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Abstract

The theory of overpartitions is applied to determine formulas for
the number of partitions of n where (1) the mth largest part is k and
(2) the mth smallest part is k.

1 Introduction

Corteel and Lovejoy [1] laid the foundations for the rich extensions of ordinary
integer partitions to overpartitions. An overpartition of the integer n is a sum
of positive integers adding to n in which the final occurrence of any given
part may be overlined. For example, there are eight overpartitions of 3: 3,
3, 2 + 1, 2 + 1, 2 + 1, 2 + 1, 1 + 1 + 1, 1 + 1 + 1.

We shall be interested in certain subclasses of overpartitions.
Namely, we define Gj,k(n) to be the number of overpartitions of n in

which k is an overlined part and exactly j other parts (each larger than k)
are overlined.

Similarly, we define Sj,k(n) to be the number of overpartitions of n in
which k is an overlined part and exactly j other parts (each smaller than k)
are overlined.

Now Gj,k(n) and Sj,k(n) play a central role in our main object. Namely,
we wish to find efficient formulas for computing:

1. gm(n, k), the number of ordinary partitions of n in which k is the mth
greatest summand (i.e. there are exactly (m− 1) different summands
larger than k).

For example, g2(6, 1) = 5 with the partitions in question being 5 + 1,
4 + 1 + 1, 3 + 1 + 1 + 1, 2 + 2 + 1 + 1, 2 + 1 + 1 + 1 + 1.
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2. sm(n, k), the number of ordinary partitions of n in which k is the mth
smallest summand (i.e. there are exactly (m− 1) different summands
smaller than k).

For example, s2(7, 2) = 5 with the partitions in question being 4+2+1,
3 + 2 + 1 + 1, 2 + 2 + 2 + 1, 2 + 2 + 1 + 1 + 1, 2 + 1 + 1 + 1 + 1 + 1.

Theorem 1.

gm(n, k) =
∑
j≥0

(−1)j+m−1
(

j

m− 1

)
Gj,k(n). (1.1)

Theorem 2.

sm(n, k) =
∑
j≥0

(−1)j+m−1
(

j

m− 1

)
Sj,k(n). (1.2)

As an example of (1.1), we have already seen that g2(6, 1) = 5. We now
note that G1,1(6) = 7 because the overpartitions in question are 5+1, 4+1+1,
3 + 2 + 1, 3 + 2 + 1, 3 + 1 + 1 + 1, 2 + 2 + 1 + 1, and 2 + 1 + 1 + 1 + 1.
Also G2,1(6) = 1 the overpartition counted being 3 + 2 + 1, and Gj,1(6) = 0
for j > 2. Hence in the case m = 2,n = 6,k = 1, (1.1) asserts

g2(6, 1) = G1,1(6)−
(

2

1

)
G2,1(6) + 0

or

5 = 7− 2 · 1.

As an example of (1.2), we see that s2(7, 3) = 3 with the partitions in
question being 3 + 3 + 1, 3 + 1 + 1 + 1, 3 + 2 + 2. We see that S1,3(7) = 5
because the overpartitions in question are 3 + 3 + 1, 3 + 2 + 2, 3 + 2 + 1 + 1,
3 + 2 + 1 + 1, 3 + 1 + 1 + 1 + 1, and S2,3(7) = 1 with the partition in question
being 3 + 2 + 1 + 1. Hence in the case m = 2, n = 7, k = 3, (1.2) asserts

s2(7, 3) = S1,1(7)−
(

2

1

)
S2,1(7) + 0

or

3 = 5− 2 · 1

The reason we call these efficient formulas lies in the simple recurrences
for Gj,k(n) and Sj,k(n) given in the following two results.
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Theorem 3.
G0,k(n) = p(n− k), (1.3)

and for j > 0,

Gj,k(n) = Gj,k(n− j) + Gj−1,k(n− j − k), (1.4)

where p(n) is the number of ordinary partitions of n.

Theorem 4.
S0,k(n) = p(n− k), (1.5)

and for j > 0,

Sj,k(n) = Sj,k(n− j) + Sj−1,k−1(n− j − 1)− Sj−1,k−1(n− j − k). (1.6)

Section 2 will be devoted to a short discussion of overpartitions and their
“shadows”, together with some elementary combinatorial observations. Sec-
tion 3 will be devoted to Theorems 1 and 2, and Section 4 will treat Theorems
3 and 4.

