical
discoveries so affected mathematics throughout the twentieth century and into

the twenty-first.

1. Introduction

Whenever we remember Ramanujan, three things come most vividly to mind:
(1) Ramanujan was a truly great mathematician; (2) Ramanujan’s life story is
inspiring; and (3) Ramanujan’s life and work give credible support to our belief in
the Universality of truth. We shall examine each of these topics in the next three
sections. A careful examination of each topic should, at least, give us some inkling
of the meaning of Ramanujan.

2. Ramanujan’s Early Work

First and foremost in any assessment of Ramanujan are his research achieve-
ments. These are presented in his Collected Papers [38], his Notebooks [39], and
the Lost Notebook [40]. The Collected Papers have recently been reissued by AMS-
Chelsea [38] with 70 pages of commentary provided by Bruce Berndt. In addition,
Berndt [19] has provided a five volume account of the Notebooks with all of Ra-
manujan’s assertions proved in full. An edited version of the Lost Notebook [40] is
being prepared by Berndt and me ([11] is the first of four volumes).

If I had to choose one word to characterize the impact of Ramanujan’s work, it
would be “surprise.” This is perhaps most evident in Hardy’s response to these two
Ramanujan formulas:
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Hardy commented on (2.1) and (2.2) as follows [26; p. 9]:
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“I had never seen anything in the least like them before. A single
look at them is enough to show that they could only be written
down by a mathematician of the highest class. They must be
true because, if they were not true, no one would have had the
imagination to invent them. Finally (you must remember that I
knew nothing whatever about Ramanujan, and had to think of
every possibility), the writer must be completely honest, because
great mathematicians are commoner than thieves or humbugs of
such incredible skill.”

We have subsequently learned from G. N. Watson [53] that these two formulas are
rather intricate corollaries of the Rogers-Ramanujan identities.

1 +
q

1− q
+

q4

(1− q) (1− q2)
+

q9

(1− q) (1− q2) (1− q3)
+ . . .

=
1

(1− q) (1− q6) . . . (1− q4) (1− q9) . . .
(2.3)
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q12
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While it is true that Rogers anticipated these formulas [45], it is also true that no
one before Ramanujan appreciated the immense implications of (2.3) and (2.4).

Why are they surprising? For one thing they appear to be first cousins of iden-
tities like Euler’s result [2; eqs. (1.2.5) and (2.2.6) at t = q].
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(1− q) (1− q2)
+

q6

(1− q) (1− q2) (1− q3)
+ . . .

=
1

(1− q) (1− q3) . . . (1− q5) . . .
(2.5)

Euler’s result is very easy to prove; the Rogers-Ramanujan identities were sur-
prisingly troublesome as Hardy notes [26; p. 91].

“The formulas have a very curious history. They were found first in
1894 by Rogers, a mathematician of great talent but comparatively
little reputation, now remembered mainly from Ramanujan’s redis-
covery of his work. Rogers was a fine analyst, whose gifts were,
on a smaller scale, not unlike Ramanujan’s; but no one paid much
attention to anything he did, and the particular paper in which he
proved the formulae was quite neglected.

Ramanujan rediscovered the formulae sometime before 1913. He
had then no proof (and knew that he had none), and none of the
mathematicians to whom I communicated the formulae could find
one. They are therefore stated without proof in the second volume
of MacMahon’s Combinatory analysis.

The mystery was solved, trebly, in 1917. In that year Ramanu-
jan, looking through old volumes of the Proceedings of the London
Mathematical Society, came accidentally across Rogers’s paper. I
can remember very well his surprise, and the admiration which
he expressed for Rogers’s work. A correspondence followed in the
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course of which Rogers was led to a considerable simplification of
his original proof. About the same time I. Schur, who was then
cut off from England by the war, rediscovered the identities again.
Schur published two proofs, one of which is “combinatorial” and
quite unlike any other proof known.”

Of course, we cannot omit Hardy’s own favorite Ramanujan formula [38; p. xxxv]:

p (4) + p (9) + p (14)x2 + . . . = 5

{(
1− x5

) (
1− x10

) (
1− x15

)
. . .
}5

{(1− x) (1− x2) (1− x3) . . .}6
(2.6)

where p(n) is the number of partitions of n.
The factor 5 is enough by itself to surprise anyone. An immediate corollary of this

result is that every fifth value of the partition function p(n) is divisible by 5. Identity
(2.6) may be seen as the precursor of countless magnificent results that stretch
through the twentieth century and that culminated in A. O. L. Atkin’s conquest [17]
of the Ramanujan conjecture for congruences associated to the partition function.
In the last two decades, Ken Ono and his collaborators have tremendously extended
and expanded the theory of congruences for p(n) (see for example, [37]).

