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Abstract. A. M. Legendre noted that Euler’s pentagonal number theorem implies that the number of

partitions of n into an even number of distinct parts almost always equals the number of partitions of n
into an odd number of distinct parts (the exceptions occur when n is a pentagonal number). Subsequently

other classes of partitions, including overpartitions, have yielded related Legendre theorems. In this

paper, we examine four subclasses of overpartitions that have surprising Legendre theorems.

1. Introduction

In founding the theory of partitions [6], Euler proved that if p(n) denotes the number of partitions of
n, then

∞∑
n=0

p(n)qn =

∞∏
n=1

1

1− qn
, (1)

and he also proved the pentagonal number theorem for the reciprocal of (1):

∞∏
n=1

(1− qn) =

∞∑
j=−∞

(−1)jqj(3j−1)/2. (2)

Subsequently Legendre [16] noted that the following partition theorem is implicit in (2).

Legendre’s Theorem. Let pE(n) denote the number of partitions of n into an even number of
distinct parts minus the number of partitions of n into an odd number of distinct parts. The E is for
“excess.” Then

pE(n) =

{
(−1)j , if n = j(3j − 1)/2 for some j ∈ Z,
0, otherwise.

(3)

Of course, the infinite product in (2) is one of the three classic theta constants studied by Gauss,
Jacobi, and Ramanujan. The other two, in Ramanujan’s notation are

φ(−q) :=

∞∏
n=1

(1− qn)

(1 + qn)
=

∞∑
n=−∞

(−1)nqn
2

(4)

and

ψ(q) :=

∞∏
n=1

(1− q2n)

(1− q2n−1)
=

∞∑
n=0

qn(n+1)/2. (5)

Corteel and Lovejoy in [5] and subsequent papers founded the study of overpartitions, where if p(n) is
the number of overpartitions of n, then

∞∑
n=0

p(n)qn =

∞∏
n=1

(1 + qn)

(1− qn)
=

1

φ(−q)
. (6)
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Overpartitions are ordinary partitions extended by allowing a possible overline designation on each part of
the partitions. Thus p(3) = 8 with the overpartitions in question being 3, 3, 2+1, 2+1, 2+1, 2+1, 1+1+1,
and 1 + 1 + 1.

One sees directly that (4) provides the Legendre theorem for overpartitions [1]. Namely the number
of overpartitions of n into an even number of parts almost always equals the number of overpartitions
of n into an odd number of parts (the exceptions occurring at the perfect squares). Thus one sees four
overpartitions of 3 into an even number of distinct parts (2 + 1, 2 + 1, 2 + 1, 2 + 1) and four overpartitions
of 3 into an odd number of parts (3, 3, 1 + 1 + 1, 1 + 1 + 1).

The third theta constant occurs in the generating function for partitions with distinct odd parts [17],

1

ψ(−q)
=

∞∏
n=1

(1 + q2n−1)

(1− q2n)
.

In this case, the Legendre theorem, derived from (5), reveals that the number of partitions of n without
repeated evens into an even number of parts almost always equals the number of partitions of n without
repeated evens into an odd number of partitions (the exceptions occurring at the triangular numbers).

Each of these Legendre theorems has been proved bijectively. The bijective proof of the original
Legendre theorem was given by F. Franklin [9]. His achievement was described by Hans Rademacher as
the first major achievement of American mathematics. The Legendre theorems associated with (4) and
(5) were first proved bijectively in [1].

Recently, F. Garvan and C. Jennings-Shaffer [13, 14, 15] have made a study of “smallest parts”
functions associated with several Rogers-Ramanujan type identities in L. J. Slaters compendium [20].
The smallest parts function has been a great source for many studies since its introduction by the first
author [2]. Here we list a few: [3, 8, 10, 11, 12, 18]. The companion of the smallest parts function for
overpartitions was introduced and studied by Kathrin Bringmann, Jeremy Lovejoy and Robert Osburn
[4].

Some of the instances considered in [13] have appealing corresponding interpretations in overpartitions.
For example, let us define “top heavy” overpartitions (TH-overpartitions) as overpartitions in which there
is both an overlined and a non-overlined largest part.

Now as we will see, it is a simple matter to show:

Theorem 1.1. The number of TH-overpartitions of n equals one half the number of over partitions of n
that have no 1’s.

For example, there are three top-heavy overpartitions of 5 (namely, 2+2+1, 2+2+1, 1+1+1+1+1),
and there are six overpartitions of 5 without 1’s (namely, 5, 5, 3 + 2, 3 + 2, 3 + 2, and 3 + 2).

However, the related Legendre theorem for TH-overpartitions is a surprise.

Theorem 1.2. Let THE(n) denote the number of TH-overpartitions with an even number of parts minus
the number with an odd number of parts. Then

THE(n) =

{
(−1)n(2j − 1), if j2 < n < (j + 1)2 for some j ∈ Z+,

(−1)n(2j − 2), if n = j2 for some j ∈ Z+.

