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Abstract. Motivated by recent work of Bessenrodt, Olsson, and Sellers on unique path

partitions, we consider partitions of an integer n wherein the parts are all powers of a fixed

integer m ≥ 2 and there are no “gaps” in the parts; that is, if mi is the largest part in a given

partition, then mj also appears as a part in the partition for each 0 ≤ j < i. Our ultimate

goal is to prove an infinite family of congruences modulo powers of m which are satisfied by

these functions.

1. Introduction

Motivated by the Murnaghan-Nakayama formula, Olsson [8] recently defined a special type

of integer partition called a unique path partition. Subsequently, Bessenrodt, Olsson, and

Sellers [3] characterized these unique path partitions and, in the process, considered integer

partitions which they called restricted binary partitions. A binary partition is called restricted

(for short, an rb-partition) if it satisfies the condition that, whenever 2i is a part in the partition

and i ≥ 1 then 2i−1 is also a part. This means that there are no “missing” powers of 2 in the

set of parts for each such partition; i.e., there are no “gaps” in the parts involved.

In this paper, we will denote the number of restricted binary partitions of the integer n by

c2(n).

As an aside, we note that these restricted binary partitions are closely related to the binary

partitions considered by Sloane and Sellers [12]. The binary partitions of Sloane and Sellers

can be characterized by saying that if 2i is the largest part of a given partition of n, then

2i−1 must also be a part. (This relationship is made even more clear when one considers the

non–squashing partitions defined in [12], which can be naturally placed in bijection with the

binary partitions defined by Sloane and Sellers, and the strictly decreasing partitions studied

by Bessenrodt, Olsson, and Sellers which can be placed in bijection with the restricted binary

partitions defined above.)

In [3], the authors prove numerous properties satisfied by c2(n). In this paper, we naturally

generalize the restricted binary partitions to a family of restricted m–ary partitions for fixed
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m ≥ 2. Namely, we will consider those m–ary partitions of n wherein if mi is the largest part

in a given partition, then mj also appears as a part in the partition for each 0 ≤ j < i. We

will denote the number of such partitions of n by cm(n).

In the next section of this paper, we prove properties of the functions cm(n) which generalize

results related to c2(n) which appear in [3]. In the third section, we prove congruences satisfied

by cm(n). This is an obvious consideration given the literature which already exists related

to divisibility properties satisfied by m–ary partitions. Indeed, Churchhouse [4] initiated the

study of congruence properties satisfied by the unrestricted binary partition function in the late

1960’s. His work on binary partitions was substantially extended by Rødseth and Sellers [11]

approximately 30 years later. Numerous authors have also considered such results for m–ary

partitions; the interested reader is encouraged to see [1, 5, 6, 7, 9, 10] for more information.

2. Properties of cm(n)

For a fixed m ≥ 2, we see that the partitions enumerated by the function cm(n) have an

ordinary generating function given by

Cm(q) = 1 +
q1

1− q1
+

q1+m

(1− q1)(1− qm)
+

q1+m+m2

(1− q1)(1− qm)(1− qm2)
+ . . .

where the numerators of each fraction in this representation are present to guarantee that

there are no gaps in the parts of the partitions. This means

(1) Cm(q) :=
∑
n≥0

cm(n)qn = 1 +
∞∑
n=0

q1+m+···+mn

(1− q)(1− qm) . . . (1− qmn)
.

Note that the m = 2 case of (1) is found in [3] where it is denoted S(q).

The generating function result above is significant as it allows for rapid computation of

numerous values of cm(n) via a computer algebra system. This is beneficial in the search for

partition congruences which are the subject of the next section of the paper.

Using combinatorial arguments, we can also prove a set of recurrences satisfied by cm(n)

which can be used to compute these values. We now state and prove this set of recurrences.

Theorem 2.1. Let m ≥ 2 be a fixed integer. Then cm(j) = 1 for 1 ≤ j ≤ m. Moreover, for

n ≥ 1, cm(mn+ 1) = cm(mn) + cm(n) and cm(mn+ i) = cm(mn+ 1) for 2 ≤ i ≤ m.