3. Surprises in the Lost Notebook

This section begins an aspect of Ramanujan’s work that has only recently been
verified [9], [10]. It concerns two identities that are so surprising to an insider that
I avoided studying them for twenty five years out of fear. Here are these formidable
identities. First from the middle of page 26 in Ramanujan’s Lost Notebook [40]

∑
n=0

anqn
2

=
∞∏
n=1

(
1 + aq2n−1(1 + y1(n) + y2(n) + · · · )

)
, (3.1)

where

y1(n) =

∑∞
j=n(−1)jqj(j+1)∑∞

j=0(−1)j(2j + 1)qj(j+1)
(3.2)

and

y2(n) =

(∑∞
j=n(j + 1)(−1)jqj(j+1)

)(∑∞
j=n(−1)jqj(j+1)

)
(∑∞

j=0(−1)j(2j + 1)qj(j+1)
)2 . (3.3)

Our second result is the third identity on page 57 of [40]

∞∑
n=0

anqn
2

(q; q)n
=
∞∏
n=1

(
1 +

aq2n−1

1− qny1 − q2ny2 − q3ny3 − · · ·

)
, (3.4)
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where

y1 =
1

(1− q)ψ2(q)
, (3.5)

y2 = 0, (3.6)

y3 =
q + q3

(1− q)(1− q2)(1− q3)ψ2(q)
−
∑∞
n=0

(2n+1)q2n+1

1−q2n+1

(1− q)3ψ6(q)
, (3.7)

y4 = y1y3, (3.8)

ψ(q) =
∞∑
n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

(3.9)

and where
(A; q)n = (1−A)(1−Aq)(1−Aq2) · · · (1−Aqn−1). (3.10)

In both identities 0 < q < 1.
It seems to have taken me forever to recognize that both of these results lie in

the realm of entire funcitons of the variable a.
To understand something of the depth of these discoveries it is necessary to

provide at least an intuitive introduction to entire functions. First of all, an entire
funciton is an analytic function of z that has no singularities in the finite portion
of the z plane. Consequently, it has a power series expansion

f(z) =
∞∑
n=0

anz
n

that converges for all z.
We now turn to E. T. Copson [24; p. 158] who succinctly describes the analogy

of entire functions and polynomials:
“The most important property of a polynomial is that it can be
expressed uniquely as a product of linear factors of the form

Azp
(

1− z

z1

)(
1− z

z2

)
· · ·
(

1− z

zn

)
,

where A is a constant, p is a positive integer or zero, and z1, z2,
. . . , zn the points, other than the origin, at which the polyno-
mial vanishes, multiple zeros being repeated in the set according
to their order. Conversely, if the zeros are given, the polynomial is
determined apart from an arbitrary constant multiplier.

Now a polynomial is an integral function [i.e. entire function]
of a very simple type, its singularity at infinity being a pole. We
naturally ask whether it is possible to exhibit in a similar manner
the way in which any integral function depends on its zeros.”

This prologue leads to the central fundamental theorem on entire functions,
Hadamard’s Factorization Theorem, [24; p. 174]. The full theorem is not necessary
for us. In fact, we need only the following special case.

Hadamard’s Factorization Theorem (weak case). Suppose f(z) is an entire
function with simple zeros at z1, z2, z3, . . . , f(0) = 1 and

∑∞
n=1 |zn|−1 <∞, then

f(z) =
∞∏
n=1

(
1− z

zn

)
.



THE MEANING OF RAMANUJAN NOW AND FOR THE FUTURE 5

In each of (3.1) and (3.4), we note that each series defines an entire function of
the complex variable a. In each identity, Ramanujan is presenting the Hadamard
Factorization of the function in question and additionally is specifying explicit for-
mulas, or at least approximations, for each of the zeros.

Once one understands that this is what is going on, generally we are still far from
understanding why Ramanujan is able to make these assertions about the zeros of
these functions.

