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Abstract. It was recently shown that qω(q), where ω(q) is one of the third order mock theta

functions, is the generating function of pω(n), the number of partitions of a positive integer n such

that all odd parts are less than twice the smallest part. In this paper, we study the overpartition

analogue of pω(n), and express its generating function in terms of a 3φ2 basic hypergeometric series

and an infinite series involving little q-Jacobi polynomials. This is accomplished by obtaining a new

seven parameter q-series identity which generalizes a deep identity due to the first author as well

as its generalization by R.P. Agarwal. We also derive two interesting congruences satisfied by the

overpartition analogue, and some congruences satisfied by the associated smallest parts function.

1. Introduction

Since Ramanujan introduced mock theta functions in his last letter to Hardy in 1920, they have

been the subject of intense study for many decades. Along with his third order mock theta function

f(q), there are many studies on the mock theta function

ω(q) :=

∞∑
n=1

q2n
2+2n

(q; q2)2n+1

in the literature [12], [16], [19], [27]. Throughout the paper, we adopt the following q-series notation:

(a; q)n := (1− a)(1− aq) · · · (1− aqn−1),

(a; q)∞ := lim
n→∞

(a; q)n, |q| < 1.

When the base is q, we sometimes use the short-hand notation (a)n := (a; q)n, (a)∞ := (a; q)∞.

In a recent paper [10], the first, second and the fourth author discovered a new partition theoretic

interpretation of ω(q), namely, the coefficient of qn in q ω(q) counts pω(n), the number of partitions

of n in which all odd parts are less than twice the smallest part, that is,
∞∑
n=1

pω(n)qn =

∞∑
n=1

qn

(1− qn)(qn+1; q)n(q2n+2; q2)∞
= qω(q).

In the same paper they also studied the associated smallest parts function sptω(n) whose generating

function is given by
∞∑
n=1

sptω(n)qn =

∞∑
n=1

qn

(1− qn)2(qn+1; q)n(q2n+2; q2)∞
.

In this paper we study the overpartition analogue of pω(n) and its associated smallest parts function.

Overpartitions are ordinary partitions extended by allowing a possible overline designation on the
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first (or equivalently, the final) occurrence of a part. For instance, there are 8 overpartitions of 3, i.e.,

3, 3, 2 + 1, 2 + 1, 2 + 1, 2 + 1, 1 + 1 + 1, and 1 + 1 + 1. Throughout this paper, however, we consider

overpartitions in which the smallest part is always overlined, and denote by p(n) the number of such

overpartitions. For instance, p(3) = 4 since there are 4 such overpartitions of 3, i.e., 3, 2 + 1, 2 + 1,

and 1 + 1 + 1. In an overpartition, a smallest part may or may not be overlined, so the number of

overpartitions of n is exactly twice of p(n).

Since its introduction in [17], the overpartition construct has been very popular, and has led to a

number of studies in q-series, partition theory, modular and mock modular forms.

As remarked earlier, in this paper we study the overpartition analogue of pω(n), namely pω(n),

which enumerates the number of overpartitions of n such that all odd parts are less than twice the

smallest part, and in which the smallest part is always overlined. It is clear that its generating function

is given by
∞∑
n=1

pω(n)qn =
∞∑
n=1

qn(−qn+1; q)n(−q2n+2; q2)∞
(1− qn)(qn+1; q)n(q2n+2; q2)∞

. (1.1)

The series in (1.1) can be simplified to

∞∑
n=1

pω(n)qn =
q(−q2; q2)∞

(1− q)(q2; q2)∞

∞∑
n=0

(−q3; q2)n(q; q)n
(q3; q2)n(−q2; q)n

qn (1.2)

=
q(−q2; q2)∞

(1− q)(q2; q2)∞
4φ3

(
q, q, iq3/2, −iq3/2

−q2, q3/2, −q3/2
; q, q

)
,

where the basic hypergeometric series r+1φr is defined as

r+1φr

(
a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, z

)
:=

∞∑
n=0

(a1; q)n(a2; q)n · · · (ar+1; q)n
(q; q)n(b1; q)n · · · (br; q)n

zn.

Thus the generating function is essentially a nonterminating 4φ3. The problem of relating this gener-

ating function with familiar objects in the theory of basic hypergeometric series, modular forms and

mock modular forms is quite difficult. In fact in order to transform it, we derive a new multi-parameter

q-series identity, which generalizes a deep identity due to the first author, and its extension due to

R.P. Agarwal (see Theorem 3.1). Basically we need its following variant for our case.

Theorem 1.1. Let the Gaussian polynomial be defined by[
n

m

]
=

[
n

m

]
q

:=


(q; q)n

(q; q)m(q; q)n−m
, if 0 ≤ m ≤ n,

0, otherwise.

(1.3)

Then, provided β, δ, f, t 6= q−j , j ≥ 0, the following identity holds:

∞∑
n=0

(α)n(γ)n(ε)n
(β)n(δ)n(f)n

tn

=
(ε, γ, β/α, q, αt, q/(αt), δq/β, fq/β; q)∞

(f, δ, q/α, β, β/(αt), αtq/β, γq/β, εq/β; q)∞
3φ2

(
αq
β ,

γq
β ,

εq
β

δq
β ,

fq
β

; q, t

)

+

(
1− q

β

)
(ε, γ, t, δq/β, fq/β; q)∞

(f, δ, αt/β, γq/β, εq/β; q)∞
3φ2

(αq
β ,

γq
β ,

εq
β

δq
β ,

fq
β

; q, t

)(
2φ1

(
q, q

t
βq
αt

; q,
q

α

)
− 1

)
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+
(ε, γ; q)∞
(f, δ; q)∞

(
1− q

β

)
×
∞∑
n=0

(t)n
(q)n(αt/β)n+1

(
q

β

)n n∑
p=0

(αt/β)p
(t)p

(
β

q

)p n∑
m=0

[
n

m

](
f

ε

)
m

εm
(
δ

γ

)
n−m

γn−m, (1.4)

where we use the notation

(a1, a2, · · · , am; q)n := (a1; q)n(a2; q)n · · · (am; q)n.

