The Truncated Pentagonal Number Theorem

George E. Andrews*
Department of Mathematics
The Pennsylvania State University
University Park, PA 16802 USA
Mircea Merca
Doctoral School in Applied Mathematics
University of Craiova
Craiova, Romania

Abstract

A new expansion is given for partial sums of Euler's pentagonal number series. As a corollary we derive an infinite family of inequalities for the partition function, $p(n)$.

1 Introduction

In [3], the second author produced the fastest known algorithm for the generation of the partitions of n. The work required a proof of the following inequality: For $n>0$

$$
\begin{equation*}
p(n)-p(n-1)-p(n-2)+p(n-5) \leqq 0, \tag{1.1}
\end{equation*}
$$

where $p(n)$ is the number of partitions of n [2].
Upon reflection, one expects that there might be an infinite family of such inequalities where (1.1) is the second entry, and the trivial inequality

$$
\begin{equation*}
p(n)-p(n-1) \geqq 0 \tag{1.2}
\end{equation*}
$$

[^0]is the first.
In this paper, we shall prove:
Theorem 1. For $k \geqq 1$,

$\frac{1}{(q ; q)_{\infty}} \sum_{j=0}^{k-1}(-1)^{j} q^{j(3 j+1) / 2}\left(1-q^{2 j+1}\right)=1+(-1)^{k-1} \sum_{n=1}^{\infty} \frac{q^{\binom{k}{2}+(k+1) n}}{(q ; q)_{n}}\left[\begin{array}{l}n-1 \\ k-1\end{array}\right]$,
where

$$
\begin{aligned}
(A ; q)_{n} & =\prod_{j=0}^{\infty} \frac{\left(1-A q^{j}\right)}{\left(1-A q^{j+n}\right)} \\
& =\left((1-A)(1-A q) \cdots\left(1-A q^{n-1}\right) \quad \text { if } n \text { is a positive integer }\right)
\end{aligned}
$$

and

$$
\left[\begin{array}{l}
A \\
B
\end{array}\right]= \begin{cases}0, & \text { if } B<0 \text { or } B>A \\
\frac{(q ; q)_{A}}{(q ; q)_{B}(q ; q)_{A-B}}, & \text { otherwise } .\end{cases}
$$

Corollary 1. For $n>0, k \geqq 1$

$$
\begin{equation*}
(-1)^{k-1} \sum_{j=0}^{k-1}(-1)^{j}(p(n-j(3 j+1) / 2)-p(n-j(3 j+5) / 2-1)) \geqq 0 \tag{1.4}
\end{equation*}
$$

with strict inequality if $n \geqq k(3 k+1) / 2$.
We note that (1.1) is the case $k=2$ and (1.2) is the case $k=1$. In the final section of the paper, we note the relationship of this result to D. Shanks's formula for the truncated pentagonal number series [4].

2 Proof of Theorem 1

Denote the left side of (1.3) by L_{k} and the right side by R_{k}.
Clearly

$$
\begin{equation*}
L_{1}=\frac{1-q}{(q ; q)_{\infty}}=\frac{1}{\left(q^{2} ; q\right)_{\infty}}=\sum_{n=0}^{\infty} \frac{q^{2 n}}{(q ; q)_{n}}=R_{1} \tag{2.1}
\end{equation*}
$$

where we have invoked [2, p. 19, eq. (2.25)]. Thus Theorem 1 is true when $k=1$.

It is immediate from the definition that

$$
\begin{equation*}
L_{k+1}-L_{k}=\frac{(-1)^{k} q^{k(3 k+1) / 2}\left(1-q^{2 k+1}\right)}{(q ; q)_{\infty}} \tag{2.2}
\end{equation*}
$$