The full details are presented in [9] and [10], but the main idea involved relies on
polynomial approximations of these functions. For (3.4), the relevant polynomial
sequence is

Kn(a) =
n∑
j=0

[
n

j

]
q

qj
2
aj , (3.11)

where [
n

j

]
q

=


0 if j ≤ 0 or j > n

1 if j = 0 or n
(1−qn)(1−qn−1)···(1−qn−j+1)

(1−qj)(1−qj−1)···(1−q) otherwise
(3.12)

For (2.1), the relevant polynomial sequence is

pn(a) = (q2; q2)∞(−aq; q2)n
n∑
j=0

[
n

j

]
q2

q2j

(−aq; q2)j
. (3.13)

It turns out that

lim
n→∞

Kn(a) =
∞∑
m=0

amqm
2

(q; q)m
, (3.14)

and

lim
n→∞

pn(a) =
∞∑
m=0

qm
2
am. (3.15)

The sequence Kn(a) are, in fact, the Stieltjes–Wigert polynomials. G. Szegö
[51] had studied these at length as an interesting family of orthogonal polynomials.
Indeed, his paper concludes by noting that the limiting funciton

∞∑
n=0

qn
2
an

(q; q)n

has (for 0 < q < 1) real, negative simple zeros. This then is the obvious starting
point for proving (3.4), and this is the tack taken in [9].

Proving (3.1) turns out to be much more problematic. Knowledge of q-hyper-
geometric series leads one inexorably to the sequence pn(x). However, they do
not form a family of orthogonal polynomials. Consequently all of their important
features must be deduced ex nihilo. It must be noted that the radii of convergence
given in [9] and [10] are too large. What can actually be proved by standard
methods requires 0 < q < 0.00406, a much smaller interval than 0 < q < 1/4. This
was previously pointed out in [12].

The implications and extensions of these results are explored by Huber [27],
Huber and Yee [28] and Ismail [29].

We now move on to another set of surprises.
In the early part of the 18th century, L. Euler observed that for each integer

n, the number of partitions of n into odd parts equals the number of partitions
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of n into distinct parts. He provided a proof through generating functions. For
subsequent purposes, we name the function in question S(q). Euler observed

S(q) :=
∞∏
n=1

(1 + qn) =
∞∏
n=1

(1− q2n)
(1− qn)

=
∞∏
n=0

1
1− q2n+1

. (3.16)

Here is what Ramanujan does with S(q) (taken from mid-page 14 of [40]).

∞∑
n=0

qn(n+1)/2

(−q; q)n
= 1 +

∞∑
n=0

qn+1(−1)n(q; q)n (3.17)

= S(q) + 2
∞∑
n=0

(S(q)− (−q; q)n)− 2S(q)
∞∑
n=1

qn

1− qn
(3.18)

= S(q) + 2
∞∑
n=0

(
S(q)− 1

(q; q2)n

)
− 2S(q)

∞∑
n=1

q2n

1− q2n
. (3.19)

The last two lines here truly stunned me when I first gazed at them. The infinite
series involving S(q) are quite unlike anything I had seen before. In each of these
series, Ramanujan is taking the difference between S(q) and a partial product that
converges to S(q). Why in the world should this produce anything as orderly as
these identities?

With a sense of great exhilaration I managed to prove these results in January
of 1985. The proof appeared in 1986 [4].

Many years later, in 2000, Ken Ono rekindled my interest by noting that Don
Zagier had proved a very similar result [55] and had applied it to an interesting
L-function evaluation. Our subsequent explorations led us to the following very
general result [14; p. 403]:

Proposition 1. Suppose that

f(z) =
∞∑
n=0

αnz
n

is analytic for |z| < 1. If α is a complex number for which

(i)
∑∞
n=0(α− αn) < +∞,

(ii) limn→+∞ n(α− αn) = 0,

then

lim
z→1−

d

dz
(1− z)f(z) =

∞∑
n=0

(α− αn).

From this general result, identities (3.17)–(3.19) are not that hard to prove.
In the ensuing time, Coogan, Lovejoy and Ono [22], [23], [34] have found many

further applications of this result. Recently, P. Freitas and I [13] have extended
this result to the following theorem involving higher derivatives:

Proposition 2. Let

f(z) =
∞∑
n=0

αnz
n
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be analytic for |z| < 1, and assume that for some positive integer p we have that

∞∑
n=0

 p∏
j=1

(n+ j)

 (αn+p − αn+p−1)

converges;
∞∑
n=0

p−1∏
j=1

(n+ j)

 (α− αn+p−1)

converges, where α is a fixed complex number such that

lim
n→∞

 p∏
j=1

(n+ j)

 (αn+p − α) = 0.