Proof. The initial conditions cm(j) = 1 for 1 ≤ j ≤ m − 1 are clear as the only available

part for such partitions is the number 1. Also, since no parts can be missing in each of these

restricted m–ary partitions, it is the case that

1 + 1 + · · ·+ 1︸ ︷︷ ︸
m times
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is the only partition of m which is counted here. Also, the restricted m–ary partitions of mn+i

for i ≥ 2 can clearly be put in one–to–one correspondence with the partitions of mn + 1 by

simply removing i−1 1’s from each of the partitions of mn+ i. (Note that there will still be at

least one part of size 1 in each of these partitions even after these removals take place.) So we

now simply need to think about the partitions which are counted by cm(mn + 1). Note that

these come in two categories: either they contain exactly one 1 or they contain more than one

1. Those which contain more than one 1 can be put in one–to–one correspondence with the

partitions counted by cm(mn) (by simply removing one of these 1’s). Such partitions will still

contain at least one copy of each power of m as a part, so this is fine. However, what do we

do with the partitions counted by cm(mn + 1) which only contain one 1? Well, we remove

this single 1 and then divide all the remaining parts by m. Then these partitions are exactly

those counted by cm(n) since ((mn+ 1)− 1)÷m = n and this process does not remove all the

copies of any particular part. Therefore, cm(mn + 1) = cm(mn) + cm(n) and the theorem is

proved. �
Clearly, Theorem 2.1 can also be used to compute numerous values of cm(n) with relatively

ease.

3. An Infinite Family of Congruences

As has been noted in previous works on m–ary partition function congruences, it is often

the case that very few (if any) divisibility properties exist for the m = 2 case of a family of

functions. However, for m ≥ 3, infinite families of congruences often exist for various m–ary

partition functions. This is indeed the case with the family of functions cm(n).

With this in mind, we prove the following infinite family of congruences:

Theorem 3.1. Let m ≥ 3 be an odd prime and j any integer with 0 ≤ j < m. For all n ≥ 0,

cm(mj+2n+ (mj+1 +mj + · · ·+m2)) ≡ 0 (mod mj).

In order to prove Theorem 3.1 we require a number of smaller results.

Lemma 3.2. Let m > j ≥ 2, and define sj,i = sj,i(m) by

(2)

(
km+ 1

j

)
=

j∑
i=1

sj,i

(
k

i

)
.

Then the sj,i are unique integers and mi | sj,i.

Remark 3.3. The two omitted cases are

(3)

(
km+ 1

1

)
= s1,1k + s1,0 = mk + 1
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and

(4)

(
km+ 1

0

)
= s0,0 = 1.

When j > 1 we see that sj,0 = 0 because
(
0·m+1

j

)
= 0.

Proof. (of Lemma 3.2) First the existence and uniqueness of the sj,i follows from the fact that

the
(
k
i

)
form a basis for the vector space of polynomials in k and

(
km+1

j

)
is a polynomial in k

of degree j. Furthermore, setting k = 1 yields

(5) sj,1 =

(
m+ 1

j

)
,

and so m | sj,1.
In addition, sj,j = mj follows by comparing the coefficients of kj on both sides of (2).

Therefore,

(6)

(
km+ 1

2

)
= m2

(
k

2

)
+

(
m+ 1

2

)(
k

1

)
,

and we see that the assertions of the lemma are valid when j = 2.

Next, we prove by mathematical induction on i that each sj,i is integral. We already know

this when i = 1 by (5). Now with k = i0 in (2), we see that

(7) sj,i0 =

(
i0m+ 1

j

)
−

i0−1∑
i=1

sj,i

(
i0
i

)
.

Hence, integrality follows by induction.

Finally, for j ≥ 3,

(8) j

(
km+ 1

j

)
= (km− j + 2)

(
km+ 1

j − 1

)
.

Therefore,

j∑
i=1

sj,i

(
k

i

)
=

km− j + 2

j

j−1∑
i=1

sj−1,i

(
k

i

)
(9)

=

j−1∑
i=1

sj−1,i

(
m(i+ 1)

j
· k − i
i+ 1

+
mi

j
− j − 2

j

)(
k

i

)

=

j−1∑
i=1

sj−1,i

(
m(i+ 1)

j

(
k

i+ 1

)
+
mi− j + 2

j

(
k

i

))
,
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and so comparing coefficients of
(
k
i

)
on both sides we find

(10) sj,i =
mi

j
sj−1,i−1 +

mi− j + 2

j
sj−1,i.

