The m th Largest and m th Smallest Parts of a Partition

George E. Andrews and Greg Simay

Abstract

The theory of overpartitions is applied to determine formulas for the number of partitions of n where (1) the m th largest part is k and (2) the m th smallest part is k.

1 Introduction

Corteel and Lovejoy [1] laid the foundations for the rich extensions of ordinary integer partitions to overpartitions. An overpartition of the integer n is a sum of positive integers adding to n in which the final occurrence of any given part may be overlined. For example, there are eight overpartitions of 3: 3, $\overline{3}, 2+1, \overline{2}+1,2+\overline{1}, \overline{2}+\overline{1}, 1+1+1,1+1+\overline{1}$.

We shall be interested in certain subclasses of overpartitions.
Namely, we define $\mathcal{G}_{j, k}(n)$ to be the number of overpartitions of n in which k is an overlined part and exactly j other parts (each larger than k) are overlined.

Similarly, we define $\mathcal{S}_{j, k}(n)$ to be the number of overpartitions of n in which k is an overlined part and exactly j other parts (each smaller than k) are overlined.

Now $\mathcal{G}_{j, k}(n)$ and $\mathcal{S}_{j, k}(n)$ play a central role in our main object. Namely, we wish to find efficient formulas for computing:

1. $g_{m}(n, k)$, the number of ordinary partitions of n in which k is the m th greatest summand (i.e. there are exactly $(m-1)$ different summands larger than k).
For example, $g_{2}(6,1)=5$ with the partitions in question being $5+1$, $4+1+1,3+1+1+1,2+2+1+1,2+1+1+1+1$.
2. $s_{m}(n, k)$, the number of ordinary partitions of n in which k is the m th smallest summand (i.e. there are exactly $(m-1)$ different summands smaller than k).
For example, $s_{2}(7,2)=5$ with the partitions in question being $4+2+1$, $3+2+1+1,2+2+2+1,2+2+1+1+1,2+1+1+1+1+1$.

Theorem 1.

$$
\begin{equation*}
g_{m}(n, k)=\sum_{j \geq 0}(-1)^{j+m-1}\binom{j}{m-1} \mathcal{G}_{j, k}(n) . \tag{1.1}
\end{equation*}
$$

Theorem 2.

$$
\begin{equation*}
s_{m}(n, k)=\sum_{j \geq 0}(-1)^{j+m-1}\binom{j}{m-1} \mathcal{S}_{j, k}(n) . \tag{1.2}
\end{equation*}
$$

As an example of (1.1), we have already seen that $g_{2}(6,1)=5$. We now note that $\mathcal{G}_{1,1}(6)=7$ because the overpartitions in question are $\overline{5}+\overline{1}, \overline{4}+1+\overline{1}$, $\overline{3}+2+\overline{1}, 3+\overline{2}+\overline{1}, \overline{3}+1+1+\overline{1}, 2+\overline{2}+1+\overline{1}$, and $\overline{2}+1+1+1+\overline{1}$. Also $\mathcal{G}_{2,1}(6)=1$ the overpartition counted being $\overline{3}+\overline{2}+\overline{1}$, and $\mathcal{G}_{j, 1}(6)=0$ for $j>2$. Hence in the case $m=2, n=6, k=1$, (1.1) asserts

$$
g_{2}(6,1)=\mathcal{G}_{1,1}(6)-\binom{2}{1} \mathcal{G}_{2,1}(6)+0
$$

or

$$
5=7-2 \cdot 1
$$

As an example of (1.2), we see that $s_{2}(7,3)=3$ with the partitions in question being $3+3+1,3+1+1+1,3+2+2$. We see that $\mathcal{S}_{1,3}(7)=5$ because the overpartitions in question are $\overline{3}+3+\overline{1}, \overline{3}+2+\overline{2}, \overline{3}+\overline{2}+1+1$, $\overline{3}+2+1+\overline{1}, \overline{3}+1+1+1+\overline{1}$, and $\mathcal{S}_{2,3}(7)=1$ with the partition in question being $\overline{3}+\overline{2}+1+\overline{1}$. Hence in the case $m=2, n=7, k=3,(1.2)$ asserts

$$
s_{2}(7,3)=\mathcal{S}_{1,1}(7)-\binom{2}{1} \mathcal{S}_{2,1}(7)+0
$$

or

$$
3=5-2 \cdot 1
$$

The reason we call these efficient formulas lies in the simple recurrences for $\mathcal{G}_{j, k}(n)$ and $\mathcal{S}_{j, k}(n)$ given in the following two results.