Then

1
p

lim
z→1−

{
dp

dzp
[(1− z)f(z)]

}
=
∞∑
n=0

p−1∏
j=1

(n+ j)

 (α− αn+p−1)

We have applied this more general result to a wide variety of Ramanujan style
identities. For example,

∞∑
n=0

[
(t)n
(t)∞

− 1
]

=
∞∑
n=1

tn

(q)n(1− qn)
,

∞∑
n=0

[
(t)n
(q)n

− (t)∞
(q)∞

]2
=
[

(t)∞
(q)∞

]2 ∞∑
n=1

(q/t)n
(q)n

[
(q)n
(t)n

− 1
]

tn

1− qn
,

∞∑
n=0

[
1− (q)∞

(q)n

]2
=
∞∑
n=1

(−1)n+1 q
n(n+1)/2

(q)n
1− (q)n
1− qn

,

∞∑
n=0

(q)∞
(q)n

[
1− (q)∞

(q)n

]
=
∞∑
n=1

(−1)n+1 q
n(n+1)/2

1− qn
.

For our final set of surprises let us conclude with five formulas from the Lost
Notebook [39; p. 13].

1
1 + q

− q2 (1− q)
(1 + q) (1 + q2) (1 + q3)

+
q6 (1− q)

(
1− q3

)
(1 + q) (1 + q2) (1 + q3) (1 + q4) (1 + q5)

− · · ·

= 1− q + q3 − q6 + · · · (3.20)

1
1 + q

+
q (1− q)2

(1 + q) (1 + q2) (1 + q3)
+

q2 (1− q)2
(
1− q3

)2
(1 + q) (1 + q2) (1 + q3) (1 + q4) (1 + q5)

− · · ·

= 1− q2 + q6 − q12 + · · · (3.21)

1
1 + q

+
q (1− q)

(1 + q) (1 + q2) (1 + q3)
+

q2 (1− q)
(
1− q3

)
(1 + q) (1 + q2) (1 + q3) (1 + q4) (1 + q5)

− · · ·

= 1− q3 + q9 − q18 + · · · (3.22)
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1
1 + q

+
q (1− q)

(1 + q) (1 + q3)
+

q2 (1− q)
(
1− q3

)
(1 + q) (1 + q3) (1 + q5)

− · · ·

= 1− q4 + q12 − q24 + · · · (3.23)

1
1 + q

+
q (1− q)

(1 + q) (1 + q3)
+

q2 (1− q)
(
1− q2

)
(1 + q) (1 + q3) (1 + q5)

− · · ·

= 1− q6 + q18 − q36 + · · · (3.24)

Here we have five formulas listed one after the other by Ramanujan. What’s the
surprise? Some are much deeper than others. The first is easy for any q-series
researcher. The second and fourth are challenging exercises, but they fall relatively
rapidly. The third and the fifth required on and off efforts for months (cf. [3; §6]).
Subsequently, S.O. Warnaar and I have been able to unify the first four of these
identities, and J. Lovejoy has pointed out that these four follow from some of his
more general q-hypergeometric series identities.

Our choice of topics in this section has been dictated to some extent by the
oddness or surprise of Ramanujan’s discoveries. However, it should be stressed that
there are numerous recent spectacular discoveries by Ono, Bringmann, Mahlburg,
Zwegers and others related to Ramanujan’s mock theta functions [20], [21], [36],
[56].

4. Ramanujan and Computation

Anyone who studies Ramanujan’s Lost Notebook comes away with some appreci-
ation of the importance of computation in Ramanujan’s work. Again, G. H. Hardy
provides a relevant comment [38; p. xxxv]

“His memory, and his powers of calculation, were very unusual,
but they could not reasonably be called “abnormal”. If he had to
multiply two large numbers, he multiplied them in the ordinary
way; he would do it with unusual rapidity and accuracy, but not
more rapidly or more accurately than any mathematician who is
naturally quick and has the habit of computation. There is a table
of partitions at the end of our paper . . . . This was, for the most
part, calculated independently by Ramanujan and Major MacMa-
hon; and Major MacMahon was, in general, slightly the quicker
and more accurage of the two.”

