CHARACTERIZING THE NUMBER OF m-ARY PARTITIONS MODULO m

GEORGE E. ANDREWS, AVIEZRI S. FRAENKEL, AND JAMES A. SELLERS

Abstract

Motivated by a recent conjecture of the second author related to the ternary partition function, we provide an elegant characterization of the values $b_{m}(m n)$ modulo m where $b_{m}(n)$ is the number of m-ary partitions of the integer n and $m \geq 2$ is a fixed integer.

2010 Mathematics Subject Classification: 05A17, 11P83
Keywords: partition, congruence, generating function

1. Introduction

Congruences for partition functions have been studied extensively for the last century or so, beginning with the discoveries of Ramanujan [7]. In this note, we will focus our attention on congruence properties for the partition functions which enumerate restricted integer partitions known as m-ary partitions. These are partitions of an integer n wherein each part is a power of a fixed integer $m \geq 2$. Throughout this note, we will let $b_{m}(n)$ denote the number of m-ary partitions of n.

As an example, note that there are five 3 -ary partitions of $n=9$:

$$
\begin{gathered}
9, \quad 3+3+3, \quad 3+3+1+1+1, \\
3+1+1+1+1+1+1, \quad 1+1+1+1+1+1+1+1+1
\end{gathered}
$$

Thus, $b_{3}(9)=5$.
In the late 1960s, Churchhouse [3, 4] initiated the study of congruence properties of binary partitions (m-ary partitions with $m=2$). By his own admission, he did so serendipitously. To quote Churchhouse [4], "It is however salutary to realise that the most interesting results were discovered because I made a mistake in a hand calculation!"

Within months, other mathematicians proved Churchhouse's conjectures and proved natural extensions of his results. These included Rødseth [8] who extended Churchhouse's results to include the functions $b_{p}(n)$ where p is any prime as well as Andrews [2] and Gupta [5, 6] who proved that corresponding results also held for $b_{m}(n)$ where m could be any integer greater than 1 . As part of an infinite family of results, these authors proved that, for any $m \geq 2$ and any nonnegative integer $n, b_{m}(m(m n-1)) \equiv 0(\bmod m)$.

We now fast forward forty years. In 2012, the second author conjectured the following absolutely remarkable result related to the ternary partition function $b_{3}(n)$:

- For all $n \geq 0, b_{3}(3 n)$ is divisible by 3 if and only if at least one 2 appears as a coefficient in the base 3 representation of n.

[^0]- Moreover, $b_{3}(3 n) \equiv(-1)^{j}(\bmod 3)$ whenever no 2 appears in the base 3 representation of n and j is the number of 1 s in the base 3 representation of n.
This conjecture is remarkable for at least two reasons. First, it provides a complete characterization of $b_{3}(3 n)$ modulo 3 . Such characterizations in the world of integer partitions are rare. Secondly, the result depends on the base 3 representation of n and nothing else.

Just to "see" what the second author saw, let's quickly look at some data related to this conjecture.

\underline{n}	Base 3 Representation of n	$b_{3}(3 n)$	$b_{3}(3 n)$	$(\bmod 3)$
1	1×3^{0}	2		2
2	2×3^{0}	3		0
3	$0 \times 3^{0}+1 \times 3^{1}$	5		2
4	$1 \times 3^{0}+1 \times 3^{1}$	7		1
5	$2 \times 3^{0}+1 \times 3^{1}$	9		0
6	$0 \times 3^{0}+2 \times 3^{1}$	12		0
7	$1 \times 3^{0}+2 \times 3^{1}$	15		0
8	$2 \times 3^{0}+2 \times 3^{1}$	18		0
9	$0 \times 3^{0}+0 \times 3^{1}+1 \times 3^{2}$	23		2
10	$1 \times 3^{0}+0 \times 3^{1}+1 \times 3^{2}$	28		1
11	$2 \times 3^{0}+0 \times 3^{1}+1 \times 3^{2}$	33		0
12	$0 \times 3^{0}+1 \times 3^{1}+1 \times 3^{2}$	40		1
13	$1 \times 3^{0}+1 \times 3^{1}+1 \times 3^{2}$	47		2
14	$2 \times 3^{0}+1 \times 3^{1}+1 \times 3^{2}$	54		0
15	$0 \times 3^{0}+2 \times 3^{1}+1 \times 3^{2}$	63		0

In recent days, the authors succeeded in proving this conjecture. Thankfully, the proof was both elementary and elegant. After just a bit of additional consideration, we were able to alter the proof to provide a completely unexpected generalization. We describe this generalized result, and provide its proof, in the next section.

