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Abstract. Recently, Andrews, Dixit, and Yee introduced partition functions associated with
the Ramanujan/Watson mock theta functions ω(q) and ν(q). Based on one of their results,
mod 2 congruences for these mock theta functions are obtained. In addition, infinite families of
mod 4 and mod 8 congruences are presented. Lastly, an elementary proof of the first explicit
examples of congruences for ω(q) given by Waldherr is presented.

1. Introduction

In his last letter to Hardy in 1920, Ramanujan introduced the notion of a mock theta function
along with a number of examples of order 3, 5, and 7. Since then, mock theta functions have
been the subject of intense study.

Recently, the first and fourth authors with A. Dixit found a new partition function pω(n) that
is associated with the third order mock theta function ω(q) [1]:

ω(q) =
∞∑
n=0

q2(n
2+n)

(q; q2)2n+1

,

where

(a; q)n := (1− a)(1− aq) · · · (1− aqn−1).

One of the results in [1] yields a mod 2 congruence of the coefficients of ω(q), which led us to a
further search for congruences. S. Garthwaite and D. Penniston [5] showed that the coefficients
of ω(q) satisfy infinitely many congruences of the similar type as Ramanujan’s partition congru-
ences, and M. Waldherr [6] found the first explicit examples of congruences, suggested by some
computations done by J. Lovejoy.

We define pω(n) by

∞∑
n=1

pω(n)qn =
∞∑
n=1

qn

(1− qn)(qn+1; q)n(q2n+2; q2)∞
, (1)

where (a; q)∞ := limn→∞(a; q)n. From its generating function definition, we see that pω(n)
counts the number of partitions of n in which each odd part is less that twice the smallest part.
In [1], it is shown that

∞∑
n=1

pω(n)qn = qω(q).

The main result of this paper is:
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Theorem 1.1. For nonnegative integers n and k,

pw

(
22k+3n+

11 · 22k + 1

3

)
≡ 0 (mod 4),

pw

(
22k+3n+

17 · 22k + 1

3

)
≡ 0 (mod 8),

pw

(
22k+4n+

38 · 22k + 1

3

)
≡ 0 (mod 4).

In [1], another partition function pν(n) is defined. Namely,

∞∑
n=0

pν(n)qn =

∞∑
n=0

qn(−qn+1; q)n(q2n+2; q)∞.

It is shown that
∞∑
n=0

pν(n)qn = ν(−q),

where ν(q) is a third order mock theta function,

ν(q) =

∞∑
n=0

qn(n+1)

(−q; q2)n+1
.

This mock theta function ν(q) is related to ω(q) as follows [4, p. 62, Equation (26.88)]:

ν(−q) = qω(q2) + (−q2; q2)∞ψ(q2), (2)

where

ψ(q) =

∞∑
n=0

qn(n+1)/2.

By (2), we can derive congruences of pν(n) from pω(n), which will be given in Section 4.
This paper is organized as follows. In Section 2, we present mod 2 congruences of pω(n) and

pν(n). In Section 3, we prove Theorems 1.1. In Section 4, we prove congruences of pν(n). As
noted earlier, Waldherr [6] provided the first explicit congruences for ω(q):

pω(40n+ 28) ≡ 0 (mod 5),

pω(40n+ 36) ≡ 0 (mod 5).

In Section 5, we provide an elementary proof of the above congruences.

2. Mod 2 congruences

We recall the following results from [1]:

∞∑
n=1

qn

(−qn; q)n+1(−q2n+2; q2)∞
=

∞∑
j=0

(−1)jq6j
2+4j+1(1 + q4j+2), (3)

and
∞∑
n=0

qn(qn+1; q)n(q2n+2; q2)∞ =
∞∑
j=0

(−1)jqj(3j+2)(1 + q2j+1). (4)
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Let pω,o(n) and pω,e(n) be the number of partitions of n counted by pω(n) into an odd number
of parts and an even number of parts, respectively. Then it follows from (3) that

pω,o(n)− pω,e(n) =

{
(−1)j , if n = 6j2 + 4j + 1 for some j ∈ Z,

0, otherwise.