This result is then specialized to obtain the following theorem which expresses the generating

function in terms of a 3φ2 basic hypergeometric series and an infinite series involving the little q-

Jacobi polynomial defined by [8, Equation (3.1)]

pn(x;α, β : q) = 2φ1

(
q−n, αβqn+1

αq
; qx

)
. (1.5)

Theorem 1.2. The following identity holds for |q| < 1:

∞∑
n=0

qn(−q3; q2)n(q; q)n
(q3; q2)n(−q2; q)n

=
1

2

(
1− 1

q

)
(q; q)2∞

(−q; q)2∞

∞∑
n=0

(−1; q)n(−q; q2)n
(q; q2)n(q; q)n

qn

+
1

q

(−q; q2)∞
(q3; q2)∞

∞∑
n=0

(q; q2)n(−q)n

(−q; q2)n(1 + q2n)
p2n(−1; q−2n−1,−1 : q). (1.6)

Hence the generating function of pω(n) is given by

∞∑
n=1

pω(n)qn = −1

2

(q; q)∞(q; q2)∞
(−q; q)∞(−q; q2)∞

∞∑
n=0

(−1; q)n(−q; q2)n
(q; q2)n(q; q)n

qn

+
(−q; q)∞
(q; q)∞

∞∑
n=0

(q; q2)n(−q)n

(−q; q2)n(1 + q2n)
p2n(−1; q−2n−1,−1 : q). (1.7)

The series involving the little q-Jacobi polynomials on the right side of (1.6) satisfies a nice con-

gruence modulo 4 given below.

Theorem 1.3. The following congruence holds:

1

q

(−q; q2)∞
(q3; q2)∞

∞∑
n=0

(q; q2)n(−q)n

(−q; q2)n(1 + q2n)
p2n(−1; q−2n−1,−1 : q) ≡ 1

2q
− 1

2
(mod 4). (1.8)

This suggests that this series might be further linked to some important objects in the literature. As

of now this has remained elusive for us though.

The overpartition function pω(n) satisfies some nice congruences. Indeed the two congruences in

the following theorem will be proved in Section 4.

Theorem 1.4. We have

pω(4n+ 3) ≡ 0 (mod 4), (1.9)

pω(8n+ 6) ≡ 0 (mod 4). (1.10)
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Bringmann, Lovejoy, and Osburn [14, 15] defined spt(n) as the number of smallest parts in the

overpartitions of n and showed that spt(n) is a quasimock theta function (see [15, p. 3–4] for the

definition) satisfying simple Ramanujan-type congruences, for instance,

spt(3n) ≡ 0 (mod 3).

In this paper, we study sptω(n), the number of smallest parts in the overpartitions of n in which

the smallest part is always overlined and all odd parts are less than twice the smallest part. By its

definition we see that the generating function of sptω(n) is given by

∞∑
n=1

sptω(n)qn =

∞∑
n=1

qn(−qn+1; q)n(−q2n+2; q2)∞
(1− qn)2(qn+1; q)n(q2n+2; q2)∞

. (1.11)

The smallest parts function sptω(n) seems to carry arithmetic properties analogous to those of spt2(n),

where spt2(n) counts the number of smallest parts in the overpartitions of n with smallest parts even.

It is known [14] that

spt2(3n) ≡ 0 (mod 3), (1.12)

spt2(3n+ 1) ≡ 0 (mod 3), (1.13)

spt2(5n+ 3) ≡ 0 (mod 5). (1.14)

The following are the main congruences satisfied by sptω(n):

Theorem 1.5. We have

sptω(3n) ≡ 0 (mod 3), (1.15)

sptω(3n+ 2) ≡ 0 (mod 3), (1.16)

sptω(10n+ 6) ≡ 0 (mod 5), (1.17)

sptω(6n+ 5) ≡ 0 (mod 6). (1.18)

There are further congruences that both spt(n) and sptω(n) satisfy:

Theorem 1.6. For any positive integer n,

sptω(n) ≡ spt(n) ≡

1 (mod 2) if n = k2 or 2k2 for some k,

0 (mod 2) otherwise.
(1.19)

Theorem 1.7. For any positive integer n,

spt(7n) ≡ spt(n7 ) (mod 4), (1.20)

sptω(7n) ≡ sptω(n7 ) (mod 4), (1.21)

where we follow the convention that spt(x) = sptω(x) = 0 if x is not a positive integer.

This paper is organized as follows. In Section 2, we recall some basic facts and theorems that

are used in the sequel. Section 3 is devoted to finding an alternate representation for the generating

function of pω(n) in terms of a 3φ2 basic hypergeometric series and an infinite series involving the

little q-Jacobi polynomials. A congruence modulo 4, satisfied by the latter series, is also obtained in

this section. In Section 4, we give a proof of the congruences modulo 4 satisfied by pω(n). We recall

some facts about spt(n) and spt2(n) in Section 5 and represent the generating function of sptω(n) in
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terms of those of these functions. In Section 6, we prove the congruences modulo 3, 5 and 6 given in

Theorem 1.5 based on these representations. Lastly we prove Theorems 1.6 and 1.7 in Section 7.

2. Preliminaries

We collect below the important facts and theorems in the literature on q-series and partitions in this

section. First of all, we assume throughout the paper that |q| < 1. The most fundamental theorem in

the literature is the q-binomial theorem given for |z| < 1 by [5, p. 17, Equation (2.2.1)]

∞∑
n=0

(a; q)nz
n

(q; q)n
=

(az; q)∞
(z; q)∞

. (2.1)

For |z| < 1 and |b| < 1, Heine’s transformation [5, p. 19, Corollary 2.3] is given by

