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Abstract. K. Alladi first observed a variant of I. Schur’s 1926
partition theore. Namely, the number of partitions of n in which
all parts are odd and none apppears more than twice equals the
number of partitions of n in which all parts differ by at least 3 and
more than 3 if one of the parts is a multiple of 3. In this paper
we refine this result to one that counts the number of parts in the
relevant partitions.
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1. Introduction

In 1926, I. Schur [7] proved the following result:

Theorem 1. Let A(n) denote the number of partitions of n into parts
congruent to ±1 (mod 6). Let B(n) denote the number of partitions
of n into distinct nonmultiples of 3. Let D(n) denote the number of
partitions of n of the form b1 + b2 + · · · + bs where bi − bi+1 ≥ 3 with
strict inequality if 3|bi. Then

A(n) = B(n) = D(n).

K. Alladi [1] has pointed out (cf. [4, p. 46, eq. (1.3)]) that if we
define C(n) to be the number of partitions of n into odd parts with
none appearing more than twice, then also

C(n) = D(n).
1
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This follows immediately from the fact that
∞∑
n=0

C(n)qn =
∞∏
n=1

(
1 + q2n−1 + q4n−2

)
=
∞∏
n=1

(1− q6n−3)
(1− q2n−1)

=
∞∏
n=1

(1− q6n−3)
(1− q6n−5)(1− q6n−3)(1− q6n−1)

=
∞∏
n=1

1

(1− q6n−5)(1− q6n−1)

=
∞∑
n=0

A(n)qn =
∞∑
n=0

D(n)qn.

Rather surprisingly the following refinement has been overlooked:

Theorem 2. Let C(m,n) denote the number of partitions of n into m
parts, all odd and none appearing more than twice. Let D(m,n) denote
the number of partitions of n into parts of the type enumerated by D(n)
with the added condition that the total number of parts plus the number
of even parts is m (i.e. n is the weighted count of parts where each
even is counted twice).

For example C(4, 16) = 6 with the relevant partitions being 11 + 3 +
1+1, 9+5+1+1, 9+3+3+1, 7+7+1+1, 7+5+3+1, 5+5+3+3
while D(4, 16) = 6 with the relevant partitions being 14 + 2, 12 + 4,
11 + 4 + 1, 10 + 6, 10 + 5 + 1, 9 + 5 + 2.

This theorem is analogous to W. Gleissberg’s comparable refinement
of the assertion that B(n) = D(n) [5], and the proof is analogous to
the proof of Gleissberg’s theorem given in [2].

2. Proof of Theorem 2.

We define dN(x, q) = dN(x) to be the generating function for par-
titions of the type enumerated by D(m,n) with the added condition
that all parts by ≤ N .

We also define

(2.1) ε(n) =

{
1, if n is odd,

2, if n is even.

Then for n ≥ 0

d3n(x) = d3n−1(x) + xε(3n)q3nd3n−4(x),(2.2)
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d3n+1(x) = d3n(x) + xε(3n+1)q3n+1d3n−2(x),(2.3)

d3n+2(x) = d3n+1(x) + xε(3n+2)q3n+2d3n−1(x),(2.4)

with the initial condition d−1(x) = d−2(x) = 1, d−4(x) = 0.
In preparation for the essential functional equations needed to prove

Theorem 2, we note that

(2.5) d3n+1(x) = d3n+2(x)− xε(3n+2)q3n+2d3n−1(x).

Thus substituting (2.2) and (2.5) into (2.3), we find

(2.6)
d3n+2(x) =

(
1 + xε(3n+1)q3n+1 + xε(3n+2)q3n+2

)
d3n−1(x)

+
(
xε(3n)q3n − xε(3n+1)+ε(3n−1)q6n

)
d3n−4(x).

Consequently

(2.7)
d6n+2(x) =

(
1 + xq6n+1 + x2q6n+2

)
d6n−1(x)

+
(
x2q6n − x2q12n

)
d6n−4(x),

and

(2.8)
d6n−1(x) =

(
1 + x2q6n−2 + xq6n−1

)
d6n−4(x)

+
(
xq6n−3 − x4q12n−6

)
d6n−7(x).

Lemma 3. For n ≥ 1,

(2.9) d6n+2(x) =
(
1 + xq + x2q2

)
d6n−1(xq

2),

(2.10)
d6n−1(x) =

(
1 + xq + x2q2

){
d6n−4(xq

2)

+ xq6n−1(1− qx)d6n−7(xq
2)
}
,

where d−1(x) is defined to by 1.

