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Abstract
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1 Introduction

In my tribute to Hans Raj Gupta [4], I added a mathematical appendix titled
“Congruences Mod 4.” My object was to provide a mathematical conclusion
to the article that would expand on some of Gupta’s work.

The basis for this study is the following (quoted directly from [4]):

Mod 4 Lemma. Suppose f(z) is a power series in z whose coefficients may
be multiple power series in other variables with integral coefficients. Then

f(z)2 ≡ f(−z)2 (mod 4)

Note: This is easily extended to f(z)2
n ≡ f(−z)2

n
(mod 2n+1)
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Proof.
f(z)2 − f(−z)2 = (f(z) + f(−z)) (f(z) − f(−z)) ,

and the right-hand side is twice the even part of f times twice the odd part
of f . Hence 4 divides all coefficients on the right-hand side.

In [4], this result is used to prove results connected to q-series and parti-
tions. Namely,∑

n≥0

p(n)qn :=
1

(q; q)∞
≡ φ(−q)ψ(−q)

∞∑
n=0

p(n)q4n (mod 4) (1.1)

where

(A; q) =
∞∏
n=0

(1 − Aqn) , (1.2)

φ(q) : =
∞∑

n=−∞

qn
2

, (1.3)

and

ψ(q) : =
∞∑
n=0

qn(n+1)/2. (1.4)

Also given as a corollary of the Mod 4 Lemma:∑
n≥0

p2(n)qn :=
1

(q; q)2∞
≡ ψ(−q)2

∑
n≥0

p2(n)q4n (mod 4). (1.5)

The genesis for the Mod 4 Lemma came from the following observation
about the generating functions for p(n), the number of partitions of n, and
the third order mock theta function of Ramanujan. Namely from [1, p.21],
we know that∑

n≥0

p(n)qn =
1

(q; q)∞
=
∞∑
n=0

qn
2

(q; q)2n
, (1.6)

and [12, p.64]

f(q) :=
∞∑
n=0

qn
2

(−q; q)2n
=

1

(q; q)∞

(
1 + 4

∞∑
n=1

(−1)nqn(3n+1)/2

1 + qn

)
(1.7)
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Thus from (1.6) and (1.7), we see immediately that

f(q) =
∞∑
n=0

qn
2

(−q; q)2n
≡

∞∑
n=0

qn
2

(q; q)2n
=
∑
n≥0

p(n)qn (mod 4). (1.8)

The question was: is there a simple way of proving (1.8) without invoking
(1.6) and (1.7)? The answer was from the Mod 4 Lemma by noting the
z = ±1 cases of

1

(zq; q)2n
≡ 1

(−zq; q)2n
(mod 4). (1.9)

Now the appendix of [4] was intended as a brief and elementary conclusion
to my essay on Gupta. However, the Mod 4 Lemma leads to some intriguing
mathematical discoveries and mysteries. We proceed as follows.

We start with a classical q-series representation of a modular form such
as the q-series in (1.6). We refer to the q-series in (1.7) as a “4-shadow.”
In each case we shall also consider the difference between the two functions
divided by 4 which we call the “shadow difference.” So the shadow difference
between the generating functions for p(n) and f(q) is

1

(q; q)∞

∞∑
n=1

(−1)nqn(3n+1)/2

1 + qn
(1.10)

Our first application of the Mod 4 Lemma is to

Θ3(q) :=

∑∞
n=−∞(−1)nq3n

2∑∞
n=−∞(−1)nqn2 .

In this instance, the 4-shadow that arises is

Θ3(q) = 1 + 2
∞∑
n=1

(q; q)n−1q
n2

(qn; q)n(1 − qn)
.

The shadow difference is

D3(q) :=
(
Θ3(q) − Θ3(q)

)
/8

= q5 + q6 + 3q7 + 4q8 + 7q9 + 10q10 + 16q11 + 20q12

+ 31q13 + 41q14 + 56q15 + 74q16 + 101q17 + 129q18

+ 172q19 + 219q20 + 284q21 + 363q22 + · · · ,
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and the coefficients up through q21 are the OEIS sequence A237833, the
number of partitions of n in which the largest part minus the least part is
greater than the number of parts. However, the coefficients in D3(q) never
again coincide with this partition function.

Partitions of this sort were first computed by Clark Kimberling [10] and
are related to five successive sequences in the OEIS, A237830–A237834.

In q-series and partitions, this is, perhaps, a record for the agreement of
two series before a discrepancy arises. Such an anomaly as this requires an
explanation. Section 3 is devoted to the Kimberling index and Kimberling’s
partition functions.