Apart from top heavy overpartitions, there are three further classes of overpartitions suggested by
the work of Garvan and Jennings-Shaffer. Namely, we shall consider (1) topped overpartitions where
there must be an overlined largest part; (2) bottom heavy overpartitions where there must be both an
overlined and a non-overlined smallest part, and (3) bottomed overpartitions where there must be an
overlined smallest part.

This paper is organized as follows. In Section 2, we provide an analytic proof of each of Theorems 1.1
and 1.2 along with the Legendre theorem on topped overpartitions. Their combinatorial proofs with
further combinatorial results will be given in Section 4. The Legendre theorems on bottom heavy over-
partitions and bottomed overpartitions will be given in Section 3.
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2. Topped/Top Heavy Overpartitions

We first define topped overpartitions and top-heavy overpartitions.

Definition 2.1. An overpartition is called a “topped” overpartition (or T-overpartition) if there must be
an overlined largest part. Also, an overpartition is called a “top-heavy” overpartition (or TH-overpartition)
if there is both an overlined and a non-overlined largest part.

Then we can easily see that the generating function for T-overpartitions is
∞∑

n=1

qn(−q; q)n−1
(q; q)n

=
1

2

∞∑
n=0

qn(−1; q)n
(q; q)n

− 1

2

=
1

2

(−q; q)∞
(q; q)∞

− 1

2
. (7)

Here and in the sequel, we adopt the following q-series notation:

(a; q)n := (1− a)(1− aq) · · · (1− aqn−1),

(a; q)∞ := lim
n→∞

(a; q)n.

Also, the generating function for TH-overpartitions is
∞∑

n=1

q2n(−q; q)n−1
(q; q)n

=

∞∑
n=1

qn(−q; q)n
(q; q)n

−
∞∑

n=1

qn(−q; q)n−1
(q; q)n

= −1 +
(−q2; q)∞

(q; q)∞
+

1

2
− 1

2

(−q; q)∞
(q; q)∞

=
1

2

(−q2; q)∞
(q2; q)∞

− 1

2
. (8)

Note that Theorem 1.1 is a direct implication of (8).
Now, recall the Rogers-Fine identity [7, p.15]:

∞∑
n=0

(α; q)n
(β; q)n

τn =

∞∑
n=0

(α; q)n(ατq/β; q)nβ
nτnqn

2−n(1− ατq2n)

(β; q)n(τ ; q)n+1
. (9)

Theorem 2.1. We have
∞∑

n=1

qn(q; q)n−1
(−q; q)n

=

∞∑
n=1

(−1)n−1qn
2

. (10)

Proof.
∞∑

n=1

qn(q; q)n−1
(−q; q)n

= − d

dz

∣∣∣∣
z=1

∞∑
n=0

(z; q)nq
n

(−q; q)n

= − d

dz

∣∣∣∣
z=1

∞∑
n=0

(z; q)n(−zq; q)n(−1)nqn
2+n(1− zq2n+1)

(−q; q)n(q; q)n+1

=
q

1− q
+

∞∑
n=1

(q; q)n−1(−q; q)n(−1)nqn
2+n(1− q2n+1)

(−q; q)n(q; q)n+1

=
q

1− q
+

∞∑
n=1

(−1)nqn
2+n(1− q2n+1)

(1− qn)(1− qn+1)

=
q

1− q
+

∞∑
n=1

(−1)nqn
2+n
(
1− qn+1 + qn+1(1− qn)

)
(1− qn)(1− qn+1)

=
q

1− q
+

∞∑
n=1

(−1)nqn
2+n

1− qn
+

∞∑
n=1

(−1)nq(n+1)2

(1− qn+1)
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=

∞∑
n=1

(−1)nqn
2+n

1− qn
−
∞∑

n=1

(−1)nqn
2

1− qn

=

∞∑
n=1

(−1)n−1qn
2

,

where the second equality follows from (9). �

Remark. We can prove Theorem 2.1 using (7). Since a minus sign is assigned to each part of T-
overpartitions, we replace q by −q in (7). Then

1

2

(q; q)∞
(−q; q)∞

− 1

2
=

1

2

(
1 + 2

∞∑
n=1

(−1)nqn
2)
− 1

2
=

∞∑
n=1

(−1)nqn
2

,

where the first equality follows from

(q; q)∞
(−q; q)∞

=

∞∑
n=−∞

(−1)nqn
2

. (11)

Theorem 2.2. We have
∞∑

n=1

q2n(q; q)n−1
(−q; q)n

=

∞∑
n=1

(−1)n−1qn
2

+

∞∑
n=1

(−1)n(2n− 1)qn
2 (

1− q + q2 −+ · · ·+ q2n
)
. (12)

Note that Theorem 1.2 is a direct implication of the above theorem.

Proof. We have already proved that

∞∑
n=1

qn(q; q)n−1
(−q; q)n

=

∞∑
n=1

(−1)n−1qn
2

.