In a monograph on q-series [5; p. 87], I was led to speculate about Ramanujan
and the age of computer algebra:

“Sometimes when studying his work I have wondered how much Ramanujan
could have done if he had had MACSYMA or SCRATCH-PAD or some other
symbolic algebra package. More often I get the feeling that he was such a brilliant,
clever, and intuitive computer himself that he really did not need them.”

However much fun such speculation may be; it is more important that we exam-
ine the ways in which Ramanujan’s computations and calculations have guided more
recent discoveries. Among the letters from Ramanujan that perhaps influenced
Hardy’s remark, we might mention the one on Ramanujan’s empirical evidence for
the Rogers-Ramanujan identities [40; pp. 360-361]. The study of the calculations
led to a truncated version of the Bailey Chain method [7] which in turn led to
positivity theorems about the differences of successive Gaussian polynomials [8].
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However, there is perhaps a more revealing result in his early notebooks [19;
Part V, p. 130]. In this identity, pn denotes the nth prime. So p1 = 2, p2 = 3,
p3 = 5, . . ..

∞∏
n=1

1
1− qpn

= 1 +
∞∑
j=1

qp1+p2+···+pj

(1− q)(1− q2) · · · (1− qj)
. (4.1)

It should be noted that this assertion is false, and also Ramanujan must have
thought so because he drew a line through this formula. Here we face one of the few
false results asserted by Ramanujan. The temptation is to forget (4.1) and move
on to the countless valued discoveries by Ramanujan.

However, the question nags: Why would Ramanujan have written down (4.1) in
the first place? In the late 1980’s A. and J. Knopfmacher [33; Th. 1.4] proved the
following theorem. Let L = C((q)) be the field of formal Laurent series over the
complex numbers, C. If

A =
∞∑
n=ν

Cnqn,

we call ν = ν(A) the order of A and we define the norm of A to be

‖A‖ = 2−ν(A).

In addition, we define the integral part of A to be

[A] =
∑
ν5n5

CnQn.

Theorem 3 (Extended Engel Expansion Theorem). Every A ∈ L has a finite or
convergent (relative to the above norm) series expansion of the form

A = a0 +
∞∑
n=1

1
a1a2 · · · an

,

where an ∈ C[q−1], a0 = [A], ν(an) 5 −n, and ν(an+1) 5 ν(an)− 1.
The series is unique for A (up to constants in C), and it is finite if and only if

A ∈ C(q). In addition, if

a0 +
n∑
j=1

1
a1 · · · aj

=
pn
qn
, where qn = a1a2 · · · an,

then ∥∥∥∥A− pn
qn

∥∥∥∥ 5
1

2n+1‖qn‖
and

ν

(
A− pn

qn

)
= −ν(qn+1) =

(n+ 1)(n+ 2)
2

.

In fact, the an are given by

an =
[

1
An

]
where A0 = A, a0 = [A], and

An+1 = anAn − 1.
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From this expansion theorem they observed empirically that the generalized
Engel expansion for

∞∏
n=0

1
(1− q5n+1)(1− q5n+4)

is, in fact,
∞∑
n=0

qn
2

(q; q)n
,

i.e. they had found an empirical method that led to the First Rogers-Ramanujan
identity (2.3). In subsequent work [15], it was shown that this observation can be
rigorously established. In addition, while (4.1) is false, nonetheless, the generalized
Engel expansion of the left side of (4.1) yields precisely the first four terms of the
right side before chaos sets in in subsequent terms.

Thus while we cannot be certain how Ramanujan came upon (4.1), we can note
that our knowledge that “something’s going on here” provides inspiration for the
exploitation of results like the generalized Engel expansion.

As a final comment in this section, I hark back to Hardy’s comparison of the
computational skills of Ramanujan and P. A. MacMahon. Certainly at the be-
ginning of the twentieth century MacMahon was the one other major researcher
applying computational studies to problems in the theory of partitions.

MacMahon was perhaps most proud of his method of Parition Analysis [35; Sec.
VIII]. The method fell into disuse because of the massive calculations necessary in its
employment. However, with the advent of computer algebra systems, this method
has flourished. The most direct applications of MacMahon’s ideas are developed
in [16]. Related systems have been developed by Stembridge [50] implementing the
ideas of Stanley [49] and DeLoera [25] implementing Barvinok’s work [18].