2 Overpartitions

The shadow of an overpartition is the ordinary partition with the overlines
removed. Thus 2 + 1 is the shadow of each of 2 + 1, 2 + 1, 2 + 1, and
2 + 1. Hence each ordinary partition π with D different parts is the shadow
of
(
D
r

)
overpartitions in which exactly r parts are overlined. Note that there

is exactly one overpartition corresponding to π with all D parts overlined.
In addition to this observation, we need the well-known fact that∑

j≥0

(−1)j+R

(
j

R

)(
D

j

)
=

{
1 if D = R,

0 if D 6= R.
(2.1)

In the case D = R,∑
j≥0

(−1)j+R

(
j

R

)(
R

j

)
= (−1)2R

(
R

R

)(
R

R

)
= 1.

Note if D < R then each summand is 0, and finally if D > R,∑
j≥0

(−1)j+R

(
j

R

)(
D

j

)
=

D!(−1)R

R!(D −R)!

∑
j≥0

(−1)j
(
D −R
j −R

)
=

(
D

R

)
(1− 1)D−R = 0.
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3 Proofs of Theorems 1 and 2

First we prove Theorem 1. We proceed by examining the right side of (1.1).
Let π be an ordinary partition that is the shadow of some of the overpar-

titions enumerated by Gj,k(n). Thus k must be a part of π and there must
be D ≥ j different parts of π that are larger than k.

What is the contribution to the sum∑
j≥0

(−1)j+m−1
(

j

m− 1

)
Gj,k(n)

of the overpartitions whose shadow is π?
From the first paragraph in Section 2, we see that this contribution is∑

j≥0

(−1)j+m−1
(

j

m− 1

)(
D

j

)
,

and by (2.1) this contribution is 0 unless D = m − 1 in which case it is 1.
But in the case D = m−1 = j, we see that there is exactly one overpartition
counted by Gj,k(n), and (dropping the j = m− 1 overlines plus the overline
on k) we see that π was a partition in which the mth largest part is k.

Hence in ∑
j≥0

(−1)j+m−1
(

j

m− 1

)
Gk,j(n)

the only contributions (of exactly 1) come from overpartitions in one-to-one
correspondence with the partitions in which k is the mth largest part.

Therefore

gm(n, k) =
∑
j≥0

(−1)j+m−1
(

j

m− 1

)
Gk,j(n).

Now we prove Theorem 2. We proceed by examining the right side of
(1.2). The reasoning here is exactly the same except that now the other
overlined .parts apart from k are all smaller than k rather than larger than
k. Hence

sm(n, k) =
∑
j≥0

(−1)j+m−1
(

j

m− 1

)
Sk,j(n).
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4 Proof of Theorem 3 and 4.

We define
γk,j(q) =

∑
n≥0

Gk,j(n)qn, (4.1)

and
σk,j(q) =

∑
n≥0

Sk,j(n)qn. (4.2)

In the following

(q)j = (1− q)(1− q2) · · · (1− qj).

Now the generating function of partitions into distinct parts with k as
smallest part and j parts each > k, is clearly

qk
q(k+1)+(k+2)+···+(k+j)

(q)j
=
qk+kj+(j+1

2 )

(q)j
.

Hence

γk,j(q) =
qk(j+1)+(j+1

2 )

(q)j(q)∞
(4.3)

Therefore

γk,0(q) =
qk

(q)∞
=
∑
n≥0

p(n− k)qn, (4.4)

and for j > 0
(1− qj)γk,j(q) = qk+jγk−1,j−1(q). (4.5)

Now comparing coefficients of qn on both sides of (4.4) and (4.5), we
deduce (1.3) and (1.4).

Next we recall the generating function for partitions into distinct parts
with k as largest part and j parts each < k, is clearly [2, p. 59]

qkq(
j+1
2 )
[
k − 1
j

]
,

where [
A
B

]
=

{
0, if B > A or B < 0,

(q)A
(q)B(q)A−B

, 0 ≤ B ≤ A
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Hence

σk,j(q) = qk+(j+1
2 )
[
k − 1
j

]
1

(q)∞
. (4.6)

Therefore

σk,0(q) =
qk

(q)∞
=
∑
n≥0

p(n− k)qn, (4.7)

and for j > 0

(1− qj)σk,j(q) = (1− qk−1)qj+1σk−1,j−1(q) (4.8)

We now compare coefficients of qn on both sides of (4.7) and (4.8) to
deduce (1.5) and (1.6).
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