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Abstract. We study the number p(n, t) of partitions of n with difference t between largest
and smallest parts. Our main result is an explicit formula for the generating function Pt(q) :=∑

n≥1 p(n, t) qn. Somewhat surprisingly, Pt(q) is a rational function for t > 1; equivalently, p(n, t)
is a quasipolynomial in n for fixed t > 1. Our result generalizes to partitions with an arbitrary
number of specified distances.

Enumeration results on integer partitions form a classic body of mathematics going back to at
least Euler, including numerous applications throughout mathematics and some areas of physics;
see, e.g., [2]. A partition of a positive integer n is, as usual, an integer k-tuple λ1 ≥ λ2 ≥ · · · ≥
λk > 0, for some k, such that

n = λ1 + λ2 + · · ·+ λk .

The integers λ1, λ2, . . . , λk are the parts of the partition. We are interested in the counting function

p(n, t) := #partitions of n with difference t between largest and smallest parts.

It is immediate that
p(n, 0) = d(n)

where d(n) denotes the number of divisors of n. Charmingly, p(n, 1) equals the number of nondivisors
of n:

p(n, 1) = n− d(n) ,

which can be explained bijectively by the fact that the partitions counted by p(n, 0)+p(n, 1) contain
exactly one sample with k parts, for each k = 1, 2, . . . , n [1, Sequence A049820], or by the generating
function identity∑

n≥1
p(n, 1) qn =

∑
m≥1

qm

1− qm
qm+1

1− qm+1
=

q

(1− q)2
−
∑
m≥1

qm

1− qm
.

(The last equation follows from a few elementary operations on rational functions). An even less
obvious instance of our partition counting function is

(1) p(n, 2) =

(⌊n
2

⌋
2

)
,

as observed by Reinhard Zumkeller in 2004 [1, Sequence A008805]. (It is not clear to us where in
the literature this formula first appeared, though specific values of p(n, k) are well represented in

Date: 14 July 2014.
2010 Mathematics Subject Classification. Primary 11P84; Secondary 05A17.
Key words and phrases. Integer partition, fixed difference between largest and smallest parts, rational generating
function, quasipolynomial.
We thank an anonymous referee for numerous helpful suggestions. M. Beck’s research was partially supported by the
US National Science Foundation (DMS-1162638).

1



2 GEORGE E. ANDREWS, MATTHIAS BECK, AND NEVILLE ROBBINS

[1], where Sequences A000005, A049820, A008805, A128508, and A218567–A218573 give the first
values of p(n, k) for fixed k = 0, 1, . . . , 10, and Sequence A097364 paints a general picture of p(n, t).)

We remark that p(n, 2) is arithmetically quite different from p(n, 0) and p(n, 1): namely, p(n, 2)
is a quasipolynomial, i.e., a function that evaluates to a polynomial when n is restricted to a
fixed residue class modulo some (minimal) positive integer, the period of the quasipolynomial.
(For p(n, 2) this period is 2.) Equivalently, the accompanying generating function evaluates to a
rational function all of whose poles are rational roots of unity. (See, e.g., [4, Chapter 4] for more
on quasipolynomials and their rational generating functions.) Our goal is to prove closed formulas
for these generating functions

Pt(q) :=
∑
n≥1

p(n, t) qn.

Theorem 1. For t > 1,

Pt(q) =
qt−1(1− q)

(1− qt)(1− qt−1)
− qt−1

(1− qt)2(1− qt−1)2(1− qt−2) · · · (1− q2)

+
qt

(1− qt)(1− qt−1)2(1− qt−2) · · · (1− q)
.

Written in terms of the usual shorthand (q)m := (1− q)(1− q2) · · · (1− qm), Theorem 1 says

Pt(q) =
qt−1(1− q)

(1− qt)(1− qt−1)
− qt−1(1− q)

(1− qt)(1− qt−1)(q)t
+

qt

(1− qt−1)(q)t
.

Thus Pt(q) is rational for t > 1, and so p(n, t) is a quasipolynomial in n, of degree t and period
lcm(1, 2, . . . , t). For example, for t = 2, Theorem 1 gives

P2(q) =
q4

(1− q)3(1 + q)2

which confirms (1). The rational generating function given by Theorem 1 in the case t = 3 simplifies
to

P3(q) =
q5 + q6 + q7 − q8

(1− q2)2(1− q3)2

which (by way of a computer algebra system or a straightforward binomial expansion) translates
to the partition counting function

p(n, 3) =
1

108
×



n3 − 18n if n ≡ 0 mod 6,

n3 − 3n+ 2 if n ≡ 1 mod 6,

n3 − 30n+ 52 if n ≡ 2 mod 6,

n3 + 9n− 54 if n ≡ 3 mod 6,

n3 − 30n+ 56 if n ≡ 4 mod 6,

n3 − 3n− 2 if n ≡ 5 mod 6



PARTITIONS WITH FIXED DIFFERENCES BETWEEN LARGEST AND SMALLEST PARTS 3

=



m(2m2 − 1) if n = 6m,

m(2m2 + 1) if n = 6m+ 1,

m(2m2 + 2m− 1) if n = 6m+ 2,

m(2m2 + 3m+ 2) if n = 6m+ 3,

(m− 1)(2m2 − 1) if n = 6m− 2,

m2(2m− 1) if n = 6m− 1.

