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Abstract

The classical transformation of the very well poised 2k+4φ2k+3 re-
duces the symmetry of the original series from the full symmetric
group, S2k, in the 2k parameters to Sk2 symmetry. Thus the symme-
try drops from a group of (2k)! elements to a group of 2k elements. In
this paper, a more symmetric expansion is obtained where the image
symmetry group is Sk × Sk2 .
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1 Introduction

Symmetric expansions have played a vital role in the study of basic or q-
hypergeometric functions. Indeed the road to the Rogers-Ramanujan identies
started with L.J. Rogers in 1893 [9]. He observed a hidden symmetry in the
Heine series ∑

n≥0

(a)n(b)nt
n

(q)n(c)n
, (1.1)

where (a)n = (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1). He set himself the
task of finding an expansion of this series that made all the symmetries
transparent. A full account of the evolution of Rogers’s papers [9],[10],[11]
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into the elaborate expansions of today is given in [4]. It should also be noted
that D. Bowman has greatly extended Rogers’s original efforts [7].

The Rogers-Ramanujan identities are two elegant identities:

∑
n≥0

qn
2

(q)n
=

1

(q; q5)∞(q4; q5)∞
, (1.2)

and ∑
n≥0

qn
2+n

(q)n
=

1

(q2; q5)∞(q3; q5)∞
. (1.3)

They first appear on the tenth page of Rogers’s paper [11] which was the
natural follow-up to [9] and [10]. The quintessential q-hypergeometric proof
of (1.2) and (1.3) was give by G.N. Watson in 1929 in his wonderful identity
[12]:

8φ7

a, q√a,−q√a, b1, c1, b2, c2, q−N ; q, a
2q2+N

b1c1b2c2

√
a,−
√
a, aq

b1
, aq
c1
, aq
b2
, aq
c2
, aqN+1



=
(aq)N

(
aq
b2c2

)
N(

aq
b2

)
N

(
aq
c2

)
N

4φ3

( aq
b1c1

, b2, c2, q
−N ; q, q

aq
b1
, aq
c1
, b2c2q

−N

a

)
,

(1.4)

where

R+1φR

(
α0, α1, . . . , αR; q, t

β1, . . . , βR

)
:=
∑
j≥0

(α0)j(α1)j · · · (αR)jt

(q)j(β1)j · · · (βR)j
. (1.5)

The left side series in (1.4) is called “well-poised” because the product of
every column is the same (in this case the product is aq) and the adverb
“very” is added to describe the special second and third columns. The series
on the right side of (1.4) is called “balanced” because the product of the four
upper entries times q equals the product of the three lower entries.

Watson deduced (1.1) and (1.2) from (1.4) by letting b1, c1, b2, c2, and N
all → ∞ and then setting a = 1 to obtain an equivalent result to (1.1) and
obtaining (1.2) by a = q.
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At this point, we note that the left side is a symmetric function on the
four parameters b1, c1, b2, c2 while on the right side the symmetry has been
reduced to b1 ↔ c1 and b2 ↔ c2.

Forty five years later, (1.1) and (1.2) were extended to a multiple series
generalization [2]:

∑
n1,...,nk−1≥0

qN
2
1+N

2
2+···+N2

k−1+Ni+···Nk−1

(q)n1(q)n2 · · · (q)nk−1

=
∞∏
n=1

n 6=0,±i (mod 2x+1)

1

1− qn
, (1.6)

where Nm = nm + nm+1 + · · ·+ nk−1.
Then in 1976, the massive generalization of (1.4) was proved [3]: For