Section 4 considers a natural 4-shadow connected with (1.4), and Section
5 looks at the partition mysteries arising therefrom including the relationship
to Garden of Eden partitions [8],[9].

The conclusion considers open problems.

2 A φ(q) Quotient

Our first application of 4-shadowing is to the modular form

Θ3(q) :=
φ(−q3)
φ(−q)

. (2.1)

Θ3(q) as a generating function first arose in the work of Corteel and Love-
joy [6, Th 1.5 with k = 3] and is the generating function for overpartitions
into parts not divisible by 3.

L.J. Slater [11, p.152, eq. (6), corrected] showed that

Θ3(q) =
∞∑
n=0

(−1; q)nq
n2

(q; q)n(q; q2)n
= 1 + 2

∞∑
n=1

(−q; q)2n−1qn
2

(q; q)2n−1(1 − qn)
. (2.2)

Thus we have as a 4-shahow for Θ3(q) :

Θ3(q) = 1 + 2
∞∑
n=1

(q; q)2n−1q
n2

(q; q)2n−1(1 − qn)

= 1 + 2
∞∑
n=1

(q; q)n−1q
n2

(qn; q)n(1 − qn)
,

(2.3)
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and the Mod 4 Lemma together with the factor 2 in each term tells us that

Θ3(q) ≡ Θ3(q) (mod 8). (2.4)

Now (1.7) is the underlying deeper result behind the 4-shadowing of the
partition function. So our next step is to obtain the deeper result underlying
(2.4).

Theorem 1.

Θ(q) =
1

(q; q)∞

(
1 −

∞∑
n=1

(−1)n(2n2 − 1)qn(3n−1)/2(1 + qn)

)
. (2.5)

Remark. Congruence (2.4) follows from (2.5) because (2.1) may be rewritten
[11, p.152 eq.(6)] as

Θ3(q) =
1

(q; q)∞

(
1 +

∞∑
n=1

qn(3n−1)/2(1 + qn)

)
, (2.6)

thus

Θ3(q) − Θ3(q) =
1

(q; q)∞

∞∑
n=1

qn(3n−1)/2(1 + qn)
(
1 + (−1)n(2n2 − 1)

)
≡ 0 (mod 8).

(2.7)

Proof. We recall the weak, a = 1 instance of Bailey’s lemma [2, p.27, eq.(3.33)].
Namely if

βn =
n∑

j=0

αj

(q; q)n−j(q; q)n+j

, (2.8)

then
∞∑
n=0

qn
2

βn =
1

(q; q)∞

∞∑
n=0

qn
2

αn. (2.9)

The pair of sequences (αn, βn) is called a Bailey pair with a = 1 (cf.[2,
p.26]). Now by [3, pp. 258–259, eqs. (3.9) and (3.11)], we see that(

(−1)n−1n2q(
n
2)(1 + qn),

(q; q)2n−1
(1 − qn)(q; q)2n−1

)
(2.10)
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is a Bailey pair at a = 1 with stipulation that α0 = β0 = 0.
By [2, p.27, last paragraph](

(−1)nq(
n
2)(1 + qn), δn0

)
(2.11)

is a Bailey pair when a = 1. Hence multiplying (2.10) by 2 and adding (2.11),
we see that (

(−1)n−1(2n2 − 1)q(
n
2)(1 + qn),

2(q; q)2n−1
(1 − qn)(q; q)2n−1

)
(2.12)

forms a Bailey pair at a = 1 subject to the stipulation that the first entry in
each sequence is 1.

Therefore applying (2.12) to (2.9), we see that

Θ3(q) = 1 + 2
∞∑
n=1

(q; q)2n−1q
n2

(q; q)2n−1(1 − qn)

=
1

(q; q)∞

(
1 +

∞∑
n=1

(−1)n−1(2n2 − 1)q(
n
2)(1 + qn)

)
.

A noted in the introduction, the shadow difference

D3(q) =
(
Θ3(q) − Θ3(q)

)
/8

appears to be closely related to a class of partitions considered by C. Kim-
berling. We explore his partitions and their relationship to D3(q) in the next
section.

3 Kimberling Partitions

We first define the Kimberling index, K(π), of a partition π,

K(π) = (largest part of π) − (least part of π) − (number of parts of π) .
(3.1)

Thus the Kimberling index of 11 + 7 + 7 + 4 + 3 is 11 − 3 − 5 = 3.
We now define five partition functions: K>(n), K<(n), K≤(n), K=(n) and

K≥(n). These are the numbers of partitions of n for which the Kimberling
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index is >, <, ≤, = or ≥ 0 respectively. These five sequences correspond, in
order, to sequences A237803–A237834 in the OEIS [10].