Using this explicit form of p(n, 3), one easily affirms a conjecture about the recursive structure of
p(n, 3) given in [1, Sequence A128508] in the positive.

Proof of Theorem 1. We will use the usual shorthand

(A)m := (1−A)(1−Aq) · · · (1−Aqm−1)

as well as Heine’s transformation (see, e.g., [2, p. 38])

(2)
∑
m≥0

(a)m(b)m z
m

(q)m(c)m
=

( cb)∞(bz)∞

(c)∞(z)∞

∑
j≥0

(abzc )j(b)j(
c
b)j

(q)j(bz)j
.

Now we construct the generating function for p(n, t). A partition of n with difference t between
smallest and largest part starts with some part m, ends with the part m+ t, and could include any
of the numbers m+ 1,m+ 2, . . . ,m+ t− 1 as parts. Translated into geometric series, this gives

Pt(q) =
∑
m≥1

qm

1− qm
1

1− qm+1
· · · 1

1− qm+t−1
qm+t

1− qm+t
= qt

∑
m≥1

q2m(q)m−1
(q)m+t

= qt+2
∑
m≥0

q2m(q)m
(q)m+t+1

=
qt+2

(q)t+1

∑
m≥0

(q)m(q)m q
2m

(q)m(qt+2)m

(2)
=

qt+2(qt+1)∞(q3)∞
(q)t+1(qt+2)∞(q2)∞

∑
j≥0

(q−t+2)j(q)j q
j(t+1)

(q)j(q3)j

=
qt+2

(q)t

t−2∑
j=0

(q−t+2)j q
j(t+1)

(q2)j+1
=
qt+2

(q)t

t−2∑
j=0

(1− qt−2)(1− qt−3) · · · (1− qt−j−1)(−1)jq2j+(j+1
2 )

(q2)j+1

=
qt+2(1− q)

(1− qt)(1− qt−1)

t−2∑
j=0

(−1)jq2j+(j+1
2 )

(q)j+2(q)t−j−2
=

qt−1(1− q)
(1− qt)(1− qt−1)(q)t

t−2∑
j=0

[
t

j + 2

]
(−1)jq(

j+3
2 ) .

Thus, by the q-binomial theorem (see, e.g., [2, p. 36])

Pt(q) =
qt−1(1− q)

(1− qt)(1− qt−1)(q)t

t∑
j=2

[
t

j

]
(−1)jq(

j+1
2 ) =

qt−1(1− q)
(1− qt)(1− qt−1)(q)t

(
(q)t − 1 + q

[
t

1

])

=
qt−1(1− q)

(1− qt)(1− qt−1)
− qt−1(1− q)

(1− qt)(1− qt−1)(q)t
+

qt

(1− qt−1)(q)t
. �

A natural question concerns the growth behavior of p(n, t). We see in the above example that
the quasipolynomial p(n, 3) has a constant leading coefficient, which of course determines the
asymptotic growth of p(n, 3). Something similar can be said in general.

Corollary 2. If t > 1 then p(n, t) =
nt

t (t!)2
+O(nt−1) as n→∞.
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Proof. It is well known that the first-order asymptotics of a quasipolynomial stems from the highest-
order poles of its rational generating function. (This follows from first principles, essentially partial-
fraction decomposition; see [3] for far-reaching generalizations.) In our case, Pt(q) has a unique
highest-order pole at q = 1 of order t. Thus the leading coefficient of p(n, t) equals 1

t! times the
lowest coefficient of the Laurent series of Pt(q) at q = 1 which is

lim
q→1

(1− q)t+1(2qt − q2t − qt−1)
(1− qt)2(1− qt−1)2(1− qt−2) · · · (1− q)

=
1

t · t!
. �

Next we shall generalize Theorem 1 by considering partitions with specified distances. Let
p(n, t1, t2, . . . , tk) be the number of partitions of n such that, if σ is the smallest part then
σ + t1 + t2 + · · ·+ tk is the largest part and each of σ + t1, σ + t1 + t2, . . . , σ + t1 + t2 + · · ·+ tk−1
appear as parts. We consider the related generating function

Pt1,...,tk(q) :=
∑
n≥1

p(n, t1, t2, . . . , tk) qn.