Hence
∞∑

n=1

q2n(q; q)n−1
(−q; q)n

+

∞∑
n=1

(−1)nqn
2

=

∞∑
n=1

q2n(q; q)n−1
(−q; q)n

−
∞∑

n=1

qn(q; q)n−1
(−q; q)n

= −
∞∑

n=1

qn(q; q)n
(−q; q)n

= 1−
∞∑

n=0

qn(q; q)n
(−q; q)n

= 1−
∞∑

n=0

(q; q)n(−q2; q)n(−1)nqn
2+n(1− q2n+2)

(−q; q)n(q; q)n+1

= 1− 1

1 + q

∞∑
n=0

(1 + qn+1)2(−1)nqn
2+n

= 1− 1

1 + q

( ∞∑
n=0

(−1)nqn
2+n + 2

∞∑
n=0

(−1)nq(n+1)2 +

∞∑
n=0

(−1)nqn
2+3n+2

)

= 1− 1

1 + q

( ∞∑
n=0

(−1)nqn
2+n + 2

∞∑
n=0

(−1)nq(n+1)2 −
∞∑

n=1

(−1)nqn
2+n

)

=
q

1 + q
+

2

1 + q

∞∑
n=1

(−1)nqn
2

, (13)

where the fourth equality follows from (9).
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On the other hand, the series we want is close to

∞∑
n=1

(−1)n(2n− 1)qn
2

(1− q + q2 − q3 + · · ·+ q2n)

=

∞∑
n=1

(−1)n(2n− 1)qn
2 1 + q2n+1

1 + q

=
1

1 + q

∞∑
n=1

(−1)n(2n− 1)qn
2

+
1

1 + q

∞∑
n=2

(−1)n−1(2n− 3)qn
2

=
2

1 + q

∞∑
n=1

(−1)nqn
2

+
q

1 + q
. (14)

Comparing (13) with (14), we see that

∞∑
n=1

q2n(q; q)n−1
(−q; q)n

= −
∞∑

n=1

(−1)nqn
2

+
q

1 + q
+

2

1 + q

∞∑
n=1

(−1)nqn
2

= −
∞∑

n=1

(−1)nqn
2

+

∞∑
n=1

(−1)nqn
2

(2n− 1)
(
1− q + q2 −+ · · ·+ q2n

)
,

which proves the desired result. �

Remark. We can also prove Theorem 2.2 differentiating the Rogers-Fine identity in (9) as we did in the
proof of Theorem 2.1, but we omit it.

3. Bottomed/Bottom Heavy Overpartitions

As companions of topped overpartitions and top-heavy overpartitions, we define bottomed overparti-
tions and bottom-heavy overpartitions.

Definition 3.1. An overpartition is called a “bottomed” overpartition (or B-overpartition) if there must
be an overlined smallest part. Also, an overpartition is called a “bottom-heavy” overpartition (or BH-
overpartition) if there is both an overlined and a non-overlined largest part.

Then one can easily see that the generating function for B-overpartitions is given as follows:

∞∑
n=1

qn(−qn+1; q)∞
(qn; q)∞

=
(−q; q)∞
(q; q)∞

∞∑
n=1

qn(q; q)n−1
(−q; q)n

= − (−q; q)∞
(q; q)∞

∞∑
n=1

(−1)nqn
2

= − (−q; q)∞
(q; q)∞

(
1

2

(q; q)∞
(−q; q)∞

− 1

2

)
=

1

2

(−q; q)∞
(q; q)∞

− 1

2
, (15)

where the second equality follows from (10) and the third equality follows from (11). Also, the generating
function for BH-overpartitions is given as follows:

∞∑
n=1

q2n(−qn+1; q)∞
(qn; q)∞

=
(−q; q)∞
(q; q)∞

∞∑
n=1

q2n(q; q)n−1
(−q; q)n

=
(−q; q)∞
(q; q)∞

(
−
∞∑

n=1

(−1)nqn
2

+

∞∑
n=1

(−1)n(2n− 1)qn
2 (

1− q + q2 − · · ·+ q2n
))
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=
(−q; q)∞
(q; q)∞

(
−
∞∑

n=1

(−1)nqn
2

+
1

1 + q

∞∑
n=1

(−1)n(2n− 1)qn
2

(1 + q2n+1)

)

=
(−q; q)∞
(q; q)∞

(
−
∞∑

n=1

(−1)nqn
2

+
q

1 + q
+

2

1 + q

∞∑
n=1

(−1)nqn
2

)

=
(−q; q)∞
(q; q)∞

(
q

1 + q
+

1− q
1 + q

∞∑
n=1

(−1)nqn
2

)

=
q(−q2; q)∞

(q; q)∞
+

1− q
1 + q

(
1

2
− 1

2

(−q; q)∞
(q; q)∞

)
=
q(−q2; q)∞

(q; q)∞
− 1

2

(−q2; q)∞
(q2; q)∞

+
1− q

2(1 + q)
, (16)

where the second equality follows from (12) and the fifth equality follows from (11).

Theorem 3.1 (Legendre theorem for B-overpartitions). Let BE(n) denote the number of B-overpartitions
with an even number of parts minus the number with an odd number of parts. Then

BE(n) =

{
(−1)k, if n = k2 for some k ∈ Z+,

0, otherwise.