2φ1

(
a, b

c
; q, z

)
=

(b, az; q)∞
(c, z; q)∞

2φ1

(
c/b, z

az
; q, b

)
, (2.2)

and we also note Bailey’s 10φ9 transformation [7, Equation (2.10)], [11, Equation (6.3)]

lim
N→∞

10φ9

a, q2
√
a, −q2

√
a, p1, p1q, p2, p2q, f, q−2N , q−2N+1

√
a, −

√
a,

aq2

p1
,

aq

p1
,

aq2

p2
,

aq

p2
,

aq2

f
, aq2N+2, aq2N+1

; q2,
a3q4N+3

p21p
2
2f



=

(aq; q)∞

(
aq

p1p2
; q

)
∞(

aq

p1
; q

)
∞

(
aq

p2
; q

)
∞

∞∑
n=0

(p1; q)n(p2; q)n

(
aq
f ; q2

)
n

(q; q)n(aq; q2)n

(
aq
f ; q

)
n

(
aq

p1p2

)n
. (2.3)

Finally we note a transformation for 2ψ2 due to Bailey [21, p. 148, Exer. 5.11]:

2ψ2

(
e, f
aq
c ,

aq
d

; q,
aq

ef

)
=

( qc ,
q
d ,

aq
e ,

aq
f ; q)∞

(aq, qa ,
aq
cd ,

aq
ef ; q)∞

∞∑
n=−∞

(1− aq2n)(c, d, e, f ; q)n
(1− a)(aqc ,

aq
d ,

aq
e ,

aq
f ; q)n

(
qa3

cdef

)n
qn

2

, (2.4)

where rψr is the basic bilateral hypergeometric series defined by [21, p. 137, Equation (5.1.1)]

rψr

(
a1, a2, . . . , ar

b1, b2, . . . , br
; q, z

)
:=

∞∑
n=−∞

(a1, a2, · · · , ar; q)n
(b1, b2, · · · , br; q)n

zn.

3. The generating function of pω(n)

First, we recall that pω(n) counts the number of overpartitions of n such that all odd parts are less

than twice the smallest part, and in which the smallest part is always overlined. None of the already

existing identities from the theory of basic hypergeometric series seems to be capable of handling

its generating function. Hence we devise a new q-series identity consisting of seven parameters that

transforms (1.2) into a 3φ2 and an infinite series involving little q-Jacobi polynomials defined in (1.5).

The motivation and the need for devising such an identity is now given.

In the proof of the representation of the generating function of pω(n) in terms of the third order

mock theta function ω(q) [10, Theorem 3.1], the following four parameter q-series identity due to the
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first author [6, Theorem 1] played an instrumental role.

∞∑
n=0

(B; q)n(−Abq; q)nqn

(−aq; q)n(−bq; q)n
=
−a−1(B; q)∞(−Abq; q)∞

(−bq; q)∞(−aq; q)∞

∞∑
m=0

(A−1; q)m

(
Abq
a

)m
(
−Ba ; q

)
m+1

+ (1 + b)

∞∑
m=0

(−a−1; q)m+1

(
−ABqa ; q

)
m

(−b)m(
−Ba ; q

)
m+1

(
Abq
a ; q

)
m+1

. (3.1)

Agarwal [2, Equation (3.1)] obtained the following ‘mild’ extension/generalization of (3.1) in the

sense that we get (3.1) from the following identity when t = q.

∞∑
n=0

(α)n(γ)n
(β)n(δ)n

tn

=
(q/(αt), γ, αt, β/α, q; q)∞
(β/(αt), δ, t, q/α, β; q)∞

2φ1

(
δ/γ, t

qαt/β
; q, γq/β

)

+
(γ)∞
(δ)∞

(
1− q

β

) ∞∑
m=0

(δ/γ)m(t)m
(q)m(αt/β)m+1

(qγ/β)m

(
2φ1

(
q, q/t

qβ/(αt)
; q, q/α

)
− 1

)

+
(γ)∞
(δ)∞

(
1− q

β

) ∞∑
p=0

γp(δ/γ)p
(q)p

∞∑
m=0

(δqp/γ)m(tqp)m
(q1+p)m(αtqp/β)m+1

(qγ/β)m. (3.2)

Since the right side of (1.2) involves three q-shifted factorials (with base q) in the numerator as well

as in the denominator of its summand, we need to first generalize (3.2). Indeed, a generalization of

(3.2) will be given below. However, we shall first prove its variant, namely Theorem 1.1, that we need

for our purpose.

Proof of Theorem 1.1. Let

S := S(α, β, γ, δ, ε, f ; q; t) :=

∞∑
n=0

(α)n(γ)n(ε)n
(β)n(δ)n(f)n

tn. (3.3)

Then by an application of the q-binomial theorem (2.1),

S =
(ε)∞
(f)∞

∞∑
n=0

(α)n(γ)n(fqn)∞
(β)n(δ)n(εqn)∞

tn

=
(ε)∞
(f)∞

∞∑
n=0

(α)n(γ)nt
n

(β)n(δ)n

∞∑
m=0

(f/ε)m
(q)m

(εqn)m

=
(ε)∞
(f)∞

∞∑
m=0

(f/ε)mε
m

(q)m

∞∑
n=0

(α)n(γ)n
(β)n(δ)n

(tqm)n

=
(ε)∞
(f)∞

∞∑
m=0

(f/ε)mε
m

(q)m

{
(q1−m/(αt), γ, αtqm, β/α, q; q)∞
(βq−m/(αt), δ, tqm, q/α, β; q)∞

2φ1

(
δ/γ, tqm

αtqm+1/β
; q, γq/β

)

+
(γ)∞
(δ)∞

(1− q/β)

(1− αtqm/β)

∞∑
k=0

(δ/γ)k(αtqm/β)kγ
k

(q)k(αtqm+1/β)k

∞∑
r=0

(q1−k−m/t)r
(βq1−k−m/(αt))r

( q
α

)r }
=:

(ε)∞
(f)∞

(
(γ, β/α, q; q)∞
(δ, q/α, β; q)∞

V1 + V2

)
, (3.4)



7

where in the penultimate step, we used (3.2) in the form given in [2, Equation (3.2)]. Here

