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Abstract. Euler proved that the number of partition of n into odd parts

equals the number of partitions of n into distinct parts. There have been

several refinements of Euler’s Theorem which have limited the size of the parts
allowed. Each is surprising and difficult to prove. This paper provides a finite

version of Glaisher’s exquisitely elementary proof of Euler’s Theorem.

1. Introduction

Euler is truly the father of the theory of the partitions of integers. He discovered
the following prototype of all subsequent partition identities.

Euler’s Theorem [3]. The number of partitions of n into distinct
parts equals the number of partitions of n into odd parts.

For example, if n = 10, then the ten odd partitions of n into distinct parts are

10, 9 + 1, 8 + 2, 7 + 3, 7 + 2 + 1,
6 + 4, 6 + 3 + 1, 5 + 4 + 1, 5 + 3 + 2, 4 + 3 + 2 + 1,

and the ten partitions of n into odd parts are

9 + 1, 7 + 3, 7 + 1 + 1 + 1,
5 + 5, 5 + 3 + 1 + 1, 5 + 1 + 1 + 1 + 1 + 1,

3 + 3 + 3 + 1, 3 + 3 + 1 + 1 + 1 + 1, 3 + 1 + 1 + 1 + 1 + 1 + 1 + 1,
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1.

Euler’s proof was an elegant use of generating functions. If D(n) denotes the
number of partitions of n into distinct parts and O(n) denotes the number of
partitions of n into odd parts, then it is immediate (just by multiplying out the
products and collecting terms) that∑

n≥0

D(n)qn =

∞∏
n=1

(1 + qn) (1.1)

and ∑
n≥0

O(n)qn =

∞∏
n=1

(1 + q2n−1 + q2(2n−1) + · · · ) (1.2)

=

∞∏
n=1

1

1− q2n−1
.

2010 Mathematics Subject Classification. 11P81, 65A19.
Key words and phrases. Euler’s partition identity, Glaisher’s bijection, partitions.

1



2 GEORGE E. ANDREWS

Euler’s proof is then an algebraic exercise:∑
n≥0

D(n)qn =

∞∏
n=1

(1 + qn) (1.3)

=

∞∏
n−1

1− q2n

1− qn

=

∞∏
n−1

1

1− q2n−1

=
∑
n≥0

O(n)qn.

It was J. W. L. Glaisher [5] who in 1883 found a purely bijective proof of Euler’s
Theorem. Glaisher’s mapping goes as follows: start with a partition of n into odd
parts (here fi is the number of times (2mi − 1) appears as a part):

f1(2m1 − 1) + f2(2m2 − 1) + · · ·+ fr(2mr − 1). (1.4)

Now write each fi in its unique binary representation as a sum of distinct powers
of 2, i.e., now we have (with a1(i) < a2(i) < · · · )

r∑
i=1

fi(2mi − 1) =

r∑
i=1

(2a1(i) + 2a2(i) + · · ·+ 2aj(i))(2mi − 1)

=

r∑
i=1

(
2a1(i)(2mi − 1) + · · ·+ 2aj(i)(2mi − 1)

)
(1.5)

and this last expression is the image partition into distinct parts. To make Glaisher’s
maps concrete, let us return to the case n = 10.

9 + 1 → 1 · 9 + 1 · 1 → 9 + 1

7 + 3 → 1 · 7 + 1 · 3 → 7 + 3

7 + 1 + 1 + 1 → 1 · 7 + 3 · 1 → 1 · 7 + (2+1) · 1 → 7 + 2 + 1

5 + 5 → 2 · 5 → 10

5 + 3 + 1 + 1 → 1 · 5 + 1 · 3 + 1 · 2 → 5 + 3 + 2

5 + 1 + 1 + 1 + 1 + 1 → 1 · 5 + 5 · 1
→ 1 · 5 + (4+1) · 1 → 5 + 4 + 1

3 + 3 + 3 + 1 → 3 · 3 + 1 · 1 → (2+1) · 3 + 1 · 1 → 6 + 3 + 1

3 + 3 + 1 + 1 + 1 + 1 → 2 · 3 + 4 · 1 → 6 + 4

3 + 1 + 1 + 1 + 1 + 1 + 1 + 1 → 1 · 3 + 7 · 1
→ 1 · 3 + (1+2+4) · 1 → 4 + 3 + 2 + 1

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 → 10 · 1 → (8+2) · 1 → 8 + 2

It is clear that this map is reversible; just collect together in groups those parts
with common largest odd factor.