Proof. We assign a minus sign to each part of B-overpartitions. Thus, by its generating function in (15),
∞∑

n=1

−qn(qn+1; q)∞
(−qn; q)∞

=
1

2

(q; q)∞
(−q; q)∞

− 1

2
=

∞∑
n=1

(−1)nqn
2

,

where the last equality follows from (11). �

Theorem 3.2 (Legendre theorem for BH-overpartitions). Let BHE(n) denote the number of BH-
overpartitions with an even number of parts minus the number with an odd number of parts. Then

BHE(n) =

{
0, if n = k2 for some k ∈ Z+,

(−1)n, otherwise.

Proof. We assign a minus sign to each part of BH-overpartitions. Then
∞∑

n=1

q2n(qn+1; q)∞
(−qn; q)∞

=
(q; q)∞

(−q; q)∞

∞∑
n=1

q2n(−q; q)n−1
(q; q)n

=
(q; q)∞

(−q; q)∞

(
1

2

(−q2; q)∞
(q2; q)∞

− 1

2

)
=

1

2

(1− q)
(1 + q)

− 1

2

(q; q)∞
(−q; q)∞

= − q

1 + q
−
∞∑

n=1

(−1)nqn
2

,

where the second equality follows from (8) and the fourth equality follows from (11). �

4. Combinatorial results

4.1. Prelimiaries. The Ferrers graph of a partition is a left-juxtaposed array of dots in which each row
has as many dots as each part. Throughout this paper, for an overpartition, we will denote an overlined
part by a row ending with a ∗ in its Ferrers graph. For instance, the Ferrers graph of the overpartition
5 + 5 + 4 + 3 + 3 + 2 is shown in Frigure 1.

For a nonnegative integer d, we also define the d-Durfee rectangle of an overpartition by the largest
(n + d) × n rectangle that fits in the Ferrers graph. Here we allow no ∗’s in the Durfee rectangle. The



LEGENDRE THEOREMS FOR SUBCLASSES OF OVERPARTITIONS 7

∗

∗
∗

∗

Figure 1. π : 5 + 5 + 4 + 3 + 3 + 2.

0-Durfee rectangle becomes the Durfee square. For the overpartition shown in Figure 1, the Durfee suqare
is the 3× 3 square and the 1-Durfee rectangle is the 4× 3 rectangle. The d-Durfee rectangle divides the
Ferrers graph into three sections, namely the rectangle, the dots below the rectangle, and the dots to the
right of the rectangle. For an overpartition π, we denote by πB the overpartition consisting of the dots
below the rectangle, and by πR the conjugate of the overpartiton consisting of the dots to the right of
the rectangle. If there is a ∗ in row n + d + 1 and column n + 1, then we assume that the ∗ belongs to
πB . For π in Figure 1, if we take the Durfee square, we obtain

πB = 3 + 3 + 2, πR = 3 + 2 + 0. (17)

For the 1-Durfee rectangle,

πB = 3 + 2, πR = 3 + 2 + 0.

We now define four statistics on an overpartition π:

• r(π): smallest overlined part of πB ,
• r(π): smallest non-overlined part of πB .
• c(π): smallest overlined part of πR,
• c(π): smallest non-overlined part of πR,

If there are no such parts, then we define these statistics to be infinity for convenience. From (17), we
see that

r(π) = 2, r(π) = 3, c(π) = 0, c(π) = 3.

4.2. Combinatorial proof of Theorem 2.1. The series in Theorem 2.1 generates the excess of the
number of T-overpartitions with an even number of parts over those with an odd number of parts. Call
this number TE(n).

Theorem 4.1 (Legendre theorem for T-partitions). We have

TE(n) =

{
(−1)k, if n = k2 for some k ∈ Z+,

0, otherwise.
(18)

For instance,
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n = 1 1̄ TE(1)=1

n = 2 2̄, 1̄ + 1 TE(2) = 1− 1 = 0

n = 3 3̄, 1̄ + 1 + 1 TE(3) = 2− 2 = 0
2̄ + 1, 2̄ + 1̄

n = 4 4̄, 2̄ + 1 + 1, 2̄ + 1̄ + 1 TE(4) = 3− 4 = −1
3̄ + 1, 3̄ + 1̄, 2̄ + 2, 1̄ + 1 + 1 + 1

n = 5 5̄, 3̄ + 1 + 1, 3̄ + 1̄ + 1, 2̄ + 2 + 1, 2̄ + 2 + 1̄, 1̄ + 1 + 1 + 1 + 1 TE(5) = 6− 6 = 0
4̄ + 1, 4̄ + 1̄, 3̄ + 2, 3̄ + 2̄, 2̄ + 1 + 1 + 1, 2̄ + 1̄ + 1 + 1

6̄, 4̄ + 1 + 1, 4̄ + 1̄ + 1, 3̄ + 2 + 1, 3̄ + 2̄ + 1, 3̄ + 2 + 1̄, 3̄ + 2̄ + 1̄,
n = 6 2̄ + 2 + 2, 2̄ + 1 + 1 + 1 + 1, 2̄ + 1̄ + 1 + 1 TE(6) = 10− 10 = 0

5̄ + 1, 5̄ + 1̄, 4̄ + 2, 4̄ + 2̄, 3̄ + 3, 3̄ + 1 + 1 + 1,
3̄ + 1̄ + 1 + 1, 2̄ + 2 + 1 + 1, 2̄ + 2 + 1̄ + 1, 1̄ + 1 + 1 + 1 + 1 + 1

In this section, we will provide a combinatorial proof of (18).
For T-overpartitions, we stick with the 1-Durfee rectangle. Since the largest part of a T-overpartition

is overlined, the first row (i.e, last column) always ends with a ∗, and we exclude this column from πR.
For π in Figure 2, we have

πB = 6 + 4 + 4 + 3, πR = 7 + 5 + 3 + 3 + 2,

and

r(π) = 3, r(π) = 4, c(π) = 2, c(π) = 3.