V1 :=

∞∑
m=0

(f/ε)m(q1−m/(αt), αtqm; q)∞ε
m

(q)m(βq−m/(αt), tqm; q)∞
2φ1

(
δ/γ, tqm

αtqm+1/β
; q, γq/β

)
,

V2 :=
(γ)∞
(δ)∞

(
1− q

β

) ∞∑
m=0

(
f
ε

)
m
εm

(q)m

(
1− αtqm

β

) ∞∑
k=0

(
δ
γ

)
k

(
αtqm

β

)
k
γk

(q)k

(
αtqm+1

β

)
k

∞∑
r=0

(
q1−k−m

t

)
r(

βq1−k−m

αt

)
r

( q
α

)r
. (3.5)

Next, using Heine’s transformation (2.2) in the second step below, we see that

V1 =
(αt)∞(q/(at))∞
(t)∞(β/(at))∞

∞∑
m=0

(f/ε)m(t)m
(αtq/β)m(q)m

(
qε

β

)m
2φ1

(
δ/γ, tqm

αtqm+1/β
; q, γq/β

)

=
(αt)∞(q/(at))∞(δq/β)∞

(αtq/β)∞(γq/β)∞(β/(at))∞

∞∑
m=0

(f/ε)m
(q)m

(
qε

β

)m
2φ1

(
αq/β, γq/β

δq/β
; q, tqm

)

=
(αt)∞(q/(at))∞(δq/β)∞

(αtq/β)∞(γq/β)∞(β/(at))∞

∞∑
k=0

(αq/β)k(γq/β)k(fqk+1/β)∞t
k

(δq/β)k(q)k(εqk+1/β)∞
, (3.6)

where in the last step we used (2.1) after interchanging the order of summation. Hence

V1 =
(αt, q/(αt), δq/β, fq/β; q)∞

(β/(αt), αtq/β, γq/β, εq/β; q)∞
3φ2

(
αq/β, γq/β, εq/β

δq/β, fq/β
; q, t

)
. (3.7)

Let us now consider V2. Since

∞∑
r=0

(q1−k−m/t)r
(βq1−k−m/(αt))r

( q
α

)r
=

(t)m+k

(αt/β)m+k

(
q

β

)m+k ∞∑
r=0

(αt/β)m+k−r

(t)m+k−r

(
β

q

)m+k−r

=
(t)m+k(
αt
β

)
m+k

(
q

β

)m+k

 ∞∑
p=1

(
q
t

)
p(

βq
αt

)
p

( q
α

)p
+

m+k∑
p=0

(αt/β)p
(t)p

(
β

q

)p ,

(3.8)

we find that

V2 =
(γ)∞
(δ)∞

(
1− q

β

)
(V3 + V ∗3 ), (3.9)

where

V3 :=

∞∑
m=0

(f/ε)m(t)m(εq/β)m

(q)m(αt/β)m(1− αtqm/β)

∞∑
k=0

(δ/γ)k(tqm)k(γq/β)k

(q)k(αtqm+1/β)k

∞∑
p=1

(q/t)p
(βq/(αt))p

( q
α

)p
,

V ∗3 :=

∞∑
m=0

(f/ε)m(εq/β)m

(q)m(1− αtqm/β)

∞∑
k=0

(δ/γ)k(t)m+k(αtqm/β)k(γq/β)k

(q)k(αtqm+1/β)k(αt/β)m+k

m+k∑
p=0

(αt/β)p
(t)p

(
β

q

)p
. (3.10)

Consider V3. Again using Heine’s transformation (2.2) for the middle series followed by (2.1), we have

V3 =
(t, δq/β, fq/β; q)∞

(αt/β, γq/β, εq/β; q)∞
3φ2

(
αq/β, γq/β, εq/β

δq/β, fq/β
; q, t

)(
2φ1

(
q, q/t

βq/(αt)
; q, q/α

)
− 1

)
.

(3.11)

Also,

V ∗3 =

∞∑
n=0

(t)n
(q)n(αt/β)n+1

(
q

β

)n n∑
p=0

(αt/β)p
(t)p

(
β

q

)p n∑
m=0

[
n

m

](
f

ε

)
m

εm
(
δ

γ

)
n−m

(γ)n−m. (3.12)
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Finally from (3.4), (3.7), (3.9), (3.11) and (3.12), we arrive at (1.4). �

We now give the aforementioned generalization of (3.2) which can also be viewed as a corollary of

Theorem 1.1.

Theorem 3.1. Provided β, δ, f, t 6= q−j , j ≥ 0, the following identity holds:
∞∑
n=0

(α)n(γ)n(ε)n
(β)n(δ)n(f)n

tn

=
(ε, γ, β/α, q, αt, q/(αt), δq/β, fq/β; q)∞

(f, δ, q/α, β, β/(αt), αtq/β, γq/β, εq/β; q)∞
3φ2

(
αq/β, γq/β, εq/β

δq/β, fq/β
; q, t

)

+

(
1− q

β

)
(ε, γ, t, δq/β, fq/β; q)∞

(f, δ, αt/β, γq/β, εq/β; q)∞
3φ2

(
αq/β, γq/β, εq/β

δq/β, fq/β
; q, t

)

×
(

2φ1

(
q, q/t

βq/(αt)
; q/α

)
− 1

)
+

(
1− q

β

)
(ε, γ, t, fq/β; q)∞

(f, δ, αt/β, εq/β; q)∞

×
∞∑
p=0

(δ/γ)p(αt/β)pγ
p

(t)p(q)p

∞∑
k=0

(δqp/γ)k(qγ/β)k

(q1+p)k
2φ1

(
αq/b, εq/β

fq/β
; q, tqk+p

)

+

(
1− q

β

)
(ε, γ; q)∞
(f, δ; q)∞

∞∑
p=1

(f/ε)pε
p

(q)p

∞∑
k=0

(δ/γ)kγ
k

(q)k

∞∑
m=0

(fqp/ε)m(tqp+k)m
(q1+p)m(αtqp+k/β)m+1

(εq/β)m. (3.13)

Proof. Write V ∗3 in (3.10) as

V ∗3 = V4 + V5, (3.14)

where

V4 =

∞∑
m=0

(f/ε)m(εq/β)m

(q)m(1− αtqm/β)