We have already shown that m | sj,1 and that mi | s2,i for each i. We now proceed by a double

induction on j and i. The case j = 2 is proved for all i. For a given j, the case i = 1 is

proved. The recursion (10) now concludes the induction. The two terms on the right of (10)

might have denominators because of the j factor. However, m is relatively prime to j, and

m ·mi−1 = mi divides the first term’s numerator and mi divides the second term’s numerator.

Hence, mi | sj,i. �
We now introduce further notation. We first highlight some important generating function

information. As noted above,

(11) Cm(q) :=
∑
n≥0

cm(n)qn = 1 +
∞∑
n=0

q1+m+···+mn

(1− q)(1− qm) . . . (1− qmn)
,

Cm(q) := Cm(q)− 1(12)

=
q

1− q
Cm(qm)

=
q

1− q
+

q

1− q
Cm(qm),

(13)

and

(14) hj :=
qj

(1− q)j+1
=
∞∑
i=0

(
i

j

)
qi.

We also define the following two operators which allow us to complete generating function

dissections in a straightforward way:

(15) η0m

∞∑
n=0

Anq
n =

∑
n=0

Amnq
n

and

(16) ηm

∞∑
n=0

Anq
n =

∑
n=0

Amn+1q
n

With these in hand, we note a number of dissection results.

Lemma 3.4.

(17) ηmh0 = h0,
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(18) ηmh1 = s1,1h1 + h0,

(19) ηmqh1 = s1,1h1,

and for j > 1,

(20) ηmhj =

j∑
i=1

sj,ihi.

Proof. Equation (17) is immediate, and noting s1,1 = m, we see that

ηmh1 =
∞∑
n=0

(mn+ 1)qn = mh1 + h0 = s1,1h1 + h0,

and

ηmqh1 =
∞∑
n=0

mnqn = mh1 = s1,1h1.

Finally, for j > 1,

ηmhj =
∞∑
k=0

(
km+ 1

j

)
qk

=
∞∑
k=0

j∑
i=1

sj,i

(
k

i

)
qk

=

j∑
i=1

sj,ihi.

�

Lemma 3.5.

(21) η0mqh1 = s1,1h1 − qh0

and

(22) η0mqh0 = qh0.
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Proof. Note that

η0mqh1 = η0m

∞∑
k=0

kqk+1

=
∞∑
k=1

(km− 1)qk

= mh1 − qh0
= s1,1h1 − qh0

and

η0mh0 = η0m

∞∑
k=0

qk =
∞∑
k=0

qk =
1

1− q
= h0.

�

Lemma 3.6.
∞∑
n=1

cm(m2n)qn = s1,1h1 + (s1,1h1 − qh0)Cm(q)

Proof. We know from [2] that

(23)
∞∑
n=0

cm(mn)qn = 1 +
q

1− q
Cm(q).

Hence by (23) and (12),

∞∑
n=1

cm(mn)qn =
q

1− q
Cm(q)

=
q

1− q
+

q

1− q
Cm(q)

=
q

1− q
+

q2

(1− q)2
+

q2

(1− q)2
Cm(qm).

Therefore, by Lemma 3.5,
∞∑
n=1

cm(m2n)qn = η0m

∞∑
n=1

cm(mn)qn

= η0m(qh0 + qh1 + qh1Cm(qm))

= qh0 + s1,1h1 − qh0 + (s1,1h1 − qh0)Cm(q)

= s1,1h1 + (s1,1h1 − qh0)Cm(q).

�
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Lemma 3.7.
∞∑
n=0

cm(m3n+m2)qn = s1,1s2,2h2 + (s2,1s1,1 + s1,1s1,1 − s1,1)h1

+s1,1h0 + (s1,1s2,2h2 + (s1,1s2,1 − s1,1)h1)Cm(q)

Proof.
∞∑
n=0

cm(m3n+m2)qn = ηm

∞∑
n=1

cm(m2n)qn

= ηm(s1,1h1 + (s1,1h1 − qh0)Cm(q))

by Lemma 3.6

= ηm

(
s1,1h1 + (s1,1h1 − qh0)

(
q

1− q
+

q

1− q
Cm(qm)

))
by (12)

= ηm(s1,1h1 + s1,1h2 − qh1 + (s1,1h2 − qh1)Cm(qm))