Let the 1-Durfee rectangle be of size (n + 1) × n. Since the last column ending with ∗ is removed from
πR, we see that

1 ≤r(π) ≤ n,
1 ≤r(π) ≤ n,
1 ≤c(π) ≤ n,
1 ≤c(π) ≤ n+ 1,

if these are finite. For a T-overpartition π of n, we define its weight as wt(π) = (−1)`−1qn, where ` is
the number of parts.

We now define two involutions.

• First involution ι1: If both r(π) and c(π) are greater than n, then we do nothing. If r(π) < c(π),
then we move the row of length r(π) to πR creating a new column, and then add a ∗ under the last
dot of the new column. If c(π) ≤ r(π), then we delete the ∗ in the column of length c(π) and move
the column to πB creating a new row. Clearly, this mapping is a weight-preserving involution
since the number of dots remains the same. In addition, the number of parts is increased or
decreased by 1 after the column or row is moved. Thus it is a sign-reversing involution in this
case.
• Second involution ι2: If both r(π) and c(π) are greater than n, then we do nothing. If r(π) ≤ c(π),

then we delete the ∗ and move the row of length r(π) to πR creating a new column. If c(π) < r(π),
then we move the column of length c(π) to πB creating a new row, and then add a ∗ at the end.
In this case, there is one exception, namely if c(π) = n and there is no part of length n + 1 in
πR, then this map is not admissible because the resulting partition cannot be an overpartition.
Thus in this case, we do nothing. Clearly, this mapping is a weight-preserving involution since
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∗

∗

∗

∗

πR

πB

Figure 2. π : 11 + 11 + 10 + 8 + 8 + 7 + 7 + 6̄ + 4 + 4 + 3.

∗

∗

∗

ι1(π)R

ι1(π)B

Figure 3. ι1(π) : 10 + 10 + 10 + 8 + 8 + 7 + 7 + 6 + 4 + 4 + 3 + 2.

the number of dots remains the same. In addition, the number of parts is increased or decreased
by 1 after the column or row is moved. Thus it is a sign-reversing involution.

For instance, let π be the T-overpartition given in Figure 2. For the first involution ι1 we compare r(π)
with c(π), i.e, c(π) = 2 ≤ 4 = r(π), and we obtain the T-overpartition shown in Figure 3. For the second
involution ι2, we compare c(π) with r(π), i.e, c(π) = 3 ≥ 3 = r(π), and we obtain the T-overpartition
shown in Figure 4.

We are now ready to prove (18).

• Step 1: Apply ι1 on the set of T-overpartitions. Since ι1 is sign-reversing on its non-fixed points,
the non-fixed points are cancelled out.
• Step 2: Then apply ι2 on the fixed point set under ι1. Since ι2 is also sign-reversing on its

non-fixed points, all the non-fixed points are cancelled out.

Let us identify the fixed points. First, the fixed points of ι1 are T-overpartitions π in which πR has no
overlined parts (i.e., c(π) =∞) and πB has no non-overlined parts (i.e., r(π) =∞).
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∗

∗

∗
ι2(π)R

ι2(π)B

Figure 4. ι2(π) : 12 + 12 + 11 + 8 + 8 + 7 + 7 + 6 + 4 + 4.

Note that if πB has an overlined part of length n, then there must be a part of length n + 1 in πR.
Thus, among those T-overpartitions fixed under ι1, fixed under ι2 are the T-overpartitions in which the
parts of πR are of length either n+ 1 or n, but not both, (i.e., c(π) =∞ and c(π) = n, n+ 1,∞), and πB
has no parts (i.e., r(π) =∞ and r(π) =∞). Thus, after applying ι1 and then ι2 successively, we obtain
the following identity:

∞∑
n=1

TE(n)qn =
−q

1− q
+

∞∑
n=1

(−1)n+1qn
2+n

1− qn
+

∞∑
n=1

(−1)n+1qn
2+2n+1

1− qn+1
, (19)

where q/(1 − q) accounts for T-overpartitions with only one part (i.e., the 1-Durfee rectangle is of size
1 × 0), and the first summation accounts for the fixed T-overpartitions π with πB being the empty
partition and πR having no parts of length n + 1, and the second summation accounts for the fixed
T-overpartitions π with πB being empty and πR having at least one part of length n+ 1.