5. The Life of Ramanujan

Almost anyone interested enough in Ramanujan to be reading these words knows
the broad outline of Ramanujan’s life. There have been many biographies written.
In India, there are books by S. R. Ranganathan [43], Suresh Ram [41], and K.
Srinivasa Rao [44] to name only three. There are booklets for students by T.
Soundararajan [47] and P. K. Srinivasan [48]. S. Ramaseshan published a magnifi-
cent article in Current Science [42]. This is a small sampling of the interest in and
affection shown to the memory of Ramanujan by his countrymen.

In North America, Robert Kanigel’s The Man Who Knew Infinity [30] was widely
read and translated into German [31] and Korean [32].

Ramanujan was born to a poor Brahmin family in Erode on December 22, 1887
and grew up in Kumbakonam. He took an early interest in mathematics and
always excelled in his study thereof. In 1904, he entered the Government College
at Kumbakonam. He continued to do well at mathematics but neglected other
subjects. As a result, he lost his scholarship and left the college. By 1913 he
was married and employed in a dead-end job as a clerk at the Madras Port Trust.
Nonetheless, his mathematical studies continued unabated. At the suggestion of
friends, he communicated some of his work to English mathematicians, among them
G. H. Hardy.

Hardy very quickly perceived the depth and brilliance of Ramanujan’s achieve-
ments. Hardy arranged for Ramanujan to come to England in 1914. For the next
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several years, these two collaborated on truly pathbreaking research. They found
the formula for the partition function, literally founded probabilistic number the-
ory, and made clear the major role that modular forms could play in several aspects
of number theory.

In 1917, Ramanujan became ill. It was thought at the time that he had tuber-
culosis. After convalescing in England through much of 1918, he returned to India
in 1919 and died in 1920.

It was during this final year that the Lost Notebook (actually a collection of
approximately 100 sheets of paper) was written.

In speaking of that last year, S. R. Ranganathan quotes Janaki Ammal, Ra-
manujan’s widow [43; MT6]:

“He returned from England only to die, as the saying goes. He
lived for less than a year. Throughout this period, I lived with
him without break. He was only skin and bones. He often com-
plained of severe pain. In spite of it he was always busy doing his
Mathematics. That, evidently helped him to forget the pain. I
used to gather the sheets of paper which he filled up. I would also
give the slate whenever he asked for it. He was uniformly kind to
me. In his conversation he was full of wit and humour. Even while
mortally ill, he used to crack jokes. One day he confided in me
that he might not live beyond thirty-five and asked me to meet the
event with courage and fortitude. He was well looked after by his
friends. He often used to repeat his gratitude to all those who had
helped him in his life.”

Ramanujan’s life is truly inspiring. The rise from poverty to international acclaim is
breathtaking. His courage facing death was magnificent. However, his contributions
were not just for his time; they affected mathematics and mathematicians for the
next century.

It is, of course, possible to be so overwhelmed by the Ramanujan story that one
loses the feeling that it might possess lessons for one’s own life. S. R. Ranganathan
[43] tells the following appealing story which is more down to earth:

“It was February 1912. K S Srinivasan, popularly called “Sandow”
by his friends and a classmate of mine in the Madras Christian
College, had known Ramanujan intimately while at Kumbakonam.
He called on Ramanujan at Summer House one evening.

SANDOW: Ramanju, they all call you a genius.
RAMANUJAN: What! Me a genius! Look at my elbow, it will tell you

the story.
SANDOW: What is all this Ramanju? Why is it so rough and black?
RAMANUJAN: My elbow has become rough and black in making a genius

of me! Night and day I do my calculation on slate. (It) is too slow
to look for a rag to wipe it out with. I wipe out the slate almost
every few minutes with my elbow.”

6. The Universality of Truth

In 1991 in Minerva, the sociologist Edward Shils published an article entitled
Reflections on Tradition, Centre and Periphery and the Universal Validity of Sci-
ence: The Significance of the Life of S. Ramanujan [46]. Roughly the first half of
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Shils’ article is devoted to an account of various movements (mostly arising in the
West) which question the universality of science. Shils’ italicized sub-headings are
enough to give the flavor:

Ambivalent Marxism: an early forerunner of the denial of the universality of
science.