We note that when k = 1 this is simply Pt(q) from above.

Theorem 3. For t := t1 + t2 + · · ·+ tk > k,

Pt1,...,tk(q) =
(−1)kqT−(k+1

2 )
(∑k

j=0

[
t
j

]
(−1)jq(

j+1
2 ) − (q)t

)
[
t−1
k

]
(1− qt)(q)t

,

where T := kt1 + (k − 1)t2 + · · ·+ 2tk−1 + tk and
[
A
B

]
:= (q)A

(q)B(q)A−B
.

For example, for k = 2 and t1 = t2 = 2, we have p(11, 2, 2) = 2 since 1 + 1 + 1 + 3 + 5 and
1+2+3+5 are the unique two partitions of 11 that contain three parts whose consecutive distances
are 2. Theorem 3 says in this case

P2,2(q) =
q9 + q10 + q11 + q12 − q13

(1− q2)(1− q3)2(1− q4)2

which translates to

p(n, 2, 2) =
1

6912



3n4 − 20n3 − 24n2288n if n ≡ 0 mod 12,

3n4 − 20n3 − 78n2 + 492n− 397 if n ≡ 1 mod 12,

3n4 − 20n3 − 24n2 − 48n+ 304 if n ≡ 2 mod 12,

3n4 − 20n3 − 78n2 + 1260n− 2781 if n ≡ 3 mod 12,

3n4 − 20n3 − 24n2 − 480n+ 2816 if n ≡ 4 mod 12,

3n4 − 20n3 − 78n2 + 492n+ 155 if n ≡ 5 mod 12,

3n4 − 20n3 − 24n2 + 720n− 3024 if n ≡ 6 mod 12,

3n4 − 20n3 − 78n2 + 492n+ 35 if n ≡ 7 mod 12,

3n4 − 20n3 − 24n2 − 480n+ 3328 if n ≡ 8 mod 12,

3n4 − 20n3 − 78n2 + 1260n− 3213 if n ≡ 9 mod 12,

3n4 − 20n3 − 24n2 − 48n− 208 if n ≡ 10 mod 12,

3n4 − 20n3 − 78n2 + 492n+ 547 if n ≡ 11 mod 12.
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Proof of Theorem 3. Again we start with the natural generating function

Pt1,...,tk(q) =
∑
m≥1

qm qm+t1 qm+t1+t2 · · · qm+t1+t2+···+tk

(1− qm)(1− qm+1) · · · (1− qm+t1+t2+···+tk)
=
∑
m≥1

q(k+1)m+T

(qm)t+1

=
∑
m≥1

q(k+1)m+T (q)m−1
(q)m+t

= qT+k+1
∑
m≥0

q(k+1)m(q)m
(q)m+t+1

=
qT+k+1

(q)t+1

∑
m≥0

(q)m(q)m q
(k+1)m

(q)m(qt+2)m

(2)
=
qT+k+1(qt+1)∞(qk+2)∞
(q)t+1(qk+1)∞(qt+2)∞

∑
j≥0

(qk+1−t)j(q)jq
(t+1)j

(q)j(qk+2)j

=
qT+k+1(q)k

(q)t

t−k−1∑
j=0

(q−(t−k+1))jq
(t+1)j

(q)j+k+1

=
qT+k+1(q)k

(q)t

t−k−1∑
j=0

(1− qt−k−1)(1− qt−k−2) · · · (1− qt−k−j)(−1)jq(
j
2)−j(t−k−1)+(t+1)j

(q)j+k+1

=
qT+k+1(q)k

(q)t

t−k−1∑
j=0

(q)t−k−1(−1)jq(
j+1
2 )+j(k+1)

(q)j+k+1(q)j−k−j−1

=
qT+k+1(q)k(q)t−k−1

(q)t(q)t

t−k−1∑
j=0

[
t

j + k + 1

]
(−1)jq(

j+k+2
2 )−(k+2

2 )

=
qT+k+1(q)k[

t−1
k

]
(1− qt)(q)t

t−k−1∑
j=0

[
t

j + k + 1

]
(−1)jq(

j+k+2
2 )−(k+2

2 )

=
qT−(k+1

2 )(−1)k+1[
t−1
k

]
(1− qt)(q)t

t∑
j=k+1

[
t

j

]
(−1)jq(

j+1
2 )

=
qT−(k+1

2 )(−1)k[
t−1
k

]
(1− qt)(q)t

 k∑
j=0

[
t

j

]
(−1)jq(

j+1
2 ) − (q)t

 . �
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