∞∑
k=0

(δ/γ)k(t)m+k(αtqm/β)k(γq/β)k

(q)k(αtqm+1/β)k(αt/β)m+k

k∑
p=0

(αt/β)p
(t)p

(
β

q

)p
,

V5 =

∞∑
m=0

(f/ε)m(εq/β)m

(q)m(1− αtqm/β)

∞∑
k=0

(δ/γ)k(t)m+k(αtqm/β)k(γq/β)k

(q)k(αtqm+1/β)k(αt/β)m+k

m∑
p=1

(αt/β)k+p
(t)k+p

(
β

q

)k+p
. (3.15)

Note that V4 can be written as

V4 =

∞∑
m=0

(f/ε)m(t)m(εq/β)m

(q)m(αt/β)m+1

∞∑
p=0

(αt/β)p
(t)p

(
β

q

)p ∞∑
k=p

(δ/γ)k(tqm)k
(q)k(αtqm+1/β)k

(
γq

β

)k

=

∞∑
m=0

(f/ε)m(t)m(εq/β)m

(q)m(αt/β)m+1

∞∑
p=0

(αt/β)p(δ/γ)p(tq
m)pγ

p

(t)p(αtqm+1/β)p(q)p

∞∑
k=0

(δqp/γ)k(tqm+p)k(γq/β)k

(qp+1)k(αtqm+p+1/β)k

=

∞∑
p=0

(δ/γ)pγ
p

(q)p

∞∑
m=0

(f/ε)m(tqp)m
(q)m(αtqp/β)m+1

(
εq

β

)m ∞∑
k=0

(δqp/γ)k(tqm+p)k(γq/β)k

(qp+1)k(αtqm+p+1/β)k

=

∞∑
p=0

(δ/γ)pγ
p

(q)p

∞∑
k=0

(δqp/γ)k(tqp)k
(qp+1)k(αtqp/β)k+1

(
γq

β

)k ∞∑
m=0

(f/ε)m(tqp+k)m
(q)m(αtqp+k+1/β)m

(
εq

β

)m

=
(fq/β)∞(t)∞

(αt/β)∞(εq/β)∞

∞∑
p=0

(δ/γ)p(αt/β)pγ
p

(t)p(q)p

∞∑
k=0

(δqp/γ)k(qγ/β)k

(q1+p)k
2φ1

(
αq/b, εq/β

fq/β
; q, tqk+p

)
,

(3.16)
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where in the last step, we used (2.2) to transform the innermost series. Lastly, V5 can be simplified to

V5 =

∞∑
k=0

(δ/γ)kγ
k

(q)k

∞∑
m=1

(f/ε)m(tqk)m(εq/β)m

(q)m(αtqk/β)m+1

m∑
p=1

(αtqk/β)p
(tqk)p

(
β

q

)p

=

∞∑
k=0

(δ/γ)kγ
k

(q)k

∞∑
p=1

(αtqk/β)p
(tqk)p

(
β

q

)p ∞∑
m=0

(f/ε)m+p(tq
k)m+p

(q)m+p(αtqk/β)m+p+1

(
εq

β

)m+p

=

∞∑
p=1

(f/ε)pε
p

(q)p

∞∑
k=0

(δ/γ)kγ
k

(q)k

∞∑
m=0

(fqp/ε)m(tqp+k)m
(q1+p)m(αtqp+k/β)m+1

(
εq

β

)m
. (3.17)

Now (3.4), (3.7), (3.9), (3.11), (3.14), (3.16) and (3.17) give (3.13). This completes the proof. �

Remarks. 1. Agarwal’s identity (3.2) can be obtained from (3.13) by letting ε = f = 0 in (3.13),

and then applying (2.2) to each of the 3φ2’s and to the 2φ1 in the third expression on the right side.

2. The fact that the identity [1, Equation (4.5)]

∞∑
n=0

(α)n
(β)n

tn =
(β/α, q, αt, q/(αt); q)∞
(q/α, β, t, β/(αt); q)∞

+
(1− (q/β))

(1− (αt/β))
2φ1(q, q/t; qβ/(αt); q, q/α) (3.18)

was used in the proof of (3.2) (see [2, p. 294]), and (3.2) was used in the proof of (3.13) given above

suggests that a generalization of (3.2) for the series
∑∞
n=0

(a1,a2,a3,··· ,ar;q)n
(b1,b2,b3,··· ,br;q)n t

n is not inconceivable.

We now prove Theorem 1.2 from Theorem 1.1.

Lemma 3.2. If m is a positive integer, we have

m∑
j=0

[
m

j

]
(−a)j(−a)m−j(−1)j =

(q; q2)n(a2; q2)n, if m = 2n,

0, if m is odd.
(3.19)

Proof. We note that

m∑
j=0

[
m

j

]
(−a)j(−a)m−j(−1)j = (−a)m

m∑
j=0

(q−m)j(−a)j(q/a)j

(q)j(−a−1q1−m)j

=

(q; q2)n(a2; q2)n, if m = 2n,

0, if m is odd,

by [4, p. 526, Equation (1.7)]. �

Remark. Ismail and Zhang [24, Lemma 4.1] have obtained several interesting results of the similar

type as Lemma 3.2.

Proof of Theorem 1.2. Let β = −q2, γ = iq3/2, δ = q3/2, ε = −iq3/2, f = −q3/2, t = q in Theorem

1.1, and then let α→ q. Note that the second expression on the right side of (1.4) vanishes. Hence

∞∑
n=0

qn(−q3; q2)n(q; q)n
(q3; q2)n(−q2; q)n

=
1

2

(
1− 1

q

)
(q; q)2∞

(−q; q)2∞

∞∑
n=0

(−1; q)n(−q; q2)n
(q; q2)n(q; q)n

qn

+
(−q3; q2)∞
(q3; q2)∞

(
1 +

1

q

) ∞∑
n=0

(−i√q)n

(−1)n+1

n∑
p=0

(−1)p(−q)p

(q)p

n∑
m=0

[
n

m

]
(−i)m(−i)n−m(−1)m
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=
1

2

(
1− 1

q

)
(q; q)2∞

(−q; q)2∞

∞∑
n=0

(−1; q)n(−q; q2)n
(q; q2)n(q; q)n

qn

+
1

2q

(−q; q2)∞
(q3; q2)∞

∞∑
n=0

(q; q2)n(−1; q2)n(−q)n

(−q)2n

2n∑
p=0

(−1)p(−q)p

(q)p
, (3.20)

where in the last step, we applied Lemma 3.19 with a = i. This proves (1.6) upon observing that

p2n(−1; q−2n−1,−1 : q) =

2n∑
p=0

(−1)p(−q)p

(q)p
, (3.21)

which follows from (1.5). Now (1.2) and (1.6) imply (1.7). �

Next Theorem 1.3 is proven.

