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Abstract. By modifying the definition of moments of ranks and cranks, we study the odd
moments of ranks and cranks. In particular, we prove the inequality between the first crank
moment M1(n) and the first rank moment N1(n):

M1(n) > N1(n).

We also study new counting function ospt(n) which is equal to M1(n)−N1(n).

1. Introduction

Ramanujan’s striking congruence properties of the partition function p(n),

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11),

have motivated much research. Here, p(n) denotes the number of partitions of n. In partic-
ular, toward a combinatorial explanation of the above congruences many partition statistics
have been studied. Among them, the rank suggested by F. Dyson [6] and the crank suggested
by the first author and F.G. Garvan [2] have proven successful and their own properties have
been extensively studied. Here, the rank of partition λ is defined by λ1 − `(λ), where λ1 is
the largest part of λ and `(λ) is the number of parts of λ, and the crank of partition λ, the
crank c(λ) of a partition is defined as

c(λ) :=

{
λ1, if r = 0,

ω(λ)− r, if r ≥ 1,

where r is the number of 1’s in λ, ω(λ) is the number of parts in λ that are strictly larger
than r. In this article, we study the rank and the crank moments which were introduced by
A.O.L Atkin and Garvan [3]. Let N(m,n) denote the number of partitions of n with rank
m. Then the rank generating function R(z, q) is given by

R(z, q) =
∞∑
n=0

∞∑
m=−∞

N(m,n)zmqn

=
∞∑
n=0

qn
2

(zq)n(z−1q)n
.(1.1)
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Here and in the rest of the article, we will use the following standard q-series notation:

(a; q)0 := 1,

(a; q)n := (1− a)(1− aq) · · · (1− aqn−1), n ≥ 1,

and

(a; q)∞ := lim
n→∞

(a; q)n, |q| < 1.

Let M(m,n) denote the number of partitions of n with crank m. Then the crank generating
function C(z, q) is given by

C(z, q) =
∞∑
n=0

∞∑
m=−∞

M(m,n)zmqn

=
(q)∞

(zq)∞(z−1q)∞
.(1.2)

The j-th moments of the rank and crank are defined by, respectively,

Nj(n) =
∞∑

k=−∞

kjN(k, n),

Mj(n) =
∞∑

k=−∞

kjM(k, n).(1.3)

From the symmetries N(k, n) = N(−k, n) and M(k, n) = M(−k, n), as can be immediately
seen from their generating functions (1.1) and (1.2), respectively, Nj(n) and Mj(n) are zero
whenever j is odd. Therefore, odd moments of ranks and cranks are never discussed. We
propose the following modified rank and crank moments,

N j(n) =
∞∑
k=1

kjN(k, n),

M j(n) =
∞∑
k=1

kjM(k, n).(1.4)

The new odd rank and crank moments are now nontrivial.
Define the generating functions

Ck(q) =
∞∑
n=1

Mk(n)qn,

Rk(q) =
∞∑
n=1

Nk(n)qn.

In this article, we will focus on the first moment of rank and crank. Our first result is
generating functions for these moments.
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Theorem 1. The following are true:

C1(q) =
1

(q)∞

∞∑
n=1

(−1)n+1qn(n+1)/2

1− qn
,

and

R1(q) =
1

(q)∞

∞∑
n=1

(−1)n+1qn(3n+1)/2

1− qn
.

Moreover, we can express the generating function for the first crank moment in terms of
Eulerian series, which has very interesting combinatorial interpretation.

Theorem 2. The following is true.

(1.5) C1(q) =
∞∑
k=1

kqk
2

(q)2k
.

Very interestingly, there is an inequality between the first crank moment and the first rank
moment.

Theorem 3. For all positive integers n,

M1(n) > N1(n).

In [1], the first author introduced the number of smallest part function. Let spt(n) denote
the number of smallest parts in the partitions of n. For example, the partitions of 5 are

5, 4 + 1, 3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1,

and so spt(5) = 14. Surprisingly, there is a relation between spt(n) and moments as follows:

(1.6) spt(n) = M2(n)−N2(n).

In light of Theorem 3 and (1.6), it is natural to define ospt(n) as

(1.7) ospt(n) = M1(n)−N1(n).