There are obvious relations among these partition functions

K<(n) +K=(n) +K>(n) = p(n) (3.2)

K<(n) +K=(n) = K≤(n) (3.3)

K>(n) +K=(n) = K≥(n). (3.4)

Obviously any two of the K’s suffices, along with p(n), to determine the
other three K’s. It is most convenient to treat the generating functions for
K<(n) and K≤(n).

In order to do this efficiently we need some background from q-series
and the theory of partitions. First, we need the Gaussian polynomials of
q-binomial coefficients:[

N
M

]
=

{
(q;q)N

(q;q)M (q;q)N−M
, 0 ≤M ≤ N

0, otherwise
(3.5)

The polynomial

[
N +M
M

]
is the generating function for partitions in

which each part is ≤ N and the number of partis is ≤M [1, p.33, Th. 3.1].
Next we require an identity from Ramanujan’s Lost Notebook [5, p.230,

Entry 9.3.5] which was discovered independently by N.J. Fine [7, p.53, eq.(25.94)]
in greater generality. We use Fine’s notation. Let

Q(a; q) :=
∑
n≥0

(aqm+1; q)mq
m

(q; q)m
, (3.6)

then

Q(a, q) =
1

(q; q)∞

∑
m≥0

(−a)mq3m(m+1)/2 (3.7)

Theorem 2.∑
n≥1

K≤(n)qn =
∑
m≥1

qm(qm+1; q)m−1
(q; q)m

(3.8)

=
1

(q; q)∞

∞∑
n=1

(−1)n−1nqn(3n−1)/2(1 + qn). (3.9)
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Proof. Let us consider those partitions with Kimberling index ≤ 0 that have
n parts and smallest part m. Then schematically, the Ferrers graph of such
partitions is of the form

m

m

n
≤ n− 1

≤ n

The generating function for the nodes in the rectangle is qmn and in the

triangle

[
2n− 1
n− 1

]
. Hence

∑
n≥1

K≤(n)qn =
∑

n,m≥1

qnm
[
2n− 1
n− 1

]
=
∑
n≥1

qn

1 − qn
(q; q)2n−1

(q; q)n−1(q; q)n

=
∑
n≥1

qn(qn+1; q)n−1
(q; q)n

,

which establishes (3.8).
As for (3.9), we note that by (3.7)

Q(aq−1, q) − aqQ(aq, q)

=
1

(q; q)∞

(
∞∑
k=0

(−a)kqk(3k+1)/2 +
∞∑
k=1

(−a)kqk(3k−1)/2

)

=
1

(q; q)∞

(
1 +

∞∑
k=1

(−1)kakqk(3k−1)/2(1 + qk)

) (3.10)
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On the other hand, by (3.6)

Q(aq−1, q) − aqQ(aq, q)

= 1 +
∑
m≥1

qm(aqm; q)m
(q; q)m

−
∑
m≥1

aqm(aqm+1; q)m−1
(q; q)m−1

= 1 +
∑
m≥1

qm(aqm+1; q)m−1
(q; q)m

((1 − aqm) − a(1 − qm))

= 1 + (1 − a)
∑
m

≥ 1
qm(aqm+1; q)m−1

(q; q)m
.

(3.11)

Thus we may identify the right-hand sides of (3.10) and (3.11). Finally we
differentiate both expressions with respect to a and set a = 1. This yields
(3.9) and concludes this proof.

Theorem 3.∑
n≥1

K<(n) =
∑
n≥1

qn(qn; q)n−1
(q; q)n

(3.12)

=
1

(q; q)∞(1 − q)

∞∑
n=0

(−1)n−1q3n(n−1)/2+1(1 − q2n). (3.13)

Proof. The proof is exactly like that of (3.8) except that the schematic dia-
gram of a generic Ferrers graph is: Hence

m

m

n
≤ n− 1

≤ n− 1
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∑
n≥1

K<(n)qn =
∑

n,m≥1

qnm
[
2n− 2
n− 1

]
=
∑
n≥1

qn

1 − qn
(q; q)2n−2
(q; q)2n−1

=
∑
n≥1

qn(qn; q)n−1
(q; q)n

,

which establishes (3.13).
For the proof of (3.14) we additionally require Euler’s pentagonal number

theorem [1, p.11, eq. (1.3.1)]:

(q; q)∞ = 1 +
∞∑
k=1

(−1)kqk(3k−1)/2(1 + qk). (3.14)

Now equating the two right-hand sides of (3.10) and (3.11) and setting a =
q−1, we find

1 + (1 − q−1)
∑
m≥1

qm(qm; q)m−1
(q; q)m

=
1

(q; q)∞

∑
k≥0

(−1)kq3(
k
2)(1 + qk).