Proof of Theorem 1.3. Let

S1(q) :=

∞∑
n=0

qn(−q3; q2)n(q)n
(q3; q2)n(−q2)n

,

S2(q) := −1

2

(
1− 1

q

)
(q)2∞

(−q)2∞
,

S3(q) := −1

2

(
1− 1

q

)
(q)2∞

(−q)2∞

∞∑
n=1

(−1)n(−q; q2)n
(q; q2)n(q)n

qn. (3.22)

By (1.6), proving (1.8) is equivalent to showing

S1(q) + S2(q) + S3(q) ≡ 1

2q
− 1

2
(mod 4). (3.23)

Note that (q)2∞ ≡ (−q)2∞ (mod 4). Hence

S1(q) + S3(q) ≡ S1(q) +

∞∑
n=1

(−q)n−1(−q; q2)nq
n−1

(q3; q2)n−1(q)n
(mod 4)

= S1(q) +

∞∑
n=0

(−q)n(−q; q2)n+1q
n

(q3; q2)n(q)n+1

=

∞∑
n=0

qn(−q; q2)n+1(q)n
(q3; q2)n(−q)n+1

+

∞∑
n=0

(−q)n(−q; q2)n+1q
n

(q3; q2)n(q)n+1

=

∞∑
n=0

(−q; q2)n+1q
n

(q3; q2)n

(
(q)n

(−q)n+1
+

(−q)n
(q)n+1

)

=

∞∑
n=0

(−q; q2)n+1q
n

(q2; q)2n+1

(
(q)2n(1− qn+1) + (−q)2n(1 + qn+1)

)
≡ 2

∞∑
n=0

(−q; q2)n+1(q)2nq
n

(q2; q)2n+1
(mod 4), (3.24)

since (q)2n ≡ (−q)2n (mod 4). Now

S2(q) = −1

2

(
1− 1

q

)(
1 + 2

∞∑
n=1

(−1)nqn
2

)2
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=
1

2q
− 1

2
+

2

q
(1− q)

 ∞∑
n=1

(−1)nqn
2

+

( ∞∑
n=1

(−1)nqn
2

)2
 . (3.25)

From (3.24) and (3.25), it suffices to show that

2

∞∑
n=0

(−q; q2)n+1(q)2nq
n

(q2; q)2n+1
≡ −2

q
(1− q)

 ∞∑
n=1

(−1)nqn
2

+

( ∞∑
n=1

(−1)nqn
2

)2
 (mod 4), (3.26)

or equivalently,

∞∑
n=0

(q3; q2)n(q2; q2)nq
n+1

(q2; q2)n+1(q3; q2)n
≡ −

 ∞∑
n=1

(−1)nqn
2

+

( ∞∑
n=1

(−1)nqn
2

)2
 (mod 2). (3.27)

Now

∞∑
n=0

(q3; q2)n(q2; q2)nq
n+1

(q2; q2)n+1(q3; q2)n
=

∞∑
n=0

qn+1

1− q2n+2

=

∞∑
N=1

do(N)qN , (3.28)

where do(N) is the number of odd divisors of N . Also,

−

 ∞∑
n=1

(−1)nqn
2

+

( ∞∑
n=1

(−1)nqn
2

)2
 ≡ ∞∑

n=1

qn
2

+

( ∞∑
n=1

qn
2

)2

(mod 2). (3.29)

Let
∞∑
N=1

a(N)qN :=

∞∑
n=1

qn
2

+

( ∞∑
n=1

qn
2

)2

. (3.30)

Let r2(m) denote the number of representations of m as a sum of two squares, where representations

with different orders or different signs of the summands are regarded as distinct. Now if N is not a

square, then the number of representations of N as a sum of 2 positive squares is equal to

1
4r2(N) = d1(N)− d3(N) ≡ do(N) (mod 2), (3.31)

where Jacobi’s formula was employed in the penultimate step. That is, a(N) ≡ do(N) (mod 2). If,

however, N is a square, then the number of representations of N as a sum of 2 positive squares is

equal to 1
4r2(n)− 1. Hence,

a(N) =
1

4
r2(N) = d1(N)− d3(N) ≡ do(N) (mod 2). (3.32)

This implies that (3.27) always holds, and this proves the theorem. �

4. Congruences for pω(n)

This section is devoted to proving Theorem 1.4. We start with the following series S(q):

S(q) :=

∞∑
n=1

qn(qn+1; q)n(q2n+2; q2)∞
(1 + qn)(−qn+1; q)n(−q2n+2; q2)∞

. (4.1)
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Lemma 4.1. The following identity holds:

S(q) = −
∞∑
n=1

(−1)nq2n
2

+

∞∑
k=1

qk(q; q2)k
(−q; q2)k(1 + q2k)

. (4.2)

Proof.