2. The Full Result

Our main theorem, which includes the above conjecture in a very natural way, provides a complete characterization of $b_{m}(m n)$ modulo m :

Theorem 2.1. Let $m \geq 2$ be a fixed integer and let

$$
n=a_{0}+a_{1} m+\cdots+a_{j} m^{j}
$$

be the base m representation of n (so that $0 \leq a_{i} \leq m-1$ for each i). Then

$$
b_{m}(m n) \equiv \prod_{i=0}^{j}\left(a_{i}+1\right) \quad(\bmod m)
$$

Notice that the conjecture mentioned above is exactly the $m=3$ case of Theorem 2.1.

In order to prove Theorem 2.1, we need a few elementary tools. We describe these tools here.

First, it is important to note that the generating function for $b_{m}(n)$ is given by

$$
\begin{equation*}
B_{m}(q):=\prod_{j=0}^{\infty} \frac{1}{1-q^{m^{j}}} \tag{1}
\end{equation*}
$$

Note that $B_{m}(q)$ satisfies the functional equation

$$
(1-q) B_{m}(q)=B_{m}\left(q^{m}\right)
$$

From here it is straightforward to prove that

$$
b_{m}(m n)=b_{m}(m n+i)
$$

for all $1 \leq i \leq m-1$. Thus, we see that Theorem 2.1 actually provides a characterization of $\bar{b}_{m}(N)(\bmod m)$ for all N, not just for those N which are multiples of m.

With this information in hand, we now prove a small number of lemmas which we will use in our proof of Theorem 2.1.

Lemma 2.2. For $|x|<1$,

$$
\frac{1-x^{m}}{(1-x)^{2}} \equiv \sum_{k=1}^{m} k x^{k-1} \quad(\bmod m)
$$

Proof. This elementary congruence can be proven rather quickly using well-known mathematical tools. We begin with the geometric series identity

$$
\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k}
$$

Differentiating both sides yields

$$
\frac{1}{(1-x)^{2}}=\sum_{k=1}^{\infty} k x^{k-1}
$$

We then multiply both sides by $1-x^{m}$ and simplify as follows:

$$
\begin{aligned}
\frac{1-x^{m}}{(1-x)^{2}} & =\sum_{k=1}^{\infty} k x^{k-1}-x^{m} \sum_{k=1}^{\infty} k x^{k-1} \\
& =\sum_{k=1}^{\infty} k x^{k-1}-\sum_{k=m+1}^{\infty}(k-m) x^{k-1} \\
& =\sum_{k=1}^{m} k x^{k-1}+\sum_{k=m+1}^{\infty} m x^{k-1} \\
& \equiv \sum_{k=1}^{m} k x^{k-1} \quad(\bmod m)
\end{aligned}
$$

Lemma 2.3. Let ζ be the $m^{\text {th }}$ root of unity given by $\zeta=e^{2 \pi i / m}$. Then

$$
\sum_{k=0}^{m-1} \frac{1}{1-\zeta^{k} q}=m\left(\frac{1}{1-q^{m}}\right)
$$

Proof. Using geometric series and elementary series manipulations, we have

$$
\begin{aligned}
\sum_{k=0}^{m-1} \frac{1}{1-\zeta^{k} q} & =\sum_{k=0}^{m-1} \sum_{r=0}^{\infty} \zeta^{k r} q^{r} \\
& =\sum_{k=0}^{m-1}\left(\sum_{r \mid m} \zeta^{k r} q^{r}+\sum_{r \nmid m} \zeta^{k r} q^{r}\right) \\
& =\sum_{k=0}^{m-1} \sum_{j=0}^{\infty} \zeta^{k(j m)} q^{j m}+\sum_{k=0}^{m-1} \sum_{r \nmid m} \zeta^{k r} q^{r} \\
& =\sum_{k=0}^{m-1} \frac{1}{1-q^{m}} \quad \text { using facts about roots of unity } \\
& =m\left(\frac{1}{1-q^{m}}\right)
\end{aligned}
$$

Lemma 2.4. Let $T_{m}(q):=\sum_{n \geq 0} b_{m}(m n) q^{n}$. Then

$$
T_{m}(q)=\frac{1}{1-q} B_{m}(q)
$$

Proof. As in Lemma 2.3, let $\zeta=e^{2 \pi i / m}$. Note that

$$
\begin{aligned}
T_{m}\left(q^{m}\right) & =\sum_{n \geq 0} b_{m}(m n) q^{m n} \\
& =\frac{1}{m}\left(B_{m}(q)+B_{m}(\zeta q)+\cdots+B_{m}\left(\zeta^{m-1} q\right)\right) \\
& =\left(\prod_{j=1}^{\infty} \frac{1}{1-q^{m^{j}}}\right) \times \frac{1}{m} \sum_{k=0}^{m-1} \frac{1}{1-\zeta^{k} q} \\
& =\frac{1}{1-q^{m}} \prod_{j=1}^{\infty} \frac{1}{1-q^{m^{j}}}
\end{aligned}
$$

thanks to Lemma 2.3. Lemma 2.4 then follows by replacing q^{m} by q.
We now combine these elementary facts from the lemmas above to prove one last lemma. This lemma will, in essence, allow us to "move" from considering $T_{m}(q)$ modulo m to a new function modulo m which makes the result of Theorem 2.1 transparent.