For further cancellation, we do the following steps:

• Step 3: Among the remaining T-overpartitions after Step 2, namely the T-overpartitions gen-
erated by the right hand side of (19), we consider T-overpartitions with at least one (n + 1)
in πR, namely T-overpartitions generated by the second summation in (19). We consider the
T-overpartitions with at least two (n+ 1)’s that are generated by the second sum. We move one
of the (n+ 1)’s to the empty partition πB . Since there are at least two (n+ 1)’s, this operation is
well defined resulting in a T-overpartition with its 1-Durfee rectangle being of size (n+2)×(n+1)
and the columns to the right of the rectangle being of length n + 1 if any. Since the number of
parts is increased by 1, it cancels T-overpartitions generated by the first summation except the
ones with the 1-Durfee rectangle of size 2 × 1. Figure 5 shows this cancellation ocurring in this
step. Thus we have

∞∑
n=1

TE(n)qn =
−q

1− q
+

q2

1− q
+

∞∑
n=2

(−1)n+1q(n+1)2 , (20)

where q2/(1− q) accounts for the T-overpartitions with the 2× 1 rectangle, and the summation
accounts for the T-overpartitions with exactly one (n+ 1) in πR.
• Step 4: Among the remaining T-overpartitions, if a T-overpartition has the 2× 1 rectangle (i.e.,

generated by q2/(1−q)), then we can move the dot in the second row to the first row, which cancels
the T-overpartition with only one part greater than 1. Thus the final remaining T-overpartitions
are the ones with an (n+ 1)× n rectangle and exactly one part of length (n+ 1) in πR. Thus we
have

∞∑
n=1

TE(n)qn =

∞∑
n=1

(−1)nqn
2

,
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∗ ∗

⇔

Figure 5. Step 4

which proves (18) as desired.

4.3. Combinatorial proof of Theorem 2.2. The series in Theorem 2.2 generates the excess of the
number of TH-overpartitions with an even number of parts over those with an odd number of parts. Call
this number THE(n).

Theorem 4.2 (Legendre theorem for TH-overpartitions).

THE(n) =

{
(−1)n(2k − 2), if n = k2,

(−1)n(2k − 1), if k2 < n < (k + 1)2
(21)

for some k ∈ Z+.

For instance,

n = 1 No partitions THE(1)=0

n = 2 1̄ + 1 THE(2) = 1

n = 3 1̄ + 1 + 1 THE(3) = −1

n = 4 2̄ + 2, 1̄ + 1 + 1 + 1 THE(4) = 2

n = 5 2̄ + 2 + 1, 2̄ + 2 + 1̄, 1̄ + 1 + 1 + 1 + 1 THE(5) = −3

n = 6 3̄ + 3, 2̄ + 2 + 1 + 1, 2̄ + 2 + 1̄ + 1, 1̄ + 1 + 1 + 1 + 1 + 1 THE(6) = 4− 1 = 3
2̄ + 2 + 2

2̄ + 2 + 2 + 1, 2̄ + 2 + 2 + 1̄
n = 7 3̄ + 3 + 1, 3̄ + 3 + 1̄ THE(7) = 2− 5 = −3

2̄ + 2 + 1 + 1 + 1, 2̄ + 2 + 1̄ + 1 + 1, 1̄ + 1 + 1 + 1 + 1 + 1 + 1

We now prove (21) combinatorially. The proof is very similar to the proof of (18). The involutions
ι1 and ι2 will be applied first and further cancellations will follow. Hence we will present the outline
highlighting the differences.

First, for a TH-overpartition π of n, we define its weight as wt(π) = (−1)`qn, where ` is the number of
parts and we will stick with the 2-Durfee rectangle. Let the 2-Durfee rectangle of π be of size (n+ 2)×n.
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Then, by the definitions of πB and πR, we see that

1 ≤r(π) ≤ n,
1 ≤r(π) ≤ n,
2 ≤c(π) ≤ n+ 1,

2 ≤c(π) ≤ n+ 2.

if they are finite. In order for the involutions ι1 and ι2 to be defined well on the set of TH-overpartitions,
we require r(π) ≥ 2 and r(π) ≥ 2. We apply the involutions ι1 and ι2 successively as follows.

• Step 1: Apply ι1 on TH-overpartitions.
• Step 2: Then apply ι2 on the fixed point set under ι1.

First, TH-overpartitions with 2 ≤ r(π), c(π) ≤ n are cancelled under ι1, and then TH-overpartitions with
2 ≤ r(π), c(π) ≤ n − 1 are cancelled under ι2. If r(π) = n, then there must be a non-overlined part of
length n+ 2 in πR, so these TH-overpartitions with r(π) = n cancel TH-overpartitions with at least one
n+ 2 and one n in πR. Thus the fixed points are TH-overpartitions π such that

D1. the 2-Durfee rectangle is of size 2× 0, or
D2. the 2-Durfee rectangle is of size 3× 1, or
D3. the 2-Durfee rectangle is of size (n+ 2)× n for some n > 1, and πB is an overpartition in which

parts are 1 or 1, and πR is an overpartition in which overlined parts are n+ 1, and non-overlined
parts are (a) n or n+ 1, or (b) n+ 1 or n+ 2 with at least one n+ 2.