On the other hand, for $k>1$, we see by [2, p. 35 eq.(3.3.4)], that

$$
\begin{align*}
R_{k} & =1+(-1)^{k-1} \sum_{n=1}^{\infty} \frac{q^{\binom{k}{2}+(k-1) n}}{(q ; q)_{n}}\left(\left[\begin{array}{c}
n \\
k
\end{array}\right]-q^{k}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]\right) \\
& =1+(-1)^{k-1} \sum_{n=1}^{\infty} \frac{q^{\binom{k}{2}+(k+1) n}}{(q ; q)_{k}(q ; q)_{n-k}}+(-1)^{k} \sum_{n=1}^{\infty} \frac{q^{\binom{k}{2}+(k+2) n-n}}{(q ; q)_{n}}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right] \\
& =1+\frac{(-1)^{k-1} q^{\binom{k}{2}}}{(q ; q)_{k}} \sum_{n=0}^{\infty} \frac{q^{(k+1)(n+k)}}{(q ; q)_{n}}+(-1)^{k} \sum_{n=1}^{\infty} \frac{q^{\binom{k+1}{2}+(k+2) n}}{(q ; q)_{n}}\left(\left(-1+q^{-n}+1\right)\right)\left[\begin{array}{c}
n-1 \\
k
\end{array}\right] \\
& =1+\frac{(-1)^{k-1} q^{k(3 k+1) / 2}}{(q ; q)_{k}\left(q^{k+1} ; q\right)_{\infty}}+(-1)^{k} \sum_{n=1}^{\infty} \frac{q^{\binom{k+1}{2}+(k+1) n}}{(q ; q)_{n-1}}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]+R_{k+1}-1 \\
& =\frac{(-1)^{k-1} q^{k(3 k+1) / 2}}{(q ; q)_{\infty}}+R_{k+1}+(-1)^{k} \sum_{n=1}^{\infty} \frac{q^{\binom{k+1}{2}+(k+1) n}}{(q ; q)_{k}(q ; q)_{n-k-1}} \\
& =\frac{(-1)^{k-1} q^{k(3 k+1) / 2}}{(q ; q)_{\infty}}+R_{k+1}+\frac{\left.(-1)^{k} q^{k+1} 2\right)^{k+1}+(k+1)^{2}}{(q ; q)_{k}} \sum_{n=0}^{\infty} \frac{q^{(k+1) n}}{(q ; q)_{n}} \\
& =\frac{(-1)^{k-1} q^{k(3 k+1) / 2}}{(q ; q)_{\infty}}+R_{k+1}+\frac{(-1)^{k} q^{k(3 k+1) / 2+2 k+1}}{(q ; q)_{k}\left(q^{k+1} ; q\right)_{\infty}} \\
& =R_{k+1}-\frac{(-1)^{k} q^{k(3 k+1) / 2}\left(1-q^{2 k+1}\right)}{(q ; q)_{\infty}} \tag{2.3}
\end{align*}
$$

We may rewrite (2.3) as

$$
\begin{equation*}
R_{k+1}-R_{k}=\frac{(-1)^{k} q^{k(3 k+1) / 2}\left(1-q^{2 k+1}\right)}{(q ; q)_{\infty}} \tag{2.4}
\end{equation*}
$$

Thus $L_{1}=R_{1}$ and both sequences satisfy the same first order recurrence. So for $k \geqq 1$,

$$
L_{k}=R_{k}
$$

and Theorem 1 is proved.

3 Proof of Corollary 2

We see by Theorem 1 that the generating function for

$$
\begin{equation*}
(-1)^{k-1} \sum_{j=0}^{k-1}(-1)^{j}(p(n-j(3 j+1) / 2)-p(n-j(3 j+5) / 2-1)) \tag{3.1}
\end{equation*}
$$

is

$$
\begin{align*}
(-1)^{k-1} L_{k} & =(-1)^{k-1} R_{k} \\
& =(-1)^{k-1}+\sum_{n=1}^{\infty} \frac{q^{\binom{k}{2}+(k+1) / n}}{(q ; q)_{n}}\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right], \tag{3.2}
\end{align*}
$$

and since $\left[\begin{array}{l}n-1 \\ k-1\end{array}\right]=0$ for $n<k$, we see that the expression in (3.1) is identically 0 for $0<n<k(3 k+1) / 2$. Furthermore the terms in the series in (3.2) all have non-negative coefficients. the first non-zero term occurs for $n=k$ and is

$$
\frac{q^{k(3 k+1) / 2}}{(q ; q)_{k}}
$$

which has positive coefficients of q^{n} for $n \geqq k(3 k+1) / 2$. Thus Corollary 2 is proved.

4 Shanks's Formula

In [4], D. Shanks proved that

$$
\begin{equation*}
1+\sum_{j=1}^{k}(-1)^{j}\left(q^{j(3 j-1) / 2}+q^{j(3 j+1) / 2}\right)=\sum_{j=0}^{k} \frac{(-1)^{j}(q ; q)_{k} q^{j k+\binom{j+1}{2}}}{(q ; q)_{j}} \tag{4.1}
\end{equation*}
$$

We note that the left-hand side of (4.1) has $(2 k+1)$ terms of the pentagonal number series while the numerator of L_{k+1} has $2 k$ terms. As we will see, it is possible to deduce from Theorem 1 a companion to (4.1) treating the case with an even number of terms.