This yields the following obvious result.

Theorem 2.1. We have

pω(n) ≡

{
1 (mod 2), if n = 6j2 + 4j + 1 for some j ∈ Z,
0 (mod 2), otherwise.

Corollary 2.2. Let p ≥ 5 be prime, and let r be such that 0 ≤ r ≤ p− 1, and (3r− 1)(p+ 1)/2
is a quadratic nonresidue mod p. Then, for all n ≥ 0,

pω(pn+ r) ≡ 0 (mod 2).

Proof. Assume that there exists an integer j such that

pn+ r = 6j2 + 4j + 1.

Then

3(pn+ r)− 1 = 3(6j2 + 4j + 1)− 1

= 18j2 + 12j + 2

= 2(9j2 + 6j + 1)

= 2(3j + 1)2.

This yields

3r − 1 ≡ 2(3j + 1)2 (mod p)

or

(3r − 1)
(p+ 1

2

)
≡ (3j + 1)2 (mod p).

But, we have chosen r such that (3r− 1)
(p+1

2

)
is a quadratic nonresidue mod p, so it cannot be

congruent to a square. �

Similarly, (4) yields the following mod 2 result.

Theorem 2.3. We have

pν(n) ≡

{
1 (mod 2), if n = 3j2 + 2j for some j ∈ Z,
0 (mod 2), otherwise.

Corollary 2.4. For all n ≥ 0 and r = 2, 3,

pν(4n+ r) ≡ 0 (mod 2).

Proof. If j is even, then 3j2 + 2j ≡ 0 (mod 4). If j is odd, then 3j2 + 2j ≡ 1 (mod 4). So 4n+ 2
and 4n+ 3 can never be represented as 3j2 + 2j. �

Corollary 2.5. Let p ≥ 5 be prime, and let r be such that 0 ≤ r ≤ p − 1, and (3r + 1) is a
quadratic nonresidue mod p. Then, for all n ≥ 0,

pν(pn+ r) ≡ 0 (mod 2).
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Proof. For some j, let

n = 3j2 + 2j,

which is equivalent to

3n+ 1 = (3j + 1)2

Replacing n by pn+ r yields

3(pn+ r) + 1 = (3j + 1)2,

and this gives

3r + 1 ≡ (3j + 1)2 (mod p).

But, we have chosen r such that 3r+1 is a quadratic nonresidue mod p, so it cannot be congruent
to a square. �

3. Proof of Theorem 1.1

We start with a formula from page 63 of [7]:

f(q8) + 2qω(q) + 2q3ω(−q4) =
φ(q)φ(q2)2

(q4; q4)2∞
=: F (q), (5)

where

φ(q) =
∞∑

n=−∞
qn

2
= (−q; q2)2∞(q2; q2)∞, (6)

ψ(q) =

∞∑
n=0

q(
n+1
2 ) =

(q2; q2)∞
(q; q2)∞

. (7)

By [3, p.40, Entry 25 (v), (vi)], we have

φ(q)2 = φ(q2)2 + 4qψ(q4)2. (8)

Lemma 3.1. Let

F (q) = F0(q
4) + qF1(q

4) + q2F2(q
4) + q3F3(q

4).