k ≥ 1, N a nonnegative integer,

2k+4φ2k+3

a, q√a,−q√a, b1, c1, b2, c2, . . . , bk, ck, q−N ; q, akqk+N

b1···bkc1···ck
√
a,−
√
a, aq

b1
, aq
c1
, aq
b2
, aq
c2
, . . . , aq

bk
, aq
ck
, aqN+1



=
(aq)N

(
aq
bkck

)
N(

aq
bk

)
N

(
aq
ck

)
N

∑
m1,...,mk−1≥0

(
aq
b1c1

)
m1

(
aq
b2c2

)
m2

· · ·
(

aq
bk−1ck−1

)
mk−1

(q)m1(q)m2 · · · (q)mk−1

×
(b2)m1(c2)m1(b3)m1+m2(c3)m1+m2 · · · (bk)m1+···+mk−1(

aq
b1

)
m1

(
aq
c1

)
m1

(
aq
b2

)
m1+m2

(
aq
c2

)
m1+m2

· · ·
(

aq
bk−1

)
m1+···+mk−1

×
(ck)m1+···+mk−1(
aq
ck−1

)
m1+···+mk−1

×

(
q−N

)
m1+m2+···+mk−1(

bkck
q−N

a

)
m1+m2+···+mk−1

× (aq)mk−2+2mk−3+···+(k−2)m1qm1+m2+···+mk−1

(b2c2)m1(b3c3)m1+m2 · · · (bk−1ck−1)m1+m2+···+mk−2
.

(1.7)
Note now that the S2k symmetry of the left side reduces to Sk2 symmetry

on the right. Often this loss of symmetry seems quite significant. In almost
all applications, the pairs (bi, ci) are naturally kept together; so it wolud be
valuable to have a transformation of the left side of (1.7) that was symmetric
in these pairs. To produce such a transformation is the object of this paper.
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Theorem 1. For k ≥ 1, N a nonnegative integer,

2k+4φ2k+3

a, q√a,−q√a, b1, c1, b2, c2, . . . , bk, ck, q−N ; q, akqk+N

b1···bkc1···ck
√
a,−
√
a, aq

b1
, aq
c1
, aq
b2
, aq
c2
, . . . , aq

bk
, aq
ck
, aqN+1



=
∑

m1,...,mk≥0

k∏
i=1

(
aq
bici

)
mi

qmi

(q)mi

(
aq
bi

)
mi

(
aq
ci

)
mi

×Kk(a,N ;m1,m2, . . . ,mk),

(1.8)
where Kk is symmetric in m1,m2, . . . ,mk and has the following properties
for k > 1.

Kk(a,N ;m1, . . . ,mk) = 0 if N > m1 +m2 + · · ·+mk. (1.9)

Kk(a,N ;m1, . . . ,mk) = (1.10)

q−σ2(m1,...,mk)−σ1(m1,...,mk)(aq)N(q)N , if N = m1 + · · ·+mk.

Kk(a,N ;m1, . . . ,mk) = (1.11)

N∑
j=0

(a)j(1− aq2j)(q−N)jq
Nj

(q)j(1− a)(aqN+1)j

k∏
r=1

(q−j)mr(aq
j)mr ,

where σs(m1, . . . ,mk) is the sth elementary symmetric function in m1, . . . ,mk.

I would note that neither (1.9) nor (1.10) is at all an immediate conse-
quence of (1.11). Indeed one would hope that there might be representations
of Kk that would make (1.9) and (1.10) as well as the symmetry clear. To
that end, we have

Theorem 2.

K1(a,N ;m1) = δN,m1 , (1.12)

K2(a,N ;m1,m2) = (1.13)

[
m1 +m2

N

]
(−1)Nq(

N
2 )(1− aqN)(q−N)m1(q

−N)m2(a)m1+m2

(1− a)(q)m1+m2
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K3(a,N ;m1,m2,m3) = (1.14)

[
m1 +m2 +m3

N

]
(−1)Nq(

N
2 )(1− aqN)(q−N)m1(q

−N)m2(q
−N)m3(a)m1+m2+m3

(1− a)(q)m1+m2+m3

× 4φ3

q−m1 , q−m2 , q−m3 , q
1−N

a
; q, q

q, q−N , q
1−m1−m2−m3

a

 .

Section 2 will be devoted to a proof of Theorem 1 as well as (1.13). Section
3 will be devoted to the remaining two assertions in Theorem 2. Section 4
concludes with possible applications and open problems.

2 Proof of Theorem 1

We start with the easiest assertion, namely (1.11). To prove this result we
require the following formulation of the q-Pfaff-Saalschiitz identity [8, p.32,
eq.(2.2.1)]:

m∑
r=0

(q−m)r(aq
m)r

(
aq
bc

)
r
qr

(q)r
(
aq
b

)
r

(
aq
c

)
r

=
amqm(b)m(c)m

bmcm
(
aq
b

)
m

(
aq
c

)
m

. (2.1)