Hence

∑
m≥1

qm(qm; q)m−1
(q; q)m

=
1

(1 − q−1)(q; q)∞

(
1 +

∑
k≥1

(−1)kq3(
k
2)(1 + qk) − 1

−
∑
k≥1

(−1)kqk(3k−1)/2(1 + qk)

)

=
1

(1 − q−1)(q; q)∞

(∑
k≥1

(−1)kq3(
k
2) −

∑
k≥1

(−1)kqk(3k+1)/2

)
=

q

(1 − q)(q; q)∞

∑
k≥1

(−1)k−1q3k(k−1)/2(1 − q2k),

which proves (3.14).
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Corollary 4.∑
n≥1

K>(n)qn =
∑
n≥1

qn (1 − (qn+1; q)n−1)

(q; q)n
(3.15)

=
1

(q; q)∞

∞∑
n=1

(−1)n(n− 1)qn(3n−1)/2(1 + qn). (3.16)

Proof. ∑
n≥1

K>(n)qn =
∑
n≥1

(p(n) −K≤(n)) qn

=
1

(q; q)∞
−
∑
n≥1

K≤(n)qn.

Identities (3.15) and (3.16) now follow from (3.8), (3.9) and (3.14).

It is now transparent why D3(q) and the generating function for K>(n)
agree to so many terms. By (2.5) and (2.6)

D3(q) =
(
Θ3(q) − Θ3(q)

)
/8

=
1

(q; q)∞

∞∑
n=1

qn(3n−1)/2(1 + qn)
(
1 + (−1)n(2n2 − 1)

)
/8

=
1

(q; q)∞

∞∑
n=1

(
q5 + q7 − 2q15 − 2q17 + 4q22 + 4q26 − · · ·

) (3.17)

On the other hand, by Corollary 4, equation (3.16)∑
n≥1

K>(n)qn =
1

(q; q)∞

(
q5 + q7 − 2q15 − 2q17 + 3q22 + 3q26 − · · ·

)
. (3.18)

Thus the discrepancy beginning at q22 is now clear.

4 A ψ(q) Quotient

It is natural to expect that there would be a ψ(q) analog to the Θ3(q) dis-
cussed in section 2. Indeed this is the case. We define

Ψ3(q) :=
ψ(q3)

(q; q)∞
. (4.1)
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In the next section, we shall discuss the partition-theoretic aspects of Ψ3(q).
Here we want to examine a natural 4-shadow. We rewrite [11, p.154, eq.(22)]
as ∑

n≥0

(−q; q)2nqn
2+n

(q; q)2n+1

= Ψ3(q). (4.2)

The obvious 4-shadow is

Ψ3(q) =
∑
n≥0

(q; q)2nq
n2+n

(q; q)2n+1

=
∑
n≥0

(q; q)nq
n2+n

(qn+1; q)n+1

.

(4.3)

Theorem 5.

Ψ3(q) =
(q3; q3)3∞
(q; q)∞

. (4.4)

Remark. The right-hand side of (4.4) is the generating function for 3-cores.

Proof. We refer now to the weak form of Bailey’s lemma [2, p.27, eq.(3.33)]
with a = q.

Namely if

βn =
n∑

j=0

αj

(q; q)n−j(q2; q)n+j

, (4.5)

then ∑
n≥0

βnq
n2+n =

1

(q2; q)∞

∑
n≥0

qn
2+nαn. (4.6)

Here we again refer to [3]; namely by [3, p.260, eqs.(3.16) and (3.17)
corrected with q2 replaced by q], we see that(

(−1)n−1(2n+ 1)qn(n+1)/2/(1 − q),− (q; q)n
(qn+1; q)n+1

)
(4.7)

forms a Bailey pair satisfying (4.5).
If we now substitute (4.7) into (4.6) and multiply by −1, we obtain

Ψ3(q) =
1

(q; q)∞

∑
n≥0

(−1)n(2n+ 1)q3n(n+1)/2

=
(q3; q3)3∞
(q; q)∞

,

(4.8)
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by [1, p.176, Ex.7].