Sociologists’ disregard for any questions regarding the validity of scientific knowl-
edge Meta-history as a denial of the possibility of truthful knowledge

Does every civilization have its own criteria of scientific validity?
Shils (and I) are firmly convinced of the universal validity of science, and Shils

turns to Ramanujan to make the case [46; pp. 407, 408, 413]:

“From thinking about Ramanujan, I have concluded that there
are no territorial or social or religious or ethnic limitations on the
validity of what a scientist discovers. The discoveries of a scien-
tist of one civilization or nationality can be received, assessed and
assimilated by scientists of any other civilization or nationality,
assuming, of course, that the recipient scientist is sufficiently in-
formed regarding the state of the subject and has the intelligence
and scientific training to comprehend what is offered to him.

The mathematics which Ramanujan did in India could be as-
sessed by British mathematicians of the highest order to the extent
that they could re-trace the steps which his intuitive powers had
enabled him to leap over. It was not the “Indianness” of Ramanu-
jan’s mathematics which baffled the first British mathematicians,
Hobson and Baker, whom he approached; it was their exception-
ally advanced originality. It required two mathematicians of the
very high quality of Hardy and Littlewood to appreciate, to learn
from and to contribute to Ramanujan’s work. As the years passed,
and his notebooks have been studied, his mathematics have been
interpreted, proved and assimilated by Western mathematicians.

I have not read any references to the specifically Indian character
of Ramanujan’s mathematics. His mathematics are mathematics,
indifferently of the place and circumstances of their creation

Contrary to the Romantic idea that tradition and genius, or tra-
dition and originality, are invariably antithetical to each other, the
opposite is the case. A tradition receives into itself the product of
the exertions of individuals of powerful intelligence, imagination,
courage and sensibility. Genius takes its point of departure in tra-
dition; it extends and elaborates what is given by tradition. It
begins in tradition and departs from it and reaches destinations
hitherto unreached. It begins in tradition and its subsequent ad-
vances from tradition bear within themselves traits of its point of
departure in tradition. It never cuts loose from them completely,
however far it advances from its starting point. This accounts for
some of the difficulties Littlewood encountered when he tried to
bring Ramanujan’s use of more recently developed mathematical
methods up to the level attained in Europe after 1880. Neverthe-
less, the achievements of the genius take their place in the tradition
which becomes significantly modified by those advances.
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The intimate reciprocal relationships between genius and tradi-
tion are evident in the case of Ramanujan. He made a connection
with some older and incomplete condensations of the tradition of
the mathematics developed in Europe; he retraced, in his own way
and in ignorance of them, paths of the tradition which had already
been traversed in Europe. In other respects he shot well ahead of
the points reached by the movement of the tradition in Europe. It
is unlikely that the tradition of Hindu belief in which Ramanujan
participated steadfastly obstructed his advances from the tradi-
tion of mathematics which had developed in Europe. Ramanujan
thought that the Hindu goddess in whom he believed had in fact
inspired his mathematical advances.

It seems to this outsider that the scientific and mathematical
traditions are alive and well in India. Long may they prosper! In
reflecting upon and honoring the life and work of Ramanujan, one
finds numerous themes to support the nobler ambitions of human-
ity.”

7. Conclusion

In his Presidential address to the London Mathematical Society in 1936, G. N.
Watson spoke movingly of his emotional response to Ramanujan’s achievements. I
close by quoting his last few paragraphs [54; p. 80]:

“The study of Ramanujan’s work and of the problems to which it gives rise
inevitably recalls to mind Lamé’s remark that, when reading Hermite’s papers on
modular functions, “on a la chair de poule.” I would express my own attitude with
more prolixity by saying that such a formula as∫ ∞

0

e−3πx2 sinhπx
sinh 3πx

dx =
1

eiπ
√

3

∞∑
n=0

e−2n(n+1)π

(1 + e−π)2 (1 + e−3π)2 . . .
(
1 + e−(2n+1)π

)2
gives me a thrill which is indistinguishable from the thrill which I feel when I enter
the Sagrestia Nuova of the Capelle Medicee and see before me the austere beauty of
the four statues representing Day, Night, Evening, and Dawn which Michelangelo
has set over the tombs of Guiliano de Medici and Lorenzo de Medici.

Ramanujan’s discovery of the mock theta functions makes it obvious that his skill
and ingenuity did not desert him at the oncoming of his untimely end. As much as
any of his earlier work, the mock theta functions are an achievement sufficient to
cause his name to be held in lasting remembrance. To his students such discoveries
will be a source of delight and wonder until the time shall come when we too shall
make our journey to that Garden of Proserpine where

Pale, beyond porch and portal,
Crowned with calm leaves, she stands

Who gathers all things mortal
With cold immortal hands.”
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