Hence

2k+4φ2k+3

a, q√a,−q√a, b1, c1, b2, c2, . . . , bk, ck, q−N ; q, akqk+N

b1···bkc1···ck
√
a,−
√
a, aq

b1
, aq
c1
, aq
b2
, aq
c2
, . . . , aq

bk
, aq
ck
, aqN+1



=
N∑
j=0

(a)j(1− aq2j)(q−N)jq
Nj

(q)j(1− a)(aqN+1)j

k∏
i=1

ajqj(bi)j(ci)j

bjic
j
i

(
aq
bi

)
j

(
aq
ci

)
j

=
N∑
j=1

(a)j(1− aq2)(q−N)jq
Nj

(q)j(1− a)(aqN+1)j
×

∑
m1,...,mk≥0

(q−j)mi
(aqj)mi

(
aq
bici

)
mi

qmi

(q)mi

(
aq
bi

)
mi

(
aq
ci

)
mi
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=
∑

m1,...,mk≥0

k∏
i=1

(
aq
bici

)
mi

qmi

(q)mi

(
aq
bi

)
mi

(
aq
ci

)
mi

(2.2)

×
N∑
j=0

(a)j(1− aq2j)(q−N)jq
Nj

(q)j(1− a)(aqN+1)j

k∏
i=1

(q−j)mi
(aqj)mi

,

as asserted in (1.11).
In order to treat the other two assertions we need to rewrite Kk as a very

well-poised series. Given the symmetry of Kk in the m’s, we shall assume
that mk is at least as large as all the other mi. Also we note that

(aqj)mi
=

(a)mi+j

(a)j

and

(q−j)mi
= (1− qj) · · · (1− qj−mi+1) · q−jmi+(mi

2 )(−1)mi

=
(q)j

(q)j−mi

(−1)miq−jmi+(mi
2 )

Hence

Kk(a,N ;m1, . . . ,mk)

=
N∑
j=0

(a)j(1− aq2j)(q−N)jq
Nj

(q)j(1− a)(aqN+1)j
×

k∏
i=1

(a)mi+j(q)j(−1)miq(
mi
2 )−jmi

(a)j(q)j−mi

.

Now 1
(q)M

= 0 for M < 0, thus if j is less than any mi the term is zero. So
we may replace j by j + mk and no non-zero terms will be deleted, and to
make clear the role of mk we replace mk by t. Thus

Kk(a,N ;m1, . . . ,mk−1, t)

=
∑
j≥0

(a)j+t(1− aq2j+2t)(q−N)j+tq
N(j+t)

(q)j+t(1− a)(aqN+1)j+t

k−1∏
i=1

(a)mi+j+t(q)j+t(−1)miq(
mi
2 )−(j+t)mi

(a)j+t(q)j+t−mi

(a)j+2t(q)j+t(−1)tq(
t
2)−(j+t)t

(a)j+t(q)j
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=
(a)2t(1− aq2t)(q−N)tq

Nt−(t+1
2 )(−1)t

(aqN+1)t(1− a)
(2.3)

×
k−1∏
i=1

(a)mi+t(q)t(−1)miq(
mi
2 )−tmi

(a)t(q)t−mi

× 2k+2φ2k+1

aq2t, q√aq2t,−q
√
aq2t, aqm1+t, qt+1, . . . , aqmk−1+t, qt+1, q−N+t; q, qN−t−m1−···−mk−1√

aq2t,−
√
aq2t, qt−m1+1, aqt, . . . , qt−mk−1+1, aqt, aqN+t+1


Now (2.3) allows us to obtain a recurrence for Kk by applying (1.8) to

the inner series appearing in (2.3). Hence

Kk(a,N ;m1,m2, . . . ,mk−1, t)

=
(a)2t(1− aq2t)(q)Nq−t

(aqN+1)t(1− a)(q)N−t

k−1∏
i=1

(aqt+1)mi
(q−t)mi

∑
µ1,...,µk−1≥0

k−1∏
i=1

(q−mi)µiq
µi

(q)µi(q
t−mi+1)µi(aq

t+1)µi

Kk−1(aq
2t, N − t;µ1, µ2, . . . , µk−1).

