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Abstract

A new expansion is given for partial sums of Euler’s pentagonal
number series. As a corollary we derive an infinite family of inequali-
ties for the partition function, p(n).

1 Introduction

In [3], the second author produced the fastest known algorithm for the gen-
eration of the partitions of n. The work required a proof of the following
inequality: For n > 0

p(n)− p(n− 1)− p(n− 2) + p(n− 5) 5 0, (1.1)

where p(n) is the number of partitions of n [2].
Upon reflection, one expects that there might be an infinite family of such

inequalities where (1.1) is the second entry, and the trivial inequality

p(n)− p(n− 1) = 0 (1.2)
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is the first.
In this paper, we shall prove:

Theorem 1. For k = 1,

1

(q; q)∞

k−1∑
j=0

(−1)jqj(3j+1)/2(1− q2j+1) = 1 + (−1)k−1

∞∑
n=1

q(k
2)+(k+1)n

(q; q)n

[
n− 1
k − 1

]
,

(1.3)
where

(A; q)n =
∞∏

j=0

(1− Aqj)

(1− Aqj+n)

=
(
(1− A)(1− Aq) · · · (1− Aqn−1) if n is a positive integer

)
and [

A
B

]
=

{
0, if B < 0 or B > A

(q;q)A

(q;q)B(q;q)A−B
, otherwise.

Corollary 1. For n > 0, k = 1

(−1)k−1

k−1∑
j=0

(−1)j (p(n− j(3j + 1)/2)− p(n− j(3j + 5)/2− 1)) = 0 (1.4)

with strict inequality if n = k(3k + 1)/2.

We note that (1.1) is the case k = 2 and (1.2) is the case k = 1. In
the final section of the paper, we note the relationship of this result to D.
Shanks’s formula for the truncated pentagonal number series [4].

2 Proof of Theorem 1

Denote the left side of (1.3) by Lk and the right side by Rk.
Clearly

L1 =
1− q

(q; q)∞
=

1

(q2; q)∞
=
∞∑

n=0

q2n

(q; q)n

= R1, (2.1)
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where we have invoked [2, p. 19, eq. (2.25)]. Thus Theorem 1 is true when
k = 1.

It is immediate from the definition that

Lk+1 − Lk =
(−1)kqk(3k+1)/2(1− q2k+1)

(q; q)∞
. (2.2)

On the other hand, for k > 1, we see by [2, p.35 eq.(3.3.4)], that

Rk = 1 + (−1)k−1

∞∑
n=1

q(k
2)+(k−1)n

(q; q)n

([
n
k

]
− qk

[
n− 1

k

])

= 1 + (−1)k−1

∞∑
n=1

q(k
2)+(k+1)n

(q; q)k(q; q)n−k

+ (−1)k

∞∑
n=1

q(k
2)+(k+2)n−n

(q; q)n

[
n− 1

k

]

= 1 +
(−1)k−1q(k

2)

(q; q)k

∞∑
n=0

q(k+1)(n+k)

(q; q)n

+ (−1)k

∞∑
n=1

q(k+1
2 )+(k+2)n

(q; q)n

(
(−1 + q−n + 1)

) [n− 1
k

]

= 1 +
(−1)k−1qk(3k+1)/2

(q; q)k(qk+1; q)∞
+ (−1)k

∞∑
n=1

q(k+1
2 )+(k+1)n

(q; q)n−1

[
n− 1

k

]
+ Rk+1 − 1

=
(−1)k−1qk(3k+1)/2

(q; q)∞
+ Rk+1 + (−1)k

∞∑
n=1

q(k+1
2 )+(k+1)n

(q; q)k(q; q)n−k−1

=
(−1)k−1qk(3k+1)/2

(q; q)∞
+ Rk+1 +

(−1)kq(k+1
2 )+(k+1)2

(q; q)k

∞∑
n=0

q(k+1)n

(q; q)n

=
(−1)k−1qk(3k+1)/2

(q; q)∞
+ Rk+1 +

(−1)kqk(3k+1)/2+2k+1

(q; q)k(qk+1; q)∞

= Rk+1 −
(−1)kqk(3k+1)/2(1− q2k+1)

(q; q)∞
(2.3)

We may rewrite (2.3) as

Rk+1 −Rk =
(−1)kqk(3k+1)/2(1− q2k+1)

(q; q)∞
(2.4)

Thus L1 = R1 and both sequences satisfy the same first order recurrence. So
for k = 1,

Lk = Rk

and Theorem 1 is proved.
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3 Proof of Corollary 2