Then

F0(q) =
φ(q)3

(q; q)2∞
, (9)

F1(q) =
2ψ(q2)φ(q)2

(q; q)2∞
, (10)

F2(q) =
4φ(q)φ(q2)ψ(q4)

(q; q)2∞
, (11)

F3(q) =
8ψ(q2)φ(q2)ψ(q4)

(q; q)2∞
. (12)

Proof. Separating even n’s and odd n’s, we obtain

φ(q) =
∞∑

n=−∞
q4n

2
+

∞∑
n=−∞

q4n
2+4n+1.
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Thus

F (q) =
1

(q4; q4)2∞

( ∞∑
n=−∞

q4n
2

+ q

∞∑
n=−∞

q4n
2+4n

)( ∞∑
n=−∞

q8n
2

+ q2
∞∑

n=−∞
q8n

2+8n

)2

=
1

(q4; q4)2∞

( ∞∑
n=−∞

q4n
2

+ q

∞∑
n=−∞

q4n
2+4n

)

×

(( ∞∑
n=−∞

q8n
2)2

+ 2q2
∞∑

n=−∞
q8n

2
∞∑

n=−∞
q8n

2+8n + q4
( ∞∑
n=−∞

q8n
2+8n

)2)

Consequently extracting the portion for F0(q
4), we have

F0(q
4) =

1

(q4; q4)2∞

∞∑
n=−∞

q4n
2

(( ∞∑
n=−∞

q8n
2)2

+ q4
( ∞∑
n=−∞

q8n
2+8n

)2)

=
φ(q4)

(q4; q4)2∞

(
φ(q8)2 + 4q4ψ(q16)2

)
,

where the last equality follows from

∞∑
n=−∞

qn
2+n = 2

∞∑
n=0

qn
2+n = 2ψ(q2).

Finally, by (8), we obtain the identity (9).
Similarly, the other identities can be proved. We omit the details. �

The following lemmas can easily be proved by the binomial theorem and induction so we state
without proof.

Lemma 3.2. For any positive integer n,

(1 + x)2
n ≡ (1 + x2)2

n−1
(mod 2n).

Lemma 3.3. For any prime p,

(1 + x)p ≡ (1 + xp) (mod p).

We first prove the case k = 0 in Theorem 3.4 in a separate theorem.

Theorem 3.4. For any nonnegative integer n,

pω(8n+ 4) ≡ 0 (mod 4),

pω(8n+ 6) ≡ 0 (mod 8),

pω(16n+ 13) ≡ 0 (mod 4).

Proof. Examining the left hand side of (5), we see that the only terms producing qn for n 6≡
0, 3, 7 (mod 8) come from 2qω(q). Consequently, if we can prove that in F (q) the terms for
q8n+4, q8n+6, q16n+13, respectively, have coefficients divisible by 8, we are done.
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For the first congruence, it suffices to prove that the odd powers in F0(q) vanish mod 8, which
implies that the coefficient of q8n+4 in F (q) is divisible by 8. By (9) in Lemma 3.1,

F0(q) =
φ(q)3

(q; q)2∞

=
(q2; q2)3∞(−q; q2)6∞

(q; q)2∞

=
(q2; q2)3∞(−q; q2)8∞

(q2; q2)2∞(q; q2)2∞(−q; q2)2∞

≡ (q2; q2)3∞(−q2; q4)4∞
(q2; q2)2∞(q2; q4)2∞

(mod 8),

where the last congruence follows from Lemma 3.2. Thus mod 8 F0(q) is an even function, and
returning to the observations at the beginning of this section, we see that pw(8n+ 4) is divisible
by 4.

We now prove the second congruence, which is equivalent to that the odd powers in F2(q)
vanish mod 16, which implies that the coefficient of q8n+6 in F (q) is divisible by 16. By (11) in
Lemma 3.1,

1

4
F2(q) =

1

(q; q)2∞
φ(q)φ(q2)ψ(q4)

=
1

(q; q)2∞
ψ(q)2ψ(q2)

=
1

(q; q)2∞

(q2; q2)2∞
(q; q2)2∞

(q4; q4)∞
(q2; q4)∞

=
1

(q; q2)4∞

(q4; q4)∞
(q2; q4)∞

≡ 1

(q2; q4)2∞

(q4; q4)∞
(q2; q4)∞

(mod 4).