(2.4)

We now proceed to prove (1.9) and (1.10) by mathematical induction on
k. The initial case is k = 2. By (2.3) with m1 = m,m2 = t,

K2(a,N ;m, t)

=
(a)2t(1− aq2t)(q)Nq−t(aqt)m(q−t)m

(aqN+1)t(1− a)(q)N−t

6φ5

aq2t, q√aq2t,−q
√
aq2t, aqm+t, qt+1, q−N+t; q, qN−t−m√

aq2t,−
√
aq2t, qt−m+1, aqt, aqN+t+1


=

(aq)2t(q)N(a)m+t(q
−t)m(aq2t+1)N−t(q

−m)N−tq
−t

(aqN+1)t(q)N−t(a)t(qt+1−m)N−t(aqt)N−t
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by [8, p.238, eq.(II.21)]

=
(a)m+t(q)N(q−t)m(q−m)N−t(1− aqN)q−t

(1− a)(q)N−t(qt+1−m)N−t(aq2n+1)N−t

=

[
m+ t
N

]
(−1)Nq(

N
2 )(1− aqN)(a)m+t(q

−N)m(q−N)t(q)m(q)t
(1− a)(q)m+t

. (2.5)

Now the factor (q)m+t−N in the denominator reveals that K2 is 0 if N > m+t,
and if N = m+ t, then

K2(a,N ;m, t)

=
(−1)Nq(

N
2 )(1− aqN)(a)N

(1− a)(q)N
× (q)2N(−1)m+tq−N(m+t)+(m

2 )+(t
2)

(q)t(q)m

= q−(N+1
2 )+(m

2 )+(t
2)(aq)N(q)N

= q−mt−m−t(aq)N(q)N .

Thus we have established (1.9) and (1.10) in the case k = 2.
Now we must utilize the recurrance to complete the induction proof of

(1.9) and (1.10). We assume that (1.9) and (1.10) are valid for each k less
than a given k. Suppose N > m1 + m2 + · · · + mk−1 + t in (2.4). We see
that the terms in the sum on the right-hand side of (2.4) must vanish if any
µi > mi because of the factor (q−mi)µi . Given that

N > m1 +m2 + · · ·+mk−1 + t,

we see that
N − t > m1 + · · ·+mk−1 ≥ µ1 + · · ·µk−1.

Hence every term of the sum in (2.4) is 0; therefore (1.9) is valid for Kk.
Next suppose that

N = m1 + · · ·mk−1 + t.

The previous argument shows that now the only non-vanishing term in the
inner sum occurs for µi = mi, 1 ≤ i ≤ k − 1. Hence, in this case, by (2.4)
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and the induction hypothesis

Kk(a,N ;m1, . . . ,mk−1, t)

=
(a)2t(1− aq2t)(q)Nq−t

(aqN+1)t(1− a)(q)N−t

k−1∏
i=1

(aqt+1)mi
(q−t)mi

×
k−1∏
i=1

(q−mi)mi
qmi

(q)mi
(qt−mi+1)mi

(att+1)mi

× q−σ2(m1,...,mk−1)−σ1(m1,...,mk−1)(aq2t+1)N−t(q)N−t

=
(aq)2t(q)Nq

−t

(aqN+1)t(q)N−t

k−1∏
i=1

(aqt+1)mi
(−1)miq−tmi+(mi

2 )(q)t
(q)t−mi

×
k−1∏
i=1

q−(mi
2 )(q)mi

(q)t−mi

(q)mi
(q)t(aqt+1)mi

× q−σ2(m1,...,mk−1)−σ1(m1,...,mk−1)(aq2t+1)N−t(q)N−t

= q−σ2(m1,...,mk−1,t)−σ1(m1,...,mk−1,t)(aq)N(q)N .

Thus (1.9) and (1.10) have been established by mathematical induction on
k.

3 Proof of Theorem 2

As noted previously (1.13) was proved in section 2. Equation (1.12) follows
immediately from the classical summation [8, p.238, eq.(II.21)]:

6φ5

a, q√a,−q√a, b1, c1, q−N ; q, aq
1+N

b1c1

√
a,−
√
a, aq

b1
, aq
c1
, aqN+1

 =
(aq)N

(
aq
b1c1

)
N(

aq
b1

)
N

(
aq
c1

)
N

(3.1)

To treat K3, we must utilize (2.3). So we shall assume m3 is not exceeded
by m1 or m2. Symmetry allows these assumptions without loss of generality.
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Hence

K3(a,N ;m1,m2,m3)

=
(a)2m3(1− aq2m3)(q−N)m3q

Nm3−(m3+1
2 )(−1)m3

(aqN+1)m3(1− a)

×
(a)m1+m3(a)m2+m3(q)