Before stating what ospt(n) counts, we need to introduce some notation. In the partition
λ, we define an even string in the partition λ as the consecutive parts starting from some
even number 2k + 2 of which length is an odd number greater than or equal to 2k + 1 such
that 2k+ 1 and 2k+ 2 plus the length of the string (the number of consecutive parts) do not
appear as a part. We also define an odd string in the partition λ as the consecutive numbers
starting from some odd number 2k + 1 of which length is greater than or equal to 2k + 1
such that the part 2k + 1 appears only one time and 2k + 2 plus the length of string does
not appear as a part. Then, we have the following theorem.

Theorem 4. For all positive integers n,

ospt(n) =
∑
λ`n

ST(λ),

where ST(λ) is the number of even and odd strings in the partition λ.
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Partitions of 6 The number of even strings The number of odd strings
6 0 0

5+1 0 1 ( 1 is the odd string.)
4+2 1 (2 is the even string.) 0

4+1+1 0 0
3+3 0 0

3+2+1 0 0
3+1+1+1 0 1 ( 1is the odd string.)

2+2+2 1 ( 2 is the even string.) 0
2+2+1+1 0 0

2+1+1+1+1 0 0
1+1+1+1+1+1 0 0

Table 1. The number of strings in the partitions of 6.

Here, we give two examples. Since M1(6) = 16 and N1(6) = 12, we have ospt(6) = 4. On
the other hand, in the table 1, we can see the total number of strings in the partitions of 6
is 4.

Since M1(9) = 52 and N1(9) = 42, we have ospt(9) = 10. Here we list the partitions of 9
which have even or odd strings in Table 2.

Partitions of 9 The number of even strings The number of odd strings
8+1 0 1
7+2 1 0

6+2+1 1 1
5+3+1 0 1
5+2+2 1 0
4+4+1 0 1
4+3+2 1 0

3+3+2+1 0 1
2+2+2+2+1 0 1

Table 2. The number of strings in the partitions of 9.

This paper is organized as follows. In Section 2, we prove Theorems 1 and 2, and we
discuss their combinatorial implications. In Section 3, we prove Theorem 3. In Section 4, we
prove Theorem 4 and give combinatorial identities derived from the theorems. We conclude
the paper with a suggestion for further research.

2. The first moments of rank and crank

In this section, we will prove Theorems 1 and 2. After proving the theorems, we will focus
on combinatorial implications of the theorems. We start by proving Theorem 1.

Proof of Theorem 1. First, we derive the generalized Lambert series representation for C1(q).
We begin the the generalized Lambert series representation of the crank generating function
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[4],

(q)∞
(zq)∞(q/z)∞

=
1

(q)∞

∞∑
n=−∞

(1− z)(−1)nqn(n+1)/2

1− zqn
.

Applying the differential operator z d
dz

on both sides, we obtain

z
d

dz

(
(q)∞

(zq)∞(q/z)∞

)
=

1

(q)∞
z
d

dz

∞∑
n=−∞

(1− z)(−1)nqn(n+1)/2

1− zqn

=
z

(q)∞

∞∑
n=−∞

(−1)n+1qn(n+1)/2(1− qn)

(1− zqn)2

=
z

(q)∞

∞∑
n=1

(−1)n+1qn(n+1)/2(1− qn)

(1− zqn)2
+

1

z(q)∞

∞∑
n=1

(−1)n+1qn(n+1)/2(1− qn)

(1− qn/z)2
.

Therefore, by the symmetry of z and z−1,

C1(q) = lim
z→1

z

(q)∞

∞∑
n=1

(−1)n+1qn(n+1)/2(1− qn)

(1− zqn)2
=

1

(q)∞

∞∑
n=1

(−1)n+1qn(n+1)/2

1− qn
.

Next, we derive the generalized Lambert series representation for R1(q). We begin the the
generalized Lambert series representation of the rank generating function [7, Eq.(7.11)]

∞∑
n=0

qn
2

(zq)n(q/z)n
=

1

(q)∞

∞∑
n=−∞

(1− z)(−1)nqn(3n+1)/2

1− zqn
.

Applying the differential operator z d
dz

on both sides, we obtain

z
d

dz

(
∞∑
n=0

qn
2

(zq)n(q/z)n

)
=

1

(q)∞
z
d

dz

∞∑
n=−∞

(1− z)(−1)nqn(3n+1)/2

1− zqn

=
z

(q)∞

∞∑
n=−∞

(−1)n+1qn(3n+1)/2(1− qn)

(1− zqn)2
.