S(q) =

∞∑
n=1

qn(qn+1; q)n(q2n+2; q2)∞
(1 + qn)(−qn+1; q)n(−q2n+2; q2)∞

=
(q; q)∞

(−q; q)∞

∞∑
n=1

qn(−q; q)n−1(−q2n+1; q2)∞
(q; q)n(q2n+1; q2)∞

=
(q; q)∞

(−q; q)∞

∞∑
n=1

qn(−q; q)n−1
(q; q)n

∞∑
k=0

(−1; q2)k
(q2; q2)k

q(2n+1)k

=
(q; q)∞

(−q; q)∞

∞∑
k=0

qk(−1; q2)k
(q2; q2)k

∞∑
n=1

(−q; q)n−1
(q; q)n

q(2k+1)n

=
(q; q)∞

(−q; q)∞

∞∑
k=0

qk(−1; q2)k
(q2; q2)k

(
−1

2
+

1

2

∞∑
n=0

(−1; q)n
(q; q)n

q(2k+1)n

)

= − (q; q)∞
2(−q; q)∞

∞∑
k=0

qk(−1; q2)k
(q2; q2)k

+
(q; q)∞

2(−q; q)∞

∞∑
k=0

qk(−1; q2)k
(q2; q2)k

∞∑
n=0

(−1; q)n
(q; q)n

q(2k+1)n

= − (q; q)∞
2(−q; q)∞

(−q; q2)∞
(q; q2)∞

+
(q; q)∞

2(−q; q)∞

∞∑
k=0

qk(−1; q2)k
(q2; q2)k

(−q2k+1; q)∞
(q2k+1; q)∞

= − (q2; q2)∞
2(−q2; q2)∞

+
1

2

∞∑
k=0

qk(−1; q2)k
(q2; q2)k

(q; q)2k
(−q; q)2k

= −1

2
−
∞∑
n=1

(−1)nq2n
2

+
1

2
+

∞∑
k=1

qk(q; q2)k
(−q; q2)k(1 + q2k)

,

where (2.1) was used for the third and seventh equalities. �

Let

A(q) :=

∞∑
k=1

qk(q; q2)k
(−q; q2)k(1 + q2k)

. (4.3)

Lemma 4.2. we have

A(q) +A(−q) = −1

2
+

1

2

(q2, q2; q2)∞
(−q2,−q2; q2)∞

.

Proof. We now extend the sum in (4.3) to negative infinity:

∞∑
k=−∞

qk(q; q2)k
(−q; q2)k(1 + q2k)

=
1

2
+

∞∑
k=1

qk(q; q2)k
(−q; q2)k(1 + q2k)

+

∞∑
k=1

(−1)kqk(−q; q2)k
(q; q2)k(1 + q2k)

, (4.4)

where (a; q)n := (a; q)∞/(aq
n; q)∞. Thus

∞∑
k=−∞

qk(q; q2)k
(−q; q2)k(1 + q2k)

=
1

2
+A(q) +A(−q). (4.5)
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Set q → q2, a = −1, c = q, d = 1, e = q, and f = −1 in (2.4). Then we obtain

∞∑
k=−∞

qk(q; q2)k
(−q; q2)k(1 + q2k)

=
1

2

∞∑
k=−∞

qk(q; q2)k(−1; q2)k
(−q; q2)k(−q2; q2)k

=
1

2

(q, q2,−q, q2; q2)∞
(−q2,−q2,−q, q; q2)∞

=
1

2

(q2, q2; q2)∞
(−q2,−q2; q2)∞

,

which with (4.5) completes the proof. �

Lemma 4.3. We have

1

2

(
A(q)−A(−q)

)
≡ q (q8; q8)4∞

(q4; q4)2∞
(mod 4). (4.6)

Proof. First note that using Alladi’s identity [3, p. 215] we obtain

(q; q2)k
(−q; q2)k

= 1− 2

k∑
j=1

q2j−1(q; q2)j−1
(−q; q2)j

.

Thus

A(q) =

∞∑
k=1

qk(q; q2)k
(−q; q2)k(1 + q2k)

=

∞∑
k=1

qk

1 + q2k
− 2

∞∑
k=1

qk

1 + q2k

k∑
j=1

q2j−1(q; q2)j−1
(−q; q2)j

≡
∞∑
k=1

qk

1 + q2k
+ 2

∞∑
k=1

qk

1 + q2k

k∑
j=1

q2j−1

1 + q2j−1
(mod 4). (4.7)

Now

∞∑
k=1

qk

1 + q2k

k∑
j=1

q2j−1

1 + q2j−1
=

∞∑
k=1

qk

1 + q2k

k∑
j=1

∞∑
m=1

(−1)m−1q(2j−1)m

=

∞∑
k=1

qk

1 + q2k

∞∑
m=1

k∑
j=1

(−1)m−1q(2j−1)m

= −
∞∑
k=1

qk

1 + q2k

∞∑
m=1

(−q)m
k−1∑
j=0

q2mj

= −
∞∑
k=1

qk

1 + q2k

∞∑
m=1

(−q)m (1− q2km)

1− q2m

≡
∞∑

k,m=1

qk+m

(1 + q2k)(1 + q2m)
+

∞∑
k,m=1

q2km+k+m

(1 + q2k)(1 + q2m)
(mod 2)

≡
∞∑
k=1

q2k

(1− q2k)2
+

∞∑
k=1

q2k
2+2k

(1− q2k)2
(mod 2), (4.8)
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where the last congruence follows since each of the double summations is symmetric in k and m. Thus,

by (4.7) and (4.8)

A(q) ≡
∞∑
k=1

qk

1 + q2k
+ 2

∞∑
k=1

q2k

1− q4k
+ 2

∞∑
k=1

q2k(k+1)

1− q4k
(mod 4)

≡
∞∑
k=1

q2k−1

1 + q4k−2
+

∞∑
k=1

q2k

1 + q4k
+ 2

∞∑
k=1

q2k

1− q4k
+ 2

∞∑
k=1

q2k(k+1)

1− q4k
(mod 4).

Since the odd powers of q appear only in the first sum on the right hand side above, we see that

1

2

(
A(q)−A(−q)

)
≡
∞∑
k=1

q2k−1

1 + q4k−2
(mod 4)

= q
(q8; q8)4∞
(q4; q4)2∞

,

where the last equality follows from (32.26) in [18]. It can also be derived by letting q → q4, and then

substituting a = −q−2, b = −q2, z = q2 in Ramanujan’s 1ψ1 summation formula [21, p.239, (II 29)]

∞∑
n=−∞

(a; q)n
(b; q)n

zn =
(az; q)∞(q/(az); q)∞(q; q)∞(b/a; q)∞
(z; q)∞(b/(az); q)∞(b; q)∞(q/a; q)∞

, (4.9)

valid for |b/a| < |z| < 1 and |q| < 1. �

By Lemmas 4.2 and 4.3, we have

A(q) ≡ −1

4
+

1

4

(q2; q2)2∞
(−q2; q2)2∞

+ q
(q8; q8)4∞
(q4; q4)2∞

(mod 4).