= s1,1(s1,1h1 + h0) + s1,1(s2,2h2 + s2,1h1)

−s1,1h1 + (s1,1(s2,2h2 + s2,1h1)− s1,1h1)Cm(q)

= s1,1s2,2h2 + (s1,1s2,1 + s1,1s1,1 − s1,1)h1
+s1,1h0 + (s1,1s2,2h2 + (s1,1s2,1 − s1,1)h1)Cm(q)

�

Lemma 3.8.
∞∑
n=0

cm(m4n+m3 +m2)qn

= s1,1s2,2s3,3h3 + (s1,1s2,2s3,2 + s1,1s2,1s2,2 + s1,1s2,2s2,2 − s1,1s2,2)h2
+(s1,1s2,2s3,1 + s1,1s2,1s2,1 + s1,1s2,2s2,1 + s1,1s2,1s1,1 + s1,1s1,1s1,1 − s1,1s2,1 − s1,1s1,1)h1
+(s1,1s2,1 + s1,1s1,1)h0

+{s1,1s2,2s3,3h3 + (s1,1s2,2s3,2 + s1,1s2,1s2,2 − s1,1s22)h2
+(s1,1s2,2s3,1 + s1,1s2,1s2,1 − s1,1s2,1)h1)}Cm(q).

Proof.
∞∑
n=0

cm(m4n+m3 +m2)qn

= ηm

∞∑
n=0

cm(m3n+m2)qn
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= ηm

(
s1,1s2,2h2 + (s1,1s2,1 + s1,1s1,1 − s1,1)h1 + s1,1h0 +

+(s1,1s2,2h2 + (s1,1s2,1 − s1,1)h1)
(

q

1− q
+

q

1− q
Cm(qm)

))
= ηm (s1,1s2,2h3 + (s1,1s2,2 + s1,1s2,1 − s1,1)h2

+(s1,1s2,1 + s1,1s1,1 − s1,1)h1 + s1,1h0

+(s1,1s2,2h3 + (s1,1s2,1 − s1,1)h2)Cm(qm)
)

= s1,1s2,2(s3,3h3 + s3,2h2 + s3,1h1)

+(s1,1s2,2 + s1,1s2,1 − s1,1)(s2,2h2 + s2,1h1)

+(s1,1s2,1 + s1,1s1,1 − s1,1)(s1,1h1 + h0) + s1,1h0

+ {s1,1s2,2(s3,3h3 + s3,2h2 + s3,1h1)

+(s1,1s2,1 − s1,1)(s2,2h2 + s2,1h1)}Cm(q)

= s1,1s2,2s3,3h3

+(s1,1s2,2s3,2 + s1,1s2,2s2,2 + s1,1s2,1s2,2 − s1,1s2,2)h2
+(s1,1s2,2s3,1 + s1,1s2,2s2,1 + s1,1s2,1s2,1 + s1,1s2,1s1,1

+s1,1s1,1s1,1 − s1,1s2,1 − s1,1s1,1)h1 + (s1,1s2,1 + s1,1s1,1)h0

+{s1,1s2,2s3,3h3 + (s1,1s2,2s3,2 + s1,1s2,1s2,2 − s1,1s2,2)h2
+(s1,1s2,2s3,1 + s1,1s2,1s2,1 − s1,1s2,1)h1}Cm(q)

�
With these initial cases complete, we now develop tools necessary to prove the more general

result stated in Theorem 3.1.

Lemma 3.9.
∞∑
n=0

cm(mj+2n+mj+1 + · · ·+m2)qn =

j+1∑
i=0

(Pj,i −Qj,i)hi + Cm(q)

j+1∑
i=1

(Rj,i − Tj,i)hi

where, for i > 0, Pj,i and Rj,i are sums of monomials in the su,v of degree j + 1 while Qj,i and

Tj,i are of degree j. Moreover, Qj,j+1 = Qj,0 = 0 and Pj,0 is of degree j in the su,v. Finally, for

t > 0, we have the following:

(24) Pj+1,t =

j+2∑
i=t

(Pj,i +Rj,i−1)si,t

(25) Qj+1,t =

j+2∑
i=t

(Qj,i + Tj,i−1)si,t
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(26) Rj+1,t =

j+2∑
i=t

Rj,i−1si,t

(27) Tj+1,t =

j+2∑
i=t

Tj,i−1si,t

(28) Pj+1,0 = Pj,1 −Qj,1 + Pj,0 −Qj,0

Proof. We begin with the recurrences.