By the analysis at the beginning of this section, we obtain that pw(8n+ 6) is divisible by 8.
Lastly, for pw(16n+ 13), we begin by considering the powers q16n+13 in F (q) which still only

come from the term 2qω(q). By looking at the dissection of F (q) in Lemma 3.1, the terms q16n+13

in F (q) must come from qF1(q
4). Next, from 16n+ 13 = 4(4n+ 3) + 1, if we can proof that the
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powers of the form q4n+3 in 1
2F1(q) vanish mod 4, we would be done. By (10) in Lemma 3.1,

1

2
F1(q) =

ψ(q2)φ(q)2

(q; q)2∞

=
ψ(q2)(q2; q2)2∞(−q; q2)4∞

(q; q)2∞

=
(q4; q4)∞
(q2; q4)∞

(−q; q)2∞(−q; q2)4∞

=
(q4; q4)∞(−q; q)2∞(−q; q2)4∞

(q; q2)∞(−q; q2)∞

=
(q4; q4)∞(−q; q2)4∞
(q; q2)3∞(−q; q2)∞

≡ (q4; q4)∞(q; q2)4∞
(q; q2)3∞(−q; q2)∞

(mod 4)

=
(q4; q4)∞(q; q2)2∞

(q2; q4)∞

=
(q4; q4)∞φ(−q)

(q2; q4)∞(q2; q2)∞

=
(−q2; q2)∞(q2; q2)∞
(q2; q4)∞(q2; q2)∞

φ(−q)

= φ(−q)(−q2; q2)2∞

=

(
1 + 2

∞∑
n=1

(−1)nqn
2

)
(−q2; q2)2∞

= (−q2; q2)2∞ + 2
∞∑
n=1

(−1)nqn
2
(−q2; q2)2∞.

Since (−q2; q2)2∞ does not contain any term of the form q4n+3, it suffices to show that the

coefficient of q4n+3 vanishes mod 2 in
∑∞

n=1(−1)nqn
2
(−q2; q2)2∞. Now

∞∑
n=1

(−1)nqn
2
(−q2; q2)2∞ ≡

∞∑
n=1

(−1)nqn
2
(q4; q4)∞ (mod 2).

But 3 is not a quadratic residue modulo 4, so there is no term of q4n+3 in this sum. And so we
are done. �

We now prove Theorem 1.1 by induction on k. For k = 0, the congruences are given in
Theorem 3.4. To prove the congruence for any positive integer k, we consider the following
sequence gk defined by

gk = 4gk−1 − 1, (13)

which has the solution

gk = 22kg0 −
22k − 1

3
.
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In particular, for any nonnegative integer n,

gk =


22k+3n+ 11·22k+1

3 if g0 = 8n+ 4,

22k+3n+ 17·22k+1
3 if g0 = 8n+ 6,

22k+4n+ 38·22k+1
3 if g0 = 16n+ 13.

(14)

From (13), we see that gk ≡ 3 (mod 4) for k > 0. Thus, on the left hand side of (5), the
coefficient of qgk comes from 2qω(q) + 2q3ω(−q4). By the definition of pw(n), we have

2qω(q) + q3ω(−q4) = 2qω(q)− 2q−1
(
− q4ω(−q4)

)
= 2

( ∞∑
n=1

pw(n)qn −
∞∑
n=1

pw(n)(−1)nq4n−1

)
,

and the coefficient of qgk in 2qω(q) + 2q3ω(−q4) is

2
(
pω(gk)− (−1)gk−1pω(gk−1)

)
.

By the induction hypothesis, we know that pω(gk−1) ≡ 0 (mod 4). Therefore, to show that
pω(gk) ≡ 0 (mod 4), it suffices to show that the coefficient of qgk in F (q) in (5) vanishes mod 8,
which is indeed true as seen in (12) in Lemma 3.1.

4. Congruences for pν(n)

The formula (2) in the Introduction is the key to the results in this section.