Lemma 2.5. Let $U_{m}(q)=\prod_{j=0}^{\infty}\left(1+2 q^{m^{j}}+3 q^{2 m^{j}}+\cdots+m q^{(m-1) m^{j}}\right)$. Then

$$
T_{m}(q) \equiv U_{m}(q) \quad(\bmod m)
$$

Proof. Lemma 2.5 will follow if we can prove that $\frac{1}{T_{m}(q)} \cdot U_{m}(q) \equiv 1(\bmod m)$, and this will be our means of attack. Thankfully, this follows from a novel generating function manipulation which we demonstrate here. Using (1) and Lemma 2.4, we
know that

$$
\begin{aligned}
& \frac{1}{T_{m}(q)} \cdot U_{m}(q) \\
= & (1-q)^{2} \prod_{j=1}^{\infty}\left(1-q^{m^{j}}\right) \prod_{j=0}^{\infty}\left(1+2 q^{m^{j}}+3 q^{2 m^{j}}+\cdots+m q^{(m-1) m^{j}}\right) \\
\equiv & (1-q)^{2} \prod_{j=1}^{\infty}\left(1-q^{m^{j}}\right) \prod_{j=0}^{\infty} \frac{1-q^{m^{j+1}}}{\left(1-q^{m^{j}}\right)^{2}} \quad(\bmod m) \quad \text { thanks to Lemma } 2.2 \\
= & \frac{\prod_{j=0}^{\infty} 1-q^{m^{j+1}}}{\prod_{j=1}^{\infty} 1-q^{m^{j}}} \\
= & 1
\end{aligned}
$$

We can now utilize all of the above results to prove Theorem 2.1.
Proof. First, we remember that

$$
\sum_{n \geq 0} b_{m}(m n) q^{n}=T_{m}(q) \equiv U_{m}(q) \quad(\bmod m)
$$

So we simply need to consider $U_{m}(q)$ modulo m to obtain our proof. Note that

$$
U_{m}(q)=\prod_{j=0}^{\infty}\left(1+2 q^{m^{j}}+3 q^{2 m^{j}}+\cdots+m q^{(m-1) m^{j}}\right)
$$

If we expand this product as a power series in q, then each term of the form q^{n} can occur at most once (because the terms $q^{i \cdot m^{j}}$ are serving as the building blocks for the unique base m representation of m). Thus, if

$$
n=a_{0}+a_{1} m+\cdots+a_{j} m^{j}
$$

then the coefficient of q^{n} in this expansion is

$$
\prod_{i=0}^{j}\left(a_{i}+1\right) \quad(\bmod m)
$$

References

1. G. E. Andrews, The Theory of Partitions, Addison-Wesley, Reading 1976; reprinted, Cambridge University Press, Cambridge, 1984, 1998
2. G. E. Andrews, Congruence properties of the m-ary partition function, J. Number Theory $\mathbf{3}$ (1971), 104-110
3. R. F. Churchhouse, Congruence properties of the binary partition function, Proc. Cambridge Philos. Soc. 66 (1969), 371-376
4. R. F. Churchhouse, Binary partitions, in Computers in Number Theory, edited A. O. L. Atkin and B. J. Birch, Academic Press, London, 1971
5. H. Gupta, A simple proof of the Churchhouse conjecture concerning binary partitions, Indian J. Pure Appl. Math. 3 (1972), no. 5, 791-794
6. H. Gupta, On m-ary partitions, Proc. Cambridge Philos. Soc. 71 (1972), 343-345
7. S. Ramanujan, Some properties of $p(n)$, the number of partitions of n, Proc. Cambridge Philos. Soc. 19 (1919), 207-210
8. Ø. Rødseth, Some arithmetical properties of m-ary partitions, Proc. Cambridge Philos. Soc. 68 (1970), 447-453

Department of Mathematics, Penn State University, University Park, PA 16802, USA, ANDREWS@MATH.PSU.EDU

Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, 76100 Rehovot, Israel, aviezri.fraenkel@weizmann.ac.il

Department of Mathematics, Penn State University, University Park, PA 16802, USA, SELLERSJ@PSU.EDU

[^0]: Date: October 30, 2013.