To conclude this section, we consider the shadow difference

∆3(q) =
(
Ψ3(q) − Ψ3(q)

)
/4

=
1

(q; q)∞

∞∑
n=0

q3n(n+1)/2 (1 − (−1)n(2n+ 1)) /4
(4.9)

by (1.4) and (4.4). Hence

∆3(q) = q3 + q4 + 2q5 + 3q6 + 5q7 + 7q8 + 10q9 + 14q10 + 20q11

+ 27q12 + 37q13 + 49q14 + 66q15 + 86q16 + 113q17 + · · ·

As we shall see in the next section, the series for ∆3(q) agrees up through
q17 with the Garden of Eden partition generating function.

5 Partition anchors and Garden of Eden par-

titions

We begin with partition anchors.

Definition. A part j of a partition π is called an anchor of π if no part
greater than j is repeated and no part is larger than 2j. Additionally if a
part j is repeated, then j is counted only once for being an anchor. We
denote by A(n) the total number of anchors in the partitions of n.

From this definition, it follows immediately that∑
n≥0

A(n)qn =
∞∑
n=0

(−qn+1; q)nq
n

(q)n
. (5.1)

Theorem 6. ∑
n≥0

A(n)qn = Ψ3(q). (5.2)

Proof. This follows immediately from Ramanujan’s identity, equation (3.7),
with a = −1.

Corollary 7. A(n) equals the number of overpartitions of n into parts not
divisible by 12 and only parts ≡ 3 (mod 6) may be overlined.
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Proof.

Ψ3(q) =
ψ(q3)

(q; q)∞

=
(q6; q6)∞

(q; q)∞(q3; q6)∞
(by(1.4))

=
(q6; q12)∞(q12; q12)∞

(q; q)∞(q3; q6)∞

=
(−q3; q6)∞(q12; q12)∞

(q; q)∞
,

(5.3)

and this last product in the generating function for overpartitions with no
part divisible by 12 and only parts ≡ 3 (mod 6) possibly being overlined.

For example, A(5) = 9; the anchors in question are underlined, 5, 4 + 1,
3 + 2, 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1. The relevant
overpartitions for 5 are 5, 4 + 1, 3 + 2, 3 + 2, 3 + 1 + 1, 3 + 1 + 1, 2 + 2 + 1,
2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1.

As with the Kimberling partitions and D3(q), we now discover a similar
relationship between ∆3(q) and the Garden of Eden partitions. The name
“Garden of Eden partitions” has its origins in the study of Bulgarian Solitaire
(cf. [8]). In [9], Hopkins and Sellers identify Garden of Eden partitions with
those partitions having rank (largest part minus number of parts) less than
−1. Indeed, if ge(n) denotes the number of Garden of Eden partitions of n,
then [9] Hopkins and Sellers show that

∞∑
n=0

ge(n)qn =
1

(q; q)∞

∞∑
n=1

(−1)n−1q3n(n+1)/2

=
1

(q; q)∞

(
q3 − q9 + q18 − q30 + · · ·

)
.

(5.4)

On the other hand, by (4.9)

∆3(q) =
1

(q; q)∞

(
q3 − q9 + 2q18 − 2q30 + · · ·

)
, (5.5)

and we see that the discrepancy between ∆3(q) and the generating function
for ge(n) first occurs for n = 18.

We note one final partition identity connected with Garden of Eden par-
titions.
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Theorem 8. ge(n) equals the number of partitions of n in which the first
missing multiple of 3 is even.

Proof. We rewrite (5.4) as follows

∑
n≥0

ge(n)qn =
1

(q; q)∞

∞∑
n=1

q3(
2n
2 )(1 − q3·2n)

=
∞∑
n=1

q3+6+···+3(2n−1)

∞∏
j=1

j 6=3·2n

(1 − qj)

,

and the latter expression is the generating function for partitions which the
first missing multiple of 3 is even.

6 Conclusion

Obviously, for any given q-series, there may well be any number of 4-shadows.
In the examples we have chosen, we used the Mod 4 Lemma in the way that
seemed most clear.

It should be remarked from this work that the implications of the 4-
shadow and the shadow difference are surprising and different in each case.
In addition, in the cases we have considered, we have found unexpected ties
to various partition functions. Indeed, the generating functions of the Kim-
berling partitions were completely unexplored, and the results in Theorems
2 and 3 would never have been discovered without the impetus provided by
the uncanny series agreement explained by (3.17) and (3.18).

There are obvious further candidates for exploration such as [11, p.157,
eq.(56)] as well as many others in [11].
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