Theorem 3.

$$
\begin{equation*}
\mathcal{G}_{0, k}(n)=p(n-k), \tag{1.3}
\end{equation*}
$$

and for $j>0$,

$$
\begin{equation*}
\mathcal{G}_{j, k}(n)=\mathcal{G}_{j, k}(n-j)+\mathcal{G}_{j-1, k}(n-j-k), \tag{1.4}
\end{equation*}
$$

where $p(n)$ is the number of ordinary partitions of n.

Theorem 4.

$$
\begin{equation*}
\mathcal{S}_{0, k}(n)=p(n-k) \tag{1.5}
\end{equation*}
$$

and for $j>0$,

$$
\begin{equation*}
\mathcal{S}_{j, k}(n)=\mathcal{S}_{j, k}(n-j)+\mathcal{S}_{j-1, k-1}(n-j-1)-\mathcal{S}_{j-1, k-1}(n-j-k) \tag{1.6}
\end{equation*}
$$

Section 2 will be devoted to a short discussion of overpartitions and their "shadows", together with some elementary combinatorial observations. Section 3 will be devoted to Theorems 1 and 2, and Section 4 will treat Theorems 3 and 4.

2 Overpartitions

The shadow of an overpartition is the ordinary partition with the overlines removed. Thus $2+1$ is the shadow of each of $\overline{2}+\overline{1}, 2+\overline{1}, \overline{2}+1$, and $2+1$. Hence each ordinary partition π with D different parts is the shadow of $\binom{D}{r}$ overpartitions in which exactly r parts are overlined. Note that there is exactly one overpartition corresponding to π with all D parts overlined.

In addition to this observation, we need the well-known fact that

$$
\sum_{j \geq 0}(-1)^{j+R}\binom{j}{R}\binom{D}{j}= \begin{cases}1 & \text { if } D=R \tag{2.1}\\ 0 & \text { if } D \neq R\end{cases}
$$

In the case $D=R$,

$$
\sum_{j \geq 0}(-1)^{j+R}\binom{j}{R}\binom{R}{j}=(-1)^{2 R}\binom{R}{R}\binom{R}{R}=1
$$

Note if $D<R$ then each summand is 0 , and finally if $D>R$,

$$
\begin{aligned}
\sum_{j \geq 0}(-1)^{j+R}\binom{j}{R}\binom{D}{j} & =\frac{D!(-1)^{R}}{R!(D-R)!} \sum_{j \geq 0}(-1)^{j}\binom{D-R}{j-R} \\
& =\binom{D}{R}(1-1)^{D-R}=0
\end{aligned}
$$

3 Proofs of Theorems 1 and 2

First we prove Theorem 1. We proceed by examining the right side of (1.1).
Let π be an ordinary partition that is the shadow of some of the overpartitions enumerated by $\mathcal{G}_{j, k}(n)$. Thus k must be a part of π and there must be $D \geq j$ different parts of π that are larger than k.

What is the contribution to the sum

$$
\sum_{j \geq 0}(-1)^{j+m-1}\binom{j}{m-1} \mathcal{G}_{j, k}(n)
$$

of the overpartitions whose shadow is π ?
From the first paragraph in Section 2, we see that this contribution is

$$
\sum_{j \geq 0}(-1)^{j+m-1}\binom{j}{m-1}\binom{D}{j}
$$

and by (2.1) this contribution is 0 unless $D=m-1$ in which case it is 1 . But in the case $D=m-1=j$, we see that there is exactly one overpartition counted by $\mathcal{G}_{j, k}(n)$, and (dropping the $j=m-1$ overlines plus the overline on k) we see that π was a partition in which the m th largest part is k.