Note that the TH-overpartitions in D1 are generated by

q2

(1− q2)
,

and the TH-overpartitions in D2 are generated by

−q3

(1 + q)(1− q2)
+

−q3 · q2

(1 + q)(1− q2)
+
−(1− q)q6(1 + q2)

(1 + q)(1− q2)(1− q3)
,

where the first term generates TH-overpartitions with πR having 2’s if any, the second term generates TH-
overpartitions with πR having one 2 and 2’s if others exist, and the third term generates TH-overpartitions
with at least one 3 in πR . Also, we note that TH-overpartitions in D3 are generated by

1− q
1 + q

(
(−1)nq(n+2)n(1 + qn+1)

(1− qn)(1− qn+1)
+

(−1)nq(n+2)n+(n+2)(1 + qn+1)

(1− qn+1)(1− qn+2)

)
,

where (1 − q)/(1 + q) accounts for the parts 1 and 1 in πB , and the first term accounts for the TH-
overpartitions of type (a), and the second term accounts for the TH-overpartitions of type (b). Thus the
generating function for the fixed points is

q2

1− q2
−
(

q3(1 + q2)

(1 + q)(1− q2)
+

(1− q)q6(1 + q2)

(1 + q)(1− q2)(1− q3)

)
+

1− q
1 + q

( ∞∑
n=2

(−1)nq(n+2)n(1 + qn+1)

(1− qn)(1− qn+1)
+

∞∑
n=2

(−1)nq(n+2)n+(n+2)(1 + qn+1)

(1− qn+1)(1− qn+2)

)
. (22)

For further cancellation, we do the following steps:

• Step 3: Among the TH-overpartitions generated by the second sum in (22), we consider TH-
overpartitions with at least one (n + 2) and one n+ 1 in πR. We delete n+ 1 and create one
(n+1) in πB . Since there is at least one (n+2) in πR, this operation is well defined resulting in a
TH-overpartition with its 2-Durfee rectangle of size (n+3)× (n+1) and πR with parts (n+1) or
(n+ 2). Since the number of parts is increased by 1, it cancels the TH-overpartitions generated
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by (−1)nq(n+2)n/(1− qn)(1− qn+1) in the first sum for n > 2. Thus (22) reduces to

q2

1− q2
−
(

q3(1 + q2)

(1 + q)(1− q2)
+

(1− q)q6(1 + q2)

(1 + q)(1− q2)(1− q3)

)
+

(1− q)q(2+2)2

(1 + q)(1− q2)(1− q3)

+
1− q
1 + q

( ∞∑
n=2

(−1)nq(n+2)n+(n+1)

(1− qn)(1− qn+1)
+

∞∑
n=2

(−1)nq(n+2)n+(n+2)

(1− qn+1)(1− qn+2)

)
, (23)

where the fourth term accounts for the term for n = 2 in the first sum in (22).
• Step 4: We now take a TH-overpartition generated by the second sum in (23) with πR having

at least two (n + 2)’s and one (n + 1) in πR. By moving the (n + 1) to πB , we obtain a TH-
overpartition in which the 2-Durfee rectangle is of size (n + 3)× (n + 1), πB is an overpartition
with no parts > 1, and πR is an overpartition with parts (n+ 1) or (n+ 2), at least one (n+ 2).
Thus this cancels the TH-overpartitions generated by the first sum for n > 2, and (23) reduces
to

q2

1− q2
−
(

q3(1 + q2)

(1 + q)(1− q2)
+

(1− q)q6(1 + q2)

(1 + q)(1− q2)(1− q3)

)
+

(1− q)q(2+2)2

(1 + q)(1− q2)(1− q3)

+
(1− q)q(2+2)2+(2+1)

(1 + q)(1− q2)(1− q3)
+

1− q
1 + q

( ∞∑
n=2

(−1)nq(n+2)n+(n+2)

1− qn+1
+

∞∑
n=2

(−1)nq(n+2)n+2(n+2)

1− qn+2

)
, (24)

where the fifth term accounts for the term for n = 2 in the first sum of (23), the first sum accounts
for the TH-overpartitions generated by the second sum in (23) with πR having exactly one (n+2)
and (n+1)’s only if others exist, and the second sum accounts for the TH-overpartitions in which
πR has at least two (n+ 2)’s and no (n+ 1)’s.
• Step 5: We now take a TH-overpartition generated by the second sum in (24) with at least

three (n + 2)’s. We now move one (n + 2) from πR to πB to create a TH-overpatition with an
(n+ 3)× (n+ 1) rectangle with πR having at least one (n+ 3) and (n+ 2)’s only if others exist,
which is generated by the first sum in (24). Thus (24) reduces to

q2

1− q2
−
(

q3(1 + q2)

(1 + q)(1− q2)
+

(1− q)q6(1 + q2)

(1 + q)(1− q2)(1− q3)

)
+

(1− q)q(2+2)2

(1 + q)(1− q2)(1− q3)

+
(1− q)q(2+2)2+(2+1)

(1 + q)(1− q2)(1− q3)
+

(1− q)q(2+2)2+(2+2)

(1 + q)(1− q3)
+

1− q
1 + q

∞∑
n=2

(−1)nq(n+2)n+2(n+2), (25)

where the sixth term is the term for n = 2 in the first sum of (24) and the sum generates the
fixed TH-overpartitions, namely the 2-Durfee rectangle is of size (n+ 2)×n and πR has only two
(n+ 2)’s.