We see by Theorem 1 that the generating function for

(−1)k−1

k−1∑
j=0

(−1)j (p(n− j(3j + 1)/2)− p(n− j(3j + 5)/2− 1)) (3.1)

is

(−1)k−1Lk = (−1)k−1Rk

= (−1)k−1 +
∞∑

n=1

q(k
2)+(k+1)/n

(q; q)n

[
n− 1
k − 1

]
, (3.2)

and since

[
n− 1
k − 1

]
= 0 for n < k, we see that the expression in (3.1) is

identically 0 for 0 < n < k(3k + 1)/2. Furthermore the terms in the series
in (3.2) all have non-negative coefficients. the first non-zero term occurs for
n = k and is

qk(3k+1)/2

(q; q)k

which has positive coefficients of qn for n = k(3k + 1)/2. Thus Corollary 2
is proved.

4 Shanks’s Formula

In [4], D. Shanks proved that

1 +
k∑

j=1

(−1)j
(
qj(3j−1)/2 + qj(3j+1)/2

)
=

k∑
j=0

(−1)j(q; q)kq
jk+(j+1

2 )

(q; q)j

(4.1)

We note that the left-hand side of (4.1) has (2k + 1) terms of the pentagonal
number series while the numerator of Lk+1 has 2k terms. As we will see, it
is possible to deduce from Theorem 1 a companion to (4.1) treating the case
with an even number of terms.

Theorem 2.
k∑

j=0

(−1)jqj(3j+1)/2(1− q2j+1) =
k∑

j=0

(−1)j(q; q)k+1q
(k+2)j+(j

2)

(q; q)j

(4.2)
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Proof. By Theorem 1 (with k replaced by k + 1),

k∑
j=0

(−1)jqj(3j+1)/2(1− q2j+1)

= (q; q)∞

(
1 + (−1)k

∞∑
n=1

q(k+1
2 )+(k+2)n(qn−k; q)k

(q; q)n(q; q)k

)

= (q; q)∞(−1)k

∞∑
n=0

q(k+1
2 )+(k+2)n

(q; q)n

k∑
j=0

(−1)jq(j
2)+(n−k)j

(q; q)j(q; q)k−j

(by [2, p.36, eq.(3.3.6)])

= (q; q)∞(−1)kq(k+1
2 )

k∑
j=0

(−1)jq(j
2)−kj

(q; q)j(q; q)k−j

1

(qj+k+2; q)∞

=
k∑

j=0

(−1)k−jq(j−k
2 )(q; q)j+k+1

(q; q)j(q; q)k−j

=
1

(q; q)n

k∑
j=0

[
k
j

]
(−1)k−jq(j−k

2 )(q; q)j+k+1

= (−1)k(1− qk+1)
k∑

j=0

[
k
j

]
(−1)jq((j−2

2) )(qk+2; q)j

= (−1)k(1− qk+1)q(k+1
2 )

k∑
j=0

(q−k; q)j(q
k+2; q)j

(q; q)j

= (q; q)k+1

k∑
k=0

(−1)jq(j
2)+(k+2)j

(q; q)j

,

where the last line follows from [2, p.38, next to last line with b = q−k, then
t = 1 and c→ 0]. Thus Theorem 3 is proved.

It is an easy exercise to deduce (4.1) from Theorem 3 and vice versa.
Consequently we could prove Theorem 1 by starting with (4.1), then deducing
Theorem 3, and then reversing the proof of Theorem 3 to obtain Theorem 1.
We chose this way of proceeding because of the natural motivation provided
by knowing Corollary 2 in the cases k = 1, 2.
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Finally we note that (4.1) and truncated identities like it arose in impor-
tant ways in [1]. Thus it is possible that there are extensions of our Theorem
1 that might have applications to mock theta functions.

References

[1] George E. Andrews, The fifth and seventh order mock theta functions, Trans. Amer.
Math. Soc. 293 (1986), no. 1, 113–134. MR814916 (87f:33011)

[2] , The theory of partitions, Cambridge Mathematical Library, Cambridge Uni-
versity Press, Cambridge, 1998. Reprint of the 1976 original. MR1634067 (99c:11126)

[3] M. Merca, Fast algorithm for generating ascending compositions, J. Math. Modelling
and Algorithms (to appear).

[4] Daniel Shanks, A short proof of an identity of Euler, Proc. Amer. Math. Soc. 2 (1951),
747–749. MR0043808 (13,321h)

6


	Introduction
	Proof of Theorem 1
	Proof of Corollary 2
	Shanks's Formula