j+2∑
i=0

(Pj+1,i −Qj+1,i)hi + Cm(q)

j+2∑
i=1

(Rj+1,i − Tj+1,i)hi

= ηm

∞∑
n=0

cm(mj+2n+mj+1 + · · ·+m2)qn

= ηm

(
j+1∑
i=0

(Pj,i −Qj,i)hi +

(
q

1− q
+

q

1− q
Cm(qm)

) j+1∑
i=1

(Rj,i − Tj,i)hi

)

= ηm

(
j+2∑
i=0

((Pj,i +Rj,i−1)− (Qj,i + Tj,i−1))hi + (Pj,0 −Qj,0)h0

+Cm(qm)

j+2∑
i=0

(Rj,i−1 − Tj,i−1)hi

)

=

j+2∑
i=0

((Pj,i +Rj,i−1)− (Qj,i + Tj,i−1))
i∑

t=1

si,tht

+(Pj,1 −Qj,1)h0 + (Pj,0 −Qj,0)h0

+Cm(q)

j+2∑
i=0

(Rj,i−1 − Tj,i−1)
i∑

t=1

si,tht

Comparing coefficients of ht in the above string of equations confirms (24) – (28). �
We note that these recurrences directly establish by mathematical induction (with Lemma

3.7 as the base case) that

Pj,j+1 = s1,1s2,2 . . . sj,jsj+1,j+1 = Rj,j+1,

Rj,0 = Tj,0 = 0;

the latter fact is used tacitly in the above.
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Lemma 3.10. For i ≥ 1, Pj,i and Rj,i are sums of monomials (all with coefficients equal to

1) of degree j + 1 in the su,v while Qj,i and Tj,i are sums of monomials (all with coefficients

equal to 1) of degree j in the su,v. Furthermore, the terms in Pj,i, Rj,i, Qj,i, Tj,i are constructed

according to the following:

First we note that in every monomial we have

s1,1si,hsk,l . . . sm,i,

namely the final subscript is i and the first two subscripts are 1, 1. This follows from the

recurrences and the base case of Lemma 3.7.

• Rule for Rj,i terms:

s1,1si2,k2 . . . sij ,kjsij+1,i

each im = km−1 + 1, j + 1 ≥ im ≥ km, 1 ≤ m ≤ j + 1.

• Rule for Tj,i terms:

s1,1si2,k2 . . . sij−1,kj−1
sij ,i

each im = km−1 + 1, j ≥ im ≥ km, 1 ≤ m ≤ j.

• Rule for Pj,i terms:

s1,1si2,k2 . . . sij ,kjsij+1,i

each im = km−1 or im = km−1 + 1, j + 1 ≥ im ≥ km, 1 ≤ m ≤ j + 1, with the added

condition that if im = km−1 + 1, then ir = kr−1 + 1 for each r < m.

• Rule for Qj,i terms:

s1,1si2,k2 . . . sij−1,kj−1
sij ,i

each im = km−1 or im = km−1 + 1, j ≥ im ≥ km, 1 ≤ m ≤ j, with the added condition

that if im = km−1 + 1, then ir = kr−1 + 1 for each r < m.

Proof. These rules for construction of the Pj,i, Rj,i, Qj,i, Tj,i follow by induction on j. This is

most easily seen by noting that Lemma 3.7 plus the recurrences (26) and (27) establish the

rules for Rj,i and Tj,i immediately. One then uses these facts about Rj,i and Tj,i to see that

the rules for Pj,i and Qj,i now follow directly from (24) and (25) with Lemma 3.7 as the base

case. �

Lemma 3.11. For j ≥ 1, Pj+1,0 = Pj,1 and Qj,0 = 0.

Proof. When j = 1 this follows from Lemmas 3.7 and 3.8. Now inspecting the proof of Lemma

3.9, we see that

Pj+1,0 −Qj+1,0 = Pj,1 −Qj,1 + Pj,0 −Qj,0.

We proceed by induction on j.

By the induction hypothesis, Qj,0 = 0. So to prove the j + 1 case we need only prove that

Qj,1 = Pj,0,
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or by the induction hypothesis,

Qj,1 = Pj−1,1,

but this is immediate from the rules for Qj,i and Pj,i. Hence the lemma is true.