Theorem 4.1. For any nonnegative integer n,

pν(8n+ 6) ≡ 0 (mod 4).

Proof. Note that

(−q2; q2)∞ψ(q2) =
(−q2; q2)∞(q4; q4)∞

(q2; q4)∞

= (−q2; q2)2∞(q4; q4)∞

= (−q4; q4)2∞(−q2; q4)2∞(q4; q4)∞

≡ (q4; q4)2∞(−q2; q4)2∞(q4; q4)∞ (mod 4)

= (q8; q8)2∞(q4; q8)2∞(−q2; q4)2∞(q4; q4)∞

≡ (q8; q8)2∞(−q4; q8)2∞(−q2; q4)2∞(q4; q4)∞ (mod 4)

= (q8; q8)∞
[
(q8; q8)∞(−q4; q8)2∞

][
(−q2; q4)2∞(q4; q4)∞

]
= (q8; q8)∞

[
1 + 2

∞∑
n=1

q4n
2

][
1 + 2

∞∑
m=1

q2m
2

]

≡ (q8; q8)∞

[
1 + 2

∞∑
n=1

q4n
2

+ 2

∞∑
m=1

q2m
2

]
(mod 4).

in which the terms for q8n+6 vanish. This completes the proof. �

Again, by (2), we see that pν(2n− 1) = pω(n). Thus the following congruences immediately
follow from Theorem 1.1.



CONGRUENCES RELATED TO THE RAMANUJAN/WATSON MOCK THETA FUNCTIONS ω(q) AND ν(q) 9

Theorem 4.2. For any nonnegative integers n and k,

pv

(
22k+4n+

11 · 22k+1 − 1

3

)
≡ 0 (mod 4),

pv

(
22k+4n+

17 · 22k+1 − 1

3

)
≡ 0 (mod 4),

pv

(
22k+5n+

38 · 22k+1 − 1

3

)
≡ 0 (mod 4).

5. Waldherr’s congruences

In this section, we provide an elementary proof of the first explicit examples of congruences
for pω(n).

Theorem 5.1 (Waldherr [6]).

pω(40n+ 28) ≡ 0 (mod 5),

pω(40n+ 36) ≡ 0 (mod 5).

Proof. First note that the terms for q40n+28 and q40n+36 in F (q) in (5) come from 2qω(q) only.
Also, since 40n + 28 = 4(10n + 7) and 40n + 36 = 4(10n + 9), it suffices to show that in F0(q)
the terms for q10n+7 and q10n+9 vanish mod 5.

Since

φ(q) = (−q; q2)2∞(q2; q2)∞ =
(q2; q2)5∞

(q; q)2∞(q4; q4)2∞
,

by Lemma 3.1, we have

F0(q) =
φ(q)3

(q; q)2∞
=

(q2; q2)15∞
(q; q)8∞(q4; q4)6∞

.

From [2, Equation (5.11)],

1

(q; q)8∞
=

(
(q4; q4)14∞

(q2; q2)14∞(q8; q8)4∞
+ 4q

(q4; q4)2∞(q8; q8)4∞
(q2; q2)10∞(q8; q8)4∞

)2

Since 10n+ 7 and 10n+ 9 are odd, we consider odd powers of q only in F0(q), which appear in

8q
(q4; q4)16∞
(q2; q2)24∞

(q2; q2)15∞
(q4; q4)6∞

= 8q
(q4; q4)10∞(q2; q2)∞

(q2; q2)10∞

≡ 8q
(q20; q20)2∞
(q10; q10)2∞

∞∑
n=−∞

qn(3n−1) (mod 5),

where the congruence follows from Lemma 3.3 and the Euler’s pentagonal number theorem.
Now we can easily check that n(3n − 1) ≡ 0, 2, 4 mod 10, from which it follows that the

coefficients of q10n+7 and q10n+9 are divisible by 5. This completes the proof. �
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