Similarly, by the symmetry of z and z−1,

R1(q) = lim
z→1

z

(q)∞

∞∑
n=1

(−1)n+1qn(3n+1)/2(1− qn)

(1− zqn)2
=

1

(q)∞

∞∑
n=1

(−1)n+1qn(3n+1)/2

1− qn
.

�

A proof of Theorem 2 can be also obtained from differentiating a proper q-series identity.

Proof of Theorem 2. From [5, Eq. (5.14)],

(aq)∞

∞∑
n=0

bnqn
2

(q)n(aq)n
=
∞∑
n=0

(−1)n(b/a)na
nqn(n+1)/2

(q)n
,
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differentiating with respect to b gives

(aq)∞

∞∑
n=0

nbn−1qn
2

(q)n(aq)n
=

∞∑
n=1

(−1)n(b/a)na
nqn(n+1)/2

(q)n

n∑
k=0

−qk/a
1− bqk/a

.

Letting b→ a, we find that gives

(aq)∞

∞∑
n=0

nan−1qn
2

(q)n(aq)n
=

∞∑
n=1

(−1)n+1an−1qn(n+1)/2

1− qn
.

Substituting a = 1 and dividing both sides by (q)∞, we arrive at (1.5). �

Remark. E. Deutsch authored the sequence for C1(q) and gave the generating function in
Theorem 2 in the Online Encyclopedia of Integer Sequences (A115995). V. Jovovic also
contributed to the sequence, in particular, he gave the generating function in Theorem 1.

Now we focus on the combinatorial interpretation of the first crank moment. By Theorem
1, we see that

C1(q) =
1

(q; q)∞

∞∑
n=1

(−1)n+1q(n
2+n)/2

1− qn

=
1

(q; q)∞

∞∑
n=1

(−1)n+1

∞∑
k=0

q(
n+1
2 )+kn(2.1)

We can think of the right side as a weighted count of partitions as follows.

Theorem 5. For all positive integers n,

M1(n) =
∑
λ`n

∑
j≥1

(−1)j+1wj,

where wj is defined by

wj =

{
λj − λj+1, if λ1 > λ2 > · · · > λj > λj+1

0, otherwise,

for j ≥ 1.

Proof of Theorem 5. In (2.1),

q(
n+1
2 )+kn

generates the partition π = (n + k, n + k − 1, · · · , 1 + k). We append this partition into λ
generated by 1

(q;q)∞
from the largest parts. For example, if λ = (2, 2, 1) and π = (6, 5, 4, 3),

then the resulting partition is (8,7,5,3). In this way, we find a surjection

φ : ∪n,k∈NPn,k × P ,
where Pn,k is the set of partitions of the form (n+ k, n+ k − 1, · · · , 1 + k) and P is the set
of ordinary partitions. Now, we want to find the preimage φ−1(λ) of a fixed λ ∈ P . For this
purpose, we define `s(λ) as the largest positive integer j satisfying λ1 > λ2 > · · · > λj > λj+1.
(For convenience, if the number of parts in λ is `, we define λ`+1 = 0.) If there is no such j,
we define `s(λ) to be zero. (This is the case λ1 = λ2.) Suppose that `s(λ) = 0. Then, clearly,
φ−1(λ) = ∅ since if π ∈ Pn,k is appended, then the first n parts of the resulting partition
should be distinct. Now suppose that `s(λ) > 0. Then, for i ≤ `s(λ), there are λi − λi+1
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preimages in ∪λi−λi+1−1
k=0 Pi,k. Finally, if i > `s(λ), then there is no preimage in ∪k∈NPi,k. By

taking the sign into the consideration, this completes the proof. �

Remark. In [8], the third author introduced the subpartitions with gap d. Then wj 6= 0 only
if λ has the subpartition with gap 1 of length ≥ j.

From Theorem 2, we have the following interesting partition identity.

Theorem 6.

M1(n) =
∑
λ`n

∑
j≥0

(−1)j+1wj =
∑
λ`n

d(λ),

where d(λ) is the size of Durfee square of λ.

This is very curious combinatorial identity since even the positivity of
∑

λ`n
∑

j≥0(−1)j+1wj
is not clear at all, nor is the relationship of the sum of part size differences to cranks or Durfee
squares.