Theorem 2.

$$
\begin{equation*}
\sum_{j=0}^{k}(-1)^{j} q^{j(3 j+1) / 2}\left(1-q^{2 j+1}\right)=\sum_{j=0}^{k} \frac{(-1)^{j}(q ; q)_{k+1} q^{(k+2) j+\binom{j}{2}}}{(q ; q)_{j}} \tag{4.2}
\end{equation*}
$$

Proof. By Theorem 1 (with k replaced by $k+1$),

$$
\begin{aligned}
& \sum_{j=0}^{k}(-1)^{j} q^{j(3 j+1) / 2}\left(1-q^{2 j+1}\right) \\
& =(q ; q)_{\infty}\left(1+(-1)^{k} \sum_{n=1}^{\infty} \frac{q^{\binom{k+1}{2}+(k+2) n}\left(q^{n-k} ; q\right)_{k}}{(q ; q)_{n}(q ; q)_{k}}\right) \\
& =(q ; q)_{\infty}(-1)^{k} \sum_{n=0}^{\infty} \frac{q^{(k+1} \begin{array}{c}
(k+1)+(k+2) n \\
(q ; q)_{n}
\end{array} \sum_{j=0}^{k} \frac{(-1)^{j} q^{\left(\frac{j}{2}\right)+(n-k) j}}{(q ; q)_{j}(q ; q)_{k-j}}}{l}
\end{aligned}
$$

(by [2, p.36, eq.(3.3.6)])
$=(q ; q)_{\infty}(-1)^{k} q^{\binom{k+1}{2}} \sum_{j=0}^{k} \frac{(-1)^{j} q^{\binom{j}{2}-k j}}{(q ; q)_{j}(q ; q)_{k-j}} \frac{1}{\left(q^{j+k+2} ; q\right)_{\infty}}$
$=\sum_{j=0}^{k} \frac{\left.(-1)^{k-j} q^{(j-k} 2_{2}\right)}{(q ; q)_{j+k+1}}(q ; q)_{j}(q ; q)_{k-j} \quad$

$=(-1)^{k}\left(1-q^{k+1}\right) \sum_{j=0}^{k}\left[\begin{array}{l}k \\ j\end{array}\right](-1)^{j} q^{\binom{(j-2)}{2}}\left(q^{k+2} ; q\right)_{j}$
$=(-1)^{k}\left(1-q^{k+1}\right) q^{\binom{k+1}{2}} \sum_{j=0}^{k} \frac{\left(q^{-k} ; q\right)_{j}\left(q^{k+2} ; q\right)_{j}}{(q ; q)_{j}}$
$=(q ; q)_{k+1} \sum_{k=0}^{k} \frac{(-1)^{j} q^{\binom{j}{2}+(k+2) j}}{(q ; q)_{j}}$,
where the last line follows from [2, p.38, next to last line with $b=q^{-k}$, then $t=1$ and $c \rightarrow 0]$. Thus Theorem 3 is proved.

It is an easy exercise to deduce (4.1) from Theorem 3 and vice versa. Consequently we could prove Theorem 1 by starting with (4.1), then deducing Theorem 3, and then reversing the proof of Theorem 3 to obtain Theorem 1. We chose this way of proceeding because of the natural motivation provided by knowing Corollary 2 in the cases $k=1,2$.

Finally we note that (4.1) and truncated identities like it arose in important ways in [1]. Thus it is possible that there are extensions of our Theorem 1 that might have applications to mock theta functions.

References

[1] George E. Andrews, The fifth and seventh order mock theta functions, Trans. Amer. Math. Soc. 293 (1986), no. 1, 113-134. MR814916 (87f:33011)
[2] _ , The theory of partitions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998. Reprint of the 1976 original. MR1634067 (99c:11126)
[3] M. Merca, Fast algorithm for generating ascending compositions, J. Math. Modelling and Algorithms (to appear).
[4] Daniel Shanks, A short proof of an identity of Euler, Proc. Amer. Math. Soc. 2 (1951), 747-749. MR0043808 (13,321h)

[^0]: *Partially supported by National Security Agency Grant

