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Abstract

A new expansion is given for partial sums of FEuler’s pentagonal
number series. As a corollary we derive an infinite family of inequali-
ties for the partition function, p(n).

1 Introduction

In [3], the second author produced the fastest known algorithm for the gen-
eration of the partitions of n. The work required a proof of the following
inequality: For n > 0

p(n) —p(n —1) = p(n —2) +p(n - 5) = 0, (1.1)

where p(n) is the number of partitions of n [2].
Upon reflection, one expects that there might be an infinite family of such
inequalities where (1.1) is the second entry, and the trivial inequality

p(n) —pn—1) 20 (1.2)
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is the first.
In this paper, we shall prove:

Theorem 1. For k > 1,
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Corollary 1. Forn >0, k =1
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with strict inequality if n = k(3k + 1) /2.

We note that (1.1) is the case k¥ = 2 and (1.2) is the case k = 1. In
the final section of the paper, we note the relationship of this result to D.
Shanks’s formula for the truncated pentagonal number series [4].

2 Proof of Theorem 1

Denote the left side of (1.3) by Lj and the right side by Rj.
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where we have invoked [2, p. 19, eq. (2.25)]. Thus Theorem 1 is true when
k=1.
It is immediate from the definition that
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On the other hand, for & > 1, we see by [2, p.35 eq.(3.3.4)], that
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We may rewrite (2.3) as
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Thus Ly = R; and both sequences satisfy the same first order recurrence. So
for k > 1,
L = Ry

and Theorem 1 is proved.



3 Proof of Corollary 2

We see by Theorem 1 that the generating function for
(D) (=17 (p(n = (35 +1)/2) = p(n = j(3j +5)/2 - 1)) (3.1)
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and since {Z : ﬂ = 0 for n < k, we see that the expression in (3.1) is
identically 0 for 0 < n < k(3k + 1)/2. Furthermore the terms in the series
in (3.2) all have non-negative coefficients. the first non-zero term occurs for
n =k and is
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which has positive coefficients of ¢" for n = k(3k + 1)/2. Thus Corollary 2
is proved.

4 Shanks’s Formula

In [4], D. Shanks proved that
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We note that the left-hand side of (4.1) has (2k + 1) terms of the pentagonal
number series while the numerator of Ly, has 2k terms. As we will see, it
is possible to deduce from Theorem 1 a companion to (4.1) treating the case
with an even number of terms.

Theorem 2.
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Proof. By Theorem 1 (with k replaced by k + 1),
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(by [2, p-36, eq.(3.3.6)])
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where the last line follows from [2, p.38, next to last line with b = ¢=*, then
t =1 and ¢ — 0]. Thus Theorem 3 is proved. ]

It is an easy exercise to deduce (4.1) from Theorem 3 and vice versa.
Consequently we could prove Theorem 1 by starting with (4.1), then deducing
Theorem 3, and then reversing the proof of Theorem 3 to obtain Theorem 1.
We chose this way of proceeding because of the natural motivation provided
by knowing Corollary 2 in the cases k =1, 2.
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Finally we note that (4.1) and truncated identities like it arose in impor-
tant ways in [1]. Thus it is possible that there are extensions of our Theorem
1 that might have applications to mock theta functions.
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