3. Proof of Theorem 3

By Theorem 1, we see that

C1(q)−R1(q) =
1

(q; q)∞

∞∑
n=1

(−1)n+1q(
n+1
2 ) (1− qn2

)

1− qn

We begin by noting that

∞∑
n=1

(−1)n+1q(
n+1
2 )(1− qn2

)

1− qn
=
∞∑
n=1

(−1)n+1q(
n+1
2 )

n−1∑
j=0

qjn

=
∞∑
n=1

(−1)n+1q(
n+1
2 )

n−1∑
j=1

q(j−1)n

=
∞∑
j=1

fj(q),

where

fj(q) =
∞∑
n=j

(−1)n+1q(
n
2)+jn =

∞∑
n=0

(−1)n+j+1q(
n+j
2 )+j(n+j).

Theorem 7. For i ≥ 0,

(3.1)

f2i+1(q) + f2i+2(q) = q6i
2+5i+1(1− q4i+2)(1− q6i+4)

+
∞∑
j=1

q6i
2+8ij+2j2+7i+5j+2(1− q4i+2)(1− q4i+2j+3)

+
∞∑
j=1

q6i
2+8ij+2j2+5i+3j+1(1− q2i+1)(1− q4i+2j+2).



8 GEORGE E. ANDREWS, SONG HENG CHAN, AND BYUNGCHAN KIM

Proof of Theorem 7. The right side of (3.1) multiplied out is

q6i
2+5i+1 − q6i2+9i+3 − q6i2+11i+5 + q6i

2+15i+7

+
∞∑
j=1

q6i
2+8ij+2j2+7i+5j+2

(
1− q4i+2 − q4i+2j+3 + q8i+2j+5

)
+
∞∑
j=1

q6i
2+8ij+2j2+5i+3j+1

(
1− q2i+1 − q4i+2j+2 + q8i+2j+5

)
= q6i

2+5i+1 − q6i2+9i+3 − q6i2+11i+5 + q6i
2+15i+7

+ T1 − T2 − T3 + T4

+ S1 − S2 − S3 + S4.

Inspection immediately reveals that
S4 = T2.

Furthermore,

q6i
2+15i+7 + T4 − S2 =

∞∑
j=0

q6i
2+8ij+2j2+15i+7j+7 −

∞∑
j=1

q6i
2+8ij+2j2+7i+5j+2

= 0,

which follows from the fact that the second sum is seen to be identified with the first once
we replace j by j + 1 in the second sum. Hence, the right hand side of (3.1) is equal to

q6i
2+5i+1 − q6i2+9i+3 − q6i2+11i+5 + T1 − T3 + S1 − S3

=
∞∑
j=0

q6i
2+8ij+2j2+15i+9j+9 −

∞∑
j=0

q6i
2+8ij+2j2+11i+7j+5

+
∞∑
j=0

q6i
2+8ij+2j2+5i+3j+1 −

∞∑
j=0

q6i
2+8ij+2j2+9i+5j+3

=
∞∑
j=0

q(
2j+2i+3

2 )+(2i+2)(2j+2i+3) −
∞∑
j=0

q(
2j+2i+2

2 )+(2i+2)(2j+2i+2)

−
∞∑
j=0

q(
2j+2i+1

2 )+(2i+1)(2j+2i+1) −
∞∑
j=0

q(
2j+2i+2

2 )+(2i+1)(2j+2i+2)

= f2i+2(q) + f2i+1(q)

where we have replaced j by j + 1 in T1 for the first equality. �

Corollary 8. 1
(q;q)∞

(f2i+1(q) + f2i+2(q)) has non-negative power series coefficients.

Proof of Corollary 8. Clearly, if a 6= b, then

(1− qa)(1− qb)
(q; q)∞

=
∞∏
n=1
n6=a,b

1

1− qn

has non-negative power series coefficient, and this fact shows that every term in the right
side of (3.1) has non-negative coefficients. �
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Finally, we arrive at

C1(q)−R1(q) =
1

(q; q)∞

∞∑
n=1

(−1)n+1q(
n+1
2 )(1− qn2

)

1− qn

=
1

(q; q)∞

∞∑
j=1

fj(q)

=
1

(q; q)∞

∞∑
j=0

(f2j+1(q) + f2j+2(q)) ,

and Corollary 8 implies the non-negativity of the coefficients in the last expression, which
finishes the proof of Theorem 3.

Remark. From the proof of Corollary 8, we can actually have positivity of C1 − R1 as
f0(q) + f1(q) has the term

q

(q; q)∞

(
(1− q2)(1− q4)

)
which has positive coefficients as 1 is available as a part.

