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Abstract

An enmeration method of Erdos is applied to provide a massive
generalization of the theorems of Stanley and Elder on integer parti-
tions.
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1 Introduction

In [4], Erdos provided the asymptotics of the partition function p(n) by
elementary means. His starting point was the identity of Ford [7] (probably
going back to Euler):

np(n) = Zp(n — j)o (), (1.1)

where o(j) is the sum of divisors of j. The standard proof of (1.1) is by
logarithmic differentiation of ([7], also [1, p.98])

> pma" =115 _1qn. (1.2)
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However, Erdos wanted to avoid even this amount of analysis. So he
rewrote (1.1) as follows

np(n) = Z va(n — kv), (1.3)
v>1 k>1
and then he remarked: ”We easily obtain (1.3) by adding up all the partitions
of n, and noting that v occurs in p(n — v) partitions.” We assume he is
telegraphing that v appears twice in p(n — 2v) partitions, etc.
This same counting method makes transparent a very general theorem in
partitions.

Definition 1. A partition configuration, A, is a non-decreasing sequence of
non-negative integers, (ai, .. .,ax) with length k and weight w(A) = a;+as+
e ag

Definition 2. A partition, A : A+ X+ -+ Xy (1< A < Ao - <\ ) s
said to have a partition configuration A if there is a subset of parts of \ of
the form ay + j,as + 7,...,ax + J for some j > 1.

For example, the partition (2 +4 +4+ 5+ 84 9) contains an instance of

A =(0,3,6,7) because the parts 2,5,8,9 exceed by 2 the successive entries
of A.

Theorem 1. Given a partition configuration A, in each partition of n we
count the number of distinct configurations A therein and then sum over all
partitions of n. Call this sum pa(n). Then

pa(n) = p(k;n — w(A)), (1.4)
where p(k;n) is the total number of appearances of k in the partitions of n.

As an example of Theorem 1, we take A : (0,1,2) (having length k = 3
and weight w(A) = 3) and n = 10. The partitions of 10 containing the
partition configuration Aare 1 +1+14+14+14+24+3, 1+1+1+2+2+ 3,
142424243, 1414243+ 3 and 1+ 2+ 3 + 4 which contain A
1+1+14+142=6 times. So pa(10) = 6. As for p(3;10 — 3) = p(3;7) we
see that the partitions of 7 containing 3’sare 1 +1+1+1+4+3, 1+1+2+4 3,
242+43,1+3+3,3+4. Sop(3;7) =14+1+1+2+1 =6, the total number
of 3’s in the partitions of 7.

In section 2, we use the Erdés method to provide a short proof of Theorem
1 together with the theorems of Elder and Stanley. In section 3, we extend
these ideas to a question concerning divisibility restrictions on parts. We
conclude with some general observations.
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2 Proof of Theorem 1.

We remark following Erdos that to obtain p4(n) there must be p(n — ((a; +
j)+ -+ (ax + j))) partitions which contain the partition configuration A
in the form
(a1 +7) + (a2 + ) + -~ + (a +J).
Hence
e q(j+a1)+(j+a2)+~--+(j+ak)
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n>0
and Theorem 1 follows by comparing coefficients of ¢" in the extremes of
(2.1). 0

Corollary 2 (Stanley’s Theorem [2],[8]). The number of 1’s in the partitions
of n is equal to the number of parts that appear at least once in a given
partition of n, summed over all partitions of n.

Proof. Take A : (0) in Theorem 1. O

A more general theorem is attributed to Paul Elder.

Corollary 3 (Elder’s Theorem [2][8]). The number of j’s appearing in the
partitions of n is equal to the number of parts that appear at least j times in
a given partition of n, summed over all partitions of n.

Proof. Take A :(0,0,...,0) of length j in Theorem 1. O

Corollary 4. In each partition of n count the number of sequences of consec-
utive integers of length k. Then sum these numbers over all partitions of n.
This equals the number of appearances of k in the partitions of n—k(k—1)/2.

Proof. In Theorem 1 take A: (0,1,...,k—1). O



3 Divisibility of Parts
The method of Erdos can be further extended in many ways.

Theorem 5. Given k > 1. In each partition of n we count the number of
times a part divisible by k appears uniquely (i.e. is not a repeated part); then
sum these numbers over all the partitions of n. The result is equal to the
number of appearances of 2k in the partitions of n + k.

Example. £ =1, n = 5. There are eight singletons in the partitions of 5:
5,441, 3+2,3+1+1,24+24+1,2+14+1+1,14+1+1+1+4+1. There
are eight 2’s in the partitions of 6: 44+2,3+2+1,242+2,242+1+1,
24+1+14+1+1.

Remark. The case k =1 was published as a problem in [3].

Proof. The generating function for multiples of k£ being unique parts is
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and this last expression is the generating function for the number of appear-
ances of 2k in the partitions of n + k. O

4 Conclusion

It is clear that the scope of Theorem 1 could be generalized to account for
results like Theorem 4. We should also note that Dastidar and Gupta [2]
have generalized the Stanley and Elder theorems where they add what they
term " packets” of size k to partitions, and this count equals the number of
appearances of k in the partitions of n + k.
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Finally we note the charming survey ” A Fine Rediscovery” by R. Gilbert

8], which provides a detailed history of the Stanley and Elder theorems and
points out that N. J. Fine was the original discoverer of both theorems [5],[6].
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