�
We are now in a position to prove Theorem 3.1.

Proof. By Lemma 3.9,

∞∑
n=0

cm(mj+2n+mj+1 + · · ·+m2)qn

=

j+1∑
i=1

(Pj,i −Qj,i)hi + Pj,0h0 + Cm(q)

j+1∑
i=1

(Rj,i − Tj,i)hi

=

j+1∑
i=1

(Pj,i −Qj,i)hi + Pj−1,1h0 + Cm(q)

j+1∑
i=1

(Rj,i − Tj,i)hi.

Now each Pj,i and Rj,i is made up of monomials in su,v of degree j + 1. So by Lemma 3.2,

mj+1 |Pj,i and mj+1 |Rj,i. Similarly, each Qj,i and Tj,i is made up of monomials in su,v of degree

j. So by Lemma 3.2, mj |Qj,i and mj |Tj,i. Finally, mj |Pj−1,1. So all the coefficients above have

mj as a factor. Therefore,

mj | cm(mj+2n+mj+1 + · · ·+m2)

for all j ≥ 1 and all n ≥ 0. �

4. Closing Thoughts

We close by noting that Theorem 3.1, while extremely satisfying, does not appear to be best

possible (based on numerical evidence). That is to say, it appears that a more general result

is true although the authors have yet to prove this. So we close with the following conjecture

which we leave as future work.

Conjecture 4.1. For a fixed m ≥ 3 and for all n ≥ 0,

cm(mj+2n+ (mj+1 +mj + · · ·+m2)) ≡ 0 (mod
mj

cj
)

where cj = 1 if m is odd and cj = 2j−1 if m is even.

It is worth noting that such a result is reminiscent of the results obtained in [10] as well as

those found by Rødseth [9], Andrews [1], and Gupta [7] in their work on unrestricted m–ary

partition function congruences.



ARITHMETIC PROPERTIES OF m–ARY PARTITIONS WITHOUT GAPS 13

References

[1] G. E. Andrews, Congruence properties of the m–ary partition function, J. Num. Thy. 3 (1971), 104–110

[2] G. E. Andrews, A. Fraenkel, and J. A. Sellers, m–ary Partitions With No Gaps: A Characteri-

zation Modulo m, submitted

[3] C. Bessenrodt, J. B. Olsson, and J. A. Sellers, Unique Path Partitions: Characterization and

Congruences, Annals of Combinatorics 17 (2013), 591–602

[4] R. F. Churchhouse, Congruence properties of the binary partition function, Proc. Camb. Phil. Soc. 66

(1969), 371–376

[5] K. M. Courtright and J. A. Sellers, Arithmetic Properties for Hyper m–ary Partitions, INTEGERS

4 (2004), Article A6

[6] L. Dolph, A. Reynolds, and J. A. Sellers, Congruences for a Restricted m–ary Partition Function,

Discrete Math. 219 (2000), 265–269

[7] H. Gupta, A direct proof of the Churchhouse conjecture concerning binary partitions, Indian J. Math.

18 (1976), 1–5

[8] J.B. Olsson, Sign conjugacy classes in symmetric groups, J. Algebra 322 (2009), 2793–2800

[9] Ø. Rødseth, Some arithmetical properties of m–ary partitions, Proc. Camb. Phil. Soc. 68 (1970), 447–453

[10] Ø. Rødseth and J. A. Sellers, On m–ary Partition Function Congruences: A Fresh Look at a Past

Problem, J. Num. Thy. 87, no. 2 (2001), 270–281

[11] Ø. Rødseth and J. A. Sellers, Binary partitions revisited, J. Comb. Thy. Ser. A 98 (2002), 33–45

[12] N.J.A. Sloane and J. A. Sellers, On non-squashing partitions, Discrete Math. 294 (2005), 259–274

Department of Mathematics, Penn State University, 104 McAllister Building, University

Park, PA 16802, USA

E-mail address: gea1@psu.edu

Department of Mathematics, UFRGS, C. P. 15080, Porto Alegre, CEP 91509-900, Brazil

E-mail address: brietzke@mat.ufrgs.br

Department of Mathematics, University of Bergen, Allégt. 41, N-5007 Bergen, Norway
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