4. The ospt(n) Function

In this section, we will investigate combinatorial implications of the result in the previous
section, which leads us to define ospt(n). To prove Theorem 4, we start from restating (3.1).

f2i+1(q) + f2i+2(q) =
∞∑
j=0

q(2i+2)+(2i+3)+···+(4i+2j+2)(1− q2i+1)(1− q4i+2j+3)

+
∞∑
j=0

q(2i+1)+(2i+2)+···+(4i+2j+1)(1− q2i+1)(1− q4i+2j+2)

+
∞∑
j=0

q(2i+1)+(2i+2)+···+(4i+2j+2)(1− q2i+1)(1− q4i+2j+3)

=
∞∑
j=0

q(2i+2)+(2i+3)+···+(4i+2j+2)(1− q2i+1)(1− q4i+2j+3)

+
∞∑
j=1

q(2i+1)+(2i+2)+···+(4i+j)(1− q2i+1)(1− q4i+j+1)

=: ST2i(q) + ST2i+1(q).

Then, we can see that

1

(q; q)∞

∞∑
k=0

ST2k(q)

is the generating function for the number of even strings in the partitions of n. Similarly,
we can think of

1

(q; q)∞

∞∑
k=0

ST2k+1(q)
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as the generating function for the number of odd strings in the partitions of n, which com-
pletes the proof of Theorem 4.

Here is another partition theoretic interpretation for ospt(n). By Theorem 3, we see that

C1(q)−R1(q) =
1

(q; q)∞

∞∑
n=1

(−1)n+1q(n
2+n)/2(1− qn2

)

1− qn

=
1

(q; q)∞

∞∑
n=1

(−1)n+1q(n
2+n)/2(1 + qn + q2n + · · ·+ qn

2−n)

has positive power series coefficients. If we define that ospt(n) = M1(n) − N1(n), then we
can think this function as a weighted count of partition.

Theorem 9. For all positive integers n,

ospt(n) =
∑
λ`n

∑
j≥1

(−1)j+1f ′j(λ),

where w′j(λ) = min{wj(λ), j}.

As the proof is very similar to Theorem 5, we omit the proof here.

5. Concluding Remark

It would be very interesting to find bijective proofs for the results in this paper. In
particular, it would be nice if one can find a bijection for

ospt(n) = M1(n)−N1(n) =
∑
λ`n

ST(λ).

References

[1] George E. Andrews. The number of smallest parts in the partitions of n. J. Reine Angew. Math., 624:133–
142, 2008.

[2] George E. Andrews and F. G. Garvan. Dyson’s crank of a partition. Bull. Amer. Math. Soc. (N.S.),
18(2):167–171, 1988.

[3] A. O. L. Atkin and F. G. Garvan. Relations between the ranks and cranks of partitions. Ramanujan J.,
7(1-3):343–366, 2003. Rankin memorial issues.

[4] Bruce C. Berndt, Heng Huat Chan, Song Heng Chan, and Wen-Chin Liaw. Cranks and dissections in
ramanujan’s lost notebook. J. Combin. Theory Ser. A, 109(1):91–120, 2005.

[5] Bruce C. Berndt, Byungchan Kim, and Ae Ja Yee. Ramanujan’s lost notebook: combinatorial proofs of
identities associated with Heine’s transformation or partial theta functions. J. Combin. Theory Ser. A,
117(7):857–973, 2010.

[6] F.J. Dyson. Some guesses in the theory of partitions. Eureka (Cambridge), 8:10 –15, 1944.
[7] F. G. Garvan. New combinatorial interpretations of ramanujan’s partition congruences mod 5, 7 and 11.

Trans. Amer. Math. Soc. (N.S.), 305(1):47–77, 1988.
[8] Byungchan Kim. On the subpartitions of the ordinary partitions. Ramanujan J., 23(1-3):159–167, 2010.



THE ODD MOMENTS OF RANKS AND CRANKS 11

Department of Mathematics, The Pennsylvania State University University Park, PA
16802 USA

E-mail address: andrews@math.psu.edu

Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang
Technological University, 21 Nanyang link, Singapore, 637371, Republic of Singapore

E-mail address: ChanSH@ntu.edu.sg

School of Liberal Arts, Seoul National University of Science and Technology, 172
Gongreung 2 dong, Nowongu, Seoul,139-743, Korea

E-mail address: bkim4@seoultech.ac.kr


	1. Introduction
	2. The first moments of rank and crank
	3. Proof of Theorem 3
	4. The ospt(n) Function
	5. Concluding Remark
	References