Hence in

$$
\sum_{j \geq 0}(-1)^{j+m-1}\binom{j}{m-1} \mathcal{G}_{k, j}(n)
$$

the only contributions (of exactly 1) come from overpartitions in one-to-one correspondence with the partitions in which k is the m th largest part.

Therefore

$$
g_{m}(n, k)=\sum_{j \geq 0}(-1)^{j+m-1}\binom{j}{m-1} \mathcal{G}_{k, j}(n)
$$

Now we prove Theorem 2. We proceed by examining the right side of (1.2). The reasoning here is exactly the same except that now the other overlined .parts apart from k are all smaller than k rather than larger than k. Hence

$$
s_{m}(n, k)=\sum_{j \geq 0}(-1)^{j+m-1}\binom{j}{m-1} \mathcal{S}_{k, j}(n) .
$$

4 Proof of Theorem 3 and 4.

We define

$$
\begin{equation*}
\gamma_{k, j}(q)=\sum_{n \geq 0} \mathcal{G}_{k, j}(n) q^{n} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{k, j}(q)=\sum_{n \geq 0} \mathcal{S}_{k, j}(n) q^{n} \tag{4.2}
\end{equation*}
$$

In the following

$$
(q)_{j}=(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{j}\right) .
$$

Now the generating function of partitions into distinct parts with k as smallest part and j parts each $>k$, is clearly

$$
q^{k} \frac{q^{(k+1)+(k+2)+\cdots+(k+j)}}{(q)_{j}}=\frac{q^{k+k j+\binom{j+1}{2}}}{(q)_{j}}
$$

Hence

$$
\begin{equation*}
\gamma_{k, j}(q)=\frac{q^{k(j+1)+\binom{j+1}{2}}}{(q)_{j}(q)_{\infty}} \tag{4.3}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\gamma_{k, 0}(q)=\frac{q^{k}}{(q)_{\infty}}=\sum_{n \geq 0} p(n-k) q^{n} \tag{4.4}
\end{equation*}
$$

and for $j>0$

$$
\begin{equation*}
\left(1-q^{j}\right) \gamma_{k, j}(q)=q^{k+j} \gamma_{k-1, j-1}(q) \tag{4.5}
\end{equation*}
$$

Now comparing coefficients of q^{n} on both sides of (4.4) and (4.5), we deduce (1.3) and (1.4).

Next we recall the generating function for partitions into distinct parts with k as largest part and j parts each $<k$, is clearly [2, p. 59]

$$
\left.q^{k} q^{(j+1} 2\right)\left[\begin{array}{c}
k-1 \\
j
\end{array}\right]
$$

where

$$
\left[\begin{array}{l}
A \\
B
\end{array}\right]= \begin{cases}0, & \text { if } B>A \text { or } B<0 \\
\frac{(q)_{A}}{(q)_{B}(q)_{A-B}}, & 0 \leq B \leq A\end{cases}
$$

Hence

$$
\sigma_{k, j}(q)=q^{k+\binom{j+1}{2}}\left[\begin{array}{c}
k-1 \tag{4.6}\\
j
\end{array}\right] \frac{1}{(q)_{\infty}}
$$

Therefore

$$
\begin{equation*}
\sigma_{k, 0}(q)=\frac{q^{k}}{(q)_{\infty}}=\sum_{n \geq 0} p(n-k) q^{n} \tag{4.7}
\end{equation*}
$$

and for $j>0$

$$
\begin{equation*}
\left(1-q^{j}\right) \sigma_{k, j}(q)=\left(1-q^{k-1}\right) q^{j+1} \sigma_{k-1, j-1}(q) \tag{4.8}
\end{equation*}
$$

We now compare coefficients of q^{n} on both sides of (4.7) and (4.8) to deduce (1.5) and (1.6).

References

[1] S. Corteel and J. Lovejoy, Overpartitions, Trans. Amer. Math. Soc., 356(2004), 1623-1635.
[2] P.A. MacMahon, Combinatory Analysis, Vol. II, Cambridge University Press, Cambridge, 1918 (Reprinted: AMS Chelsea, 2001).
THE PENNSYLVANIA STATE UNIVERSITY UNIVERSITY PARK, PA 16802
gea1@psu.edu