2
m3

(−1)m1+m2q(
m1
2 )+(m2

2 )−m3(m1+m2)

(a)2m3
(q)m3−m1(q)m3−m2

× 8φ7

(
aq2m3 , qm3+1

√
a,−qm3+1

√
a, aqm1+m3 , qm3+1, aqm2+m3 , qm3+1, q−N+m3 ; q, qN−m1−m2−m3

qm3
√
a,−qm3

√
a, qm3−m1+1, aqm3 , qm3−m2+1, aqm3 , aqN+m3+1

)

= C(a,N ;m1,m2,m3) (3.2)

× 8φ7

(
aq2m3 , qm3+1

√
a,−qm3+1

√
a, aqm1+m3 , qm3+1, aqm2+m3 , qm3+1, q−N+m3 ; q, qN−m1−m2−m3

qm3
√
a,−qm3

√
a, qm3−m1+1, aqm3 , qm3−m2+1, aqm3 , aqN+m3+1

)

(3.3)

where we have written C(a,N ;m1,m2,m3) for the multiplying product.
We now apply Watson’s q-analog of Whipple’s theorem [8, p.242, eq.(III.18)]

to the 8φ7. Hence

K3(a,N ;m1,m2,m3) = C(a,N ;m1,m2,m3)

× (aq2m3+1)N−m3(q
−m2)N−m3

(qm3−m2+1)N−m3(aq
m3)N−m3

× 4φ3

(
q−m1 , aqm2+m3 , qm3+1, q−N+m3 ; q, q

qm3−m1+1, aqm3 , qm2,+m3−N+1

)

=
C(a,N ;m1,m2,m3)(aq

2m3+1)N−m3(q
−m2)N−m3

(qm3−m2+1)N−m3(aq
m3)N−m3

× (q−m1)m1(q
m2−N)m1

(qm3−m1+1)m1(q
m2+m3−N+1)m1
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× 4φ3

(
q−m1 , qm3+1, q−m2 , aqN ; q, q

aqm3 , q, q1−m1−m2+N

)

(by [8, p.242, eq.(III.15), n = m1, a = qm3+1, b = aqm2+m3 , c = q−N+m3 ,
d = aqm3 , e = qm3−m1+1, f = qm2+m3−N+1])

=
C(a,N ;m1,m2,m3)(aq

2m3+1)N−m3(q
−m2)N−m3(q

−m1)m1(q
m2−N)m1

(qm3−m2+1)N−m3(aq
m3)N−m3(q

m3−m1+1)m1(q
m2+m3−N+1)m1

× (aqm3+m2)m1(q
1−m1+N)m1

(aqm3)m1(q
1−m1−m2+N)m1

× 4φ3

q−m1 , q−m2 , q−m3 , q
1−N

a
; q; q

q, q
1−m1−m2−m3

a
, q−N


(by [8, p.242, eq.(III.15), n = m1, a = q−m2 , b = qm3+1, c = aqN , d = q,

e = aqm3 , f = q1−m1−m2−N ]).

Simplification of the multiplying products yields (1.14).

4 Conclusion

There are many unanswered questions about the pair-symmetric kernel Kk.
Here are some of the most important.

1. Are there simplified expansions like (1.12), (1.13) and (1.14) for k > 3
that both exibit symmetry explicitly and that yield (1.9) and (1.10)
reasonably directly. We should note that (1.14) reduces to (1.10) when
N = m1 +m2 +m3 because the 4φ3 in (1.14) reduces to a balanced 3φ2

which is summable [8, p.237, eq.(II.12)].

2. What is the relationship of (1.7) to (1.8)? In the case k = 2, one can
pass easily from (1.8) to (1.7) by noting that both the m1 and m2 sums
are each balanced (and thus summable 3φ2’s).
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3. The most notable instance of using the paired symmetry of the k pairs
of parameters in (1.7) occurs in the study of Durfee symbols (cf. [1],[5]).
Indeed obvious symmetry of partition statistics was very difficult to
establish [6]. It would be of interest to pursue this question using an
expansion like (1.8) where the symmetry is clearly in evidence.

4. The proof of Theorem 1 is some sort of “multiple Bailey Lemma”. It
is clear that multiple simultaneous applications of (2.1) can be used
instead of the sequential applications in the standard Bailey chain pro-
ductions [4]. The possibilities here are endless.
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