• Step 6: We can define further cancellations combinatorially for

q2

1− q2
− q3(1 + q2)

(1 + q)(1− q2)
− (1− q)q6(1 + q2)

(1 + q)(1− q2)(1− q3)
+

(1− q)q(2+2)2

(1 + q)(1− q2)(1− q3)

+
(1− q)q(2+2)2+(2+1)

(1 + q)(1− q2)(1− q3)
+

(1− q)q(2+2)2+(2+2)

(1 + q)(1− q3)
,

which reduces to

q2 + (1− q)(q4 + q9)

1 + q
.

But we skip the details.

Also, note that the sum in (25) can be written as

∞∑
n=4

(−1)nqn
2

.
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Thus we have
∞∑

n=1

THE(n)qn =
q2

1 + q
+

1− q
1 + q

∞∑
n=2

(−1)nqn
2

,

from which we see that the remaining TH-overpartitions are the ones with the Durfee square of size n×n
and parts 1 or 1 below it. We can easily see that this proves (21). If n = k2 for some k, then possible
sides d of the Durfee square are ≤ k and for d, 1 < d < k, there are k2 − d2 copies of 1’s and one of
them can be overlined, so there are two such TH-overpartitions. If d = 1 or k, there is only one such
TH-overpartition each. Thus (2k − 2) TH-overparitions will remain. We can similarly show the n 6= k2

case, and we skip the details.

4.4. Further results. In this section, we discuss some combinatorial results that involve T-overpartitions
and TH-overpartitions.

4.4.1. Result 1. By (7), we have

1

2

(−q; q)∞
(q; q)∞

− 1

2
=

1

2(q; q)∞

(
(−q; q)∞ − (q; q)∞

)
=

1

(q; q)∞

∞∑
n=1

q(2n−1)n

(q; q)2n−1
,

from which we can deduce that T (n) counts the number of overpartitions of n in which the number
of overlined parts is odd. This can also be proved combinatorially as follows. We set up a bijection
between T-overpartitions and and overpartitions with an odd number of overlined parts. Let λ be a T-
overpartition. If there are an odd number of overlined parts, we do nothing. If there are an even number
of overlined parts, we remove the overline of the largest overlined part to change it to an non-overlined
part.

4.4.2. Result 2. We have the following analogous result for TH-overpartitions. By (8),

1

2

(−q2; q)∞
(q2; q)∞

− 1

2
=

1

2(q2; q)∞

(
(−q2; q)∞ − (q2; q)∞

)
=

1

(q2; q)∞

∞∑
n=1

q(2n−1)(n+1)

(q; q)2n−1
,

which yields that TH(n) counts the number of overpartitions of n in which the parts are greater than 1
and the number of overlined parts is odd. The same combinatorial reasoning works for this result as well.

4.4.3. Result 3. It is easy to show that the number of overpartitions of n also equals the number of
partitions into red and blue parts with no even blue parts allowed. Namely,

(−q; q)∞
(q; q)∞

=
1

(q; q)∞(q; q2)∞
.

By (7), we have

1

2

(−q; q)∞
(q; q)∞

− 1

2
=

1

2

(
1

(q; q)∞(q; q2)∞
− 1

)
=

∑∞
n=1(−1)n−1qn

2

(q; q)∞(q; q2)∞

=
1

(q; q)∞(q; q2)∞

∞∑
n=0

q(2n+1)2(1− q4n+3)

=
1

(q; q)∞

∞∑
n=0

q(2n+1)2

(q; q2)2n+1(q4n+5; q2)∞
. (26)
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From (26) it is not too hard to show that T (n) is equal to the number of partitions into red and blue
parts with no even blue parts allowed and in addition, the first MISSING odd blue part is congruent to
3 mod 4. E.g. T (5) = 12, the topped overpartitions are 5̄, 4̄ + 1, 4̄ + 1̄, 3̄ + 2, 3̄ + 2̄, 3̄ + 1 + 1, 3̄ + 1̄ + 1, 2̄ +
2 + 1, 2̄ + 2 + 1̄, 2̄ + 1 + 1 + 1, 2̄ + 1̄ + 1 + 1, 1̄ + 1 + 1 + 1 + 1. The twelve of the second type just mentioned
are 4r+ 1b, 3r+ 1r+ 1b, 3r+ 1b+ 1b, 2r+ 2r+ 1b, 2r+ 1b+ 1b+ 1b, 2r+ 1r+ 1b+ 1b, 2r+ 1r+ 1r+ 1b, 1b+
1b+ 1b+ 1b+ 1b, 1r+ 1b+ 1b+ 1b+ 1b, 1r+ 1r+ 1b+ 1b+ 1b, 1r+ 1r+ 1r+ 1b+ 1b, 1r+ 1r+ 1r+ 1r+ 1b.
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