Now there have been a number of refinements of Euler’s Theorem which have,
in one way or another, placed restrictions on the size of the parts used. Bousquet-
Mélou and Eriksson [1] have a version in which their “lecture hall partitions” occur.
Nathan Fine [4] has a version involving the Dyson rank. I. Pak [6] devotes Section 3
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of his exhaustive study of partition identities to a variety of refinements of Euler’s
Theorem.

The point of this short note is to provide a simple Glaisher style proof of the
following finite version of Euler’s Theorem due to Bradford, Harris, Jones, Ko-
marinski, Matson, and O’Shea that was first stated in [2].

Theorem [2; Sec. 3]. The number of partitions of n into odd
parts each ≤ 2N equals the number of partitions of n into parts
each ≤ 2N in which the parts ≤ N are distinct.

It should be noted that the bijective proofs in [2] as well as those by Bousquet-
Melou and Erickson in [1] and Yee in [7] prove much more than the above theorem
and are thus much more complicated than our Glaisher-like bijection.

2. First proof of the theorem

This result has an Eulerian proof that has exactly the simplicity of Euler’s orig-
inal proof.

Let ON (n) denotes the number of partitions of n in which each part is odd
and ≤ 2N , and DN (n) denotes the number of partitions of n in which each part
is ≤ 2N and all parts ≤ N are distinct. Thus∑

n≥0

ON (n)qn =

N∏
n=1

1

1− q2n−1

and ∑
n≥0

DN (n)qn =

N∏
n=1

1 + qn

1− qN+n
.

Finally ∑
n≥0

DN (n)qn =

N∏
n=1

1− q2n

(1− qn)(1− qN+n)

=

∏N
n=1(1− q2n)∏2N
n=1(1− qn)

=

N∏
n=1

1

1− q2n−1

=
∑
n≥0

ON (n)qn.

3. A Glaisher-type proof

Now we return to Glaisher’s proof, with the following alteration. Namely, for
each odd part (2mi − 1) (all being ≤ 2N) there is a unique ji ≥ 0 such that

N < (2mi − 1)2ji ≤ 2N.

Now instead of rewriting each fi completely in binary, we instead write fi (with
a1(i) < a2(i) < · · · < am(i) < fi) as

2a1(i) + 2a2(i) + · · ·+ 2am(i) + gi2
ji ,
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where, of course, gi might be 0. Thus, instead of (1.5) we now have
r∑

i=1

= fi(2mi − 1)

=

r∑
i=1

(2a1(i) + 2a2(i) + · · ·+ 2am(i) + gi2
ji)(2mi − 1)

=

r∑
i=1

(
2a1(i)(2mi − 1) + 2a2(i)(2mi − 1) + · · ·

)
+

r∑
i=1

gi2
ji(2mi − 1)

and the latter expression is a partition wherein the parts ≤ N are distinct and each
is ≤ 2N .

As an example, let us consider a partition of 78 into odd parts each ≤ 2N = 2 ·6:

11 + 11 + 7 + 7 + 5 + 5 + 5 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3.

Now 11 and 7 lie in (6, 12], 2 · 5 ∈ (6, 12], and 4 · 3 ∈ (6, 12]. Hence this partition is

2 · 11 + 2 · 7 + 3 · 5 + 9 · 3
= 2 · 11 + 2 · 7 + (1 + 2) · 5 + (1 + 2 · 4) · 3
= 11 + 11 + 7 + 7 + 5 + 10 + 3 + 2 · (4 · 3)

= 11 + 11 + 7 + 7 + 5 + 10 + 3 + 12 + 12

and this last expression has all parts ≤ 12 and no repeated parts ≤ 6.
My thanks to Drew Sills and Carla Savage for alerting me to references [2] and

[7].
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