Proof. We define

(2.11) F (n) = d6n+2(x)−
(
1 + xq + x2q2

)
d6n−1(xq

2),

(2.12)
G(n) = d6n−1(x)−

(
1 + xq + x2q2

){
d6n−4(xq

2)

+ xq6n−1(1− qx)d6n−7(xq
2)
}
.

To prove (2.9) and (2.10) we need only show that F (n) = G(n) = 0
for each n ≥ 1.

In light of the fact that

(2.13) d2(x) = 1 + xq + x2q2,
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(2.14)
d5(x) = 1 + xq + x2q2 + xq3 + x2q4 + x3q5 + x3q7

= (1 + xq + x2q2)d2(xq
2) + xq5(1− xq),

(2.15)

d8(x) = (1 + xq + x2q2)
(
1 + xq3 + xq5 + x2q6 + xq7

+ x2q8 + x2q10 + x3q11 + x3q13
)

=
(
1 + xq + x2q2

)
d5(xq

2),

we see that

(2.16) F (1) = G(1) = 0.

For simplicity in the remainder of the proof, we define

(2.17) λ(x) = 1 + xq + x2q2.

We now replace x by xq2 in (2.8) then multiply both sides of the re-
sulting identity by λ(x) and subtract from (2.7). The resulting identity
simplifies to the following:

(2.18)
F (n) =

(
1 + xq6n+1 + xq6n+2

)
G(n)

+ x2q6n
(
1− q6n

)
F (n− 1).

A second recurrence, now for G(n), is somewhat more difficult. In
(2.7) replace n by n − 1, x by xq2 and multiply the resulting identity
by λ(x); also in (2.8) replace n by n− 1, x by xq2 and multiply the re-
sulting identity by λ(x)xq6n−1(1−qx). Now subtract both of these new
identities from (2.8). The resulting identity simplifies to the following:

(2.19)

G(n) =
(
1 + xq6n−1 + x2q6n−2

)
F (n− 1)

+
(
−xq6n−3 + x2q6n−2

)
λ(x)d6n−7(xq

2)

+ (xq6n−3 − x4q12n−6)d6n−7(x)

−
(
x2q6n−2 − x2q12n−8

)
λ(x)d6n−10(xq

2).

Now in (2.19) replace the appearance of d6n−7(xq
2) with the right-hand

side of (2.8) in which n has been replaced by n− 1 and x replaced by
xq2. As a result, equation (2.19) is transformed after simplification into

(2.20)
G(n) =

(
1 + xq6n−1 + x2q6n−2

)
F (n− 1)

+
(
xq6n−3 − x4q12n−6

)
G(n− 1).

Finally the initial conditions F (1) = G(1) = 0 together with the
recurrences (2.18) and (2.20) imply by mathematical induction that
F (n) = G(n) = 0 for all n ≥ 1, and this fact, as observed earlier,
proves the lemma. �
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Lemma 4.

(2.21) lim
n→∞

dn(x) =
∞∏
n=1

(
1 + xqn + x2q2n

)
.

Proof. By (2.6) we see directly that the above limit exists as a for-
mal power series in q, and since dn(x) is dominated by the generating
function for all partitions we see that if

A(x, q) = lim
n→∞

dn(x),

then A(x, q) is absolutely convergent provided |q| < 1 and |x| < 1
|q| .

Consequently

A(x, q) = lim
n→∞

dn(x)

= lim
n→∞

d6n+2(x)

= lim
n→∞

(
1 + xq + x2q2

)
d6n−1(xq

2)

(by Lemma 3)

=
(
1 + xq + x2q2

)
A(xq2, q).(2.22)

Iterating (2.21) we see that

A(x, q) = A(0, q)
∞∏
n=1

(
1 + xqn + x2q2n

)
=
∞∏
n=1

(
1 + xqn + x2q2n

)
,

which is the desired result.
�

It is now an easy matter to deduce Theorem 2 from Lemma 3.

(2.23)

∑
n,m≥0

C(m,n)xmqn =
∞∏
n=1

(
1 + xqn + x2q2n

)
= A(x, q)

= lim
n→∞

dn(x)

=
∑
n,m≥0

D(m,n)xmqn,

and comparing coefficients in the extremes of (2.23) we establish the
assertion in Theorem 2.
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3. Conclusion

There are a couple of relevant observations. First, Alladi’s addition
to Schur’s Theorem [1] given in Theorem 1 merits much closer study
than it has received to date. Indeed, it would appear that it has been
referred to in print subsequently only in [4].

Second, the conjectures of Kanade and Russell [6] suggest that the
q-difference equation techniques, as initiated in [2], [3] need to be ex-
tended beyond partitions in which all parts are distinct. Part of the
motivation for this paper was to show that such an extension is feasible.
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