Also, we recall that

φ(−q) :=

∞∑
n=−∞

(−1)nqn
2

= (q; q)∞(q; q2)∞ =
(q; q)∞

(−q; q)∞
, (4.10)

ψ(q) :=

∞∑
n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

=
(q2; q2)2∞
(q; q)∞

. (4.11)

Thus,

A(q) ≡ −1

4
+

1

4

∞∑
m,n=−∞

(−1)m+nq2(m
2+n2) + q

∞∑
m,n=0

q2m(m+1)+2n(n+1) (mod 4). (4.12)

We are now ready to prove Theorem 1.4. First, note that

1 + x

1− x
≡ 1− x

1 + x
(mod 4). (4.13)

Thus from (1.1),

∞∑
n=1

pω(n)qn ≡
∞∑
n=1

qn(qn+1; q)n(q2n+2; q2)∞
(1− qn)(−qn+1; q)n(−q2n+2; q2)∞

(mod 4). (4.14)

Now
∞∑
n=1

qn(qn+1; q)n(q2n+2; q2)∞
(1− qn)(−qn+1; q)n(−q2n+2; q2)∞

=

∞∑
n=1

qn(qn+1; q)n(q2n+2; q2)∞
(1 + qn)(−qn+1; q)n(−q2n+2; q2)∞

+ 2

∞∑
n=1

q2n(qn+1; q)n(q2n+2; q2)∞
(1− q2n)(−qn+1; q)n(−q2n+2; q2)∞
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≡
∞∑
n=1

qn(qn+1; q)n(q2n+2; q2)∞
(1 + qn)(−qn+1; q)n(−q2n+2; q2)∞

+ 2

∞∑
n=1

q2n

1− q2n
(mod 4)

≡
∞∑
n=1

qn(qn+1; q)n(q2n+2; q2)∞
(1 + qn)(−qn+1; q)n(−q2n+2; q2)∞

+ 2

∞∑
n=1

q2n
2

, (4.15)

where the second last congruence follows from the fact that

1 + x ≡ 1− x (mod 2). (4.16)

For the last congruence above, we used Clausen’s identity [18, p. 16, Equation (14.51)]

∞∑
n=1

d(n)qn =

∞∑
n=1

(
1 + qn

1− qn

)
qn

2

,

which implies that

∞∑
n=1

qn

1− qn
≡
∞∑
n=1

qn
2

(mod 2). (4.17)

Thus, from (4.1), (4.14) and (4.15), we have

∞∑
n=1

pω(n)qn ≡ S(q) + 2

∞∑
n=1

q2n
2

(mod 4). (4.18)

Theorem 4.4. We have

∞∑
n=1

pω(n)qn ≡ −1 +

∞∑
m,n=0

(−1)m+nq2(m
2+n2) + q

∞∑
m,n=0

q2m(m+1)+2n(n+1) (mod 4). (4.19)

Proof. The congruence follows from (4.2), (4.3), (4.12), and (4.18). �

Thus it immediately follows from Theorem 4.4 that pω(4n+ 3) ≡ 0 (mod 4). Since 8n+ 6 = 2(4n+ 3)

and 4n+ 3 cannot be written as a sum of two squares, this also proves pω(8n+ 6) ≡ 0 (mod 4).

5. Different representations of the generating function of sptω(n)

As in [20], define

∞∑
n=1

spt(n)qn =

∞∑
n=1

qn(−qn+1; q)∞
(1− qn)2(qn+1; q)∞

.

Here we note that this spt(n) is exactly a half of the smallest parts function for overpartitions of n

defined by Bringmann, Lovejoy, and Osburn in [14]. By taking d = 1 and e = 0 in Equations (1.1),

(1.2), and Theorem 7.1. in [15], we see that

∞∑
n=1

spt(n)qn =

∞∑
n=1

qn(−qn+1; q)∞
(1− qn)2(qn+1; q)∞

=
(−q; q)∞
(q; q)∞

∞∑
n=1

nqn

1− qn
+ 2

(−q; q)∞
(q; q)∞

∞∑
n=1

(−1)nqn
2+n

(1− qn)2
. (5.1)

We also define

∞∑
n=1

spt2(n)qn =

∞∑
n=1

q2n(−q2n+1; q)∞
(1− q2n)2(q2n+1; q)∞

.
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Then, again by taking d = 1, e = q−1 and replacing q by q2 in Equations (1.1), (1.2), and Theorem

7.1. in [15], we have

∞∑
n=1

spt2(n)qn =

∞∑
n=1

q2n(−q2n+1; q)∞
(1− q2n)2(q2n+1; q)∞

=
(−q; q)∞
(q; q)∞

∞∑
n=1

nqn

1− qn
+

(−q; q)∞
(q; q)∞

∞∑
n=1

(−1)nqn(1 + qn
2

)

(1− qn)2
.

(5.2)

Theorem 5.1. We have
∞∑
n=1

sptω(n)qn =
(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

nqn

1− qn
+ 2

(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

(−1)nq2n(n+1)

(1− q2n)2
. (5.3)

Proof. In (2.3), we set a = 1, p1 = z = p−12 , and f = −1. Then we obtain

∞∑
n=0

(z; q)n(z−1; q)n(−q; q2)nq
n

(q; q)n(q; q2)n(−q; q)n
=

(zq; q)∞(z−1q; q)∞
(q; q)2∞

(
1 + 2

∞∑
n=1

(1− z)(1− z−1)(−1)nq2n(n+1)

(1− zq2n)(1− z−1q2n)

)
.

(5.4)

Now take the second derivative on both sides of (5.4) with respect to z, then set z = 1 to obtain

∞∑
n=1

qn(q; q)n(−q; q2)n
(1− qn)2(−q; q)n(q; q2)n

=

∞∑
n=1

nqn

1− qn
+ 2

∞∑
n=1

(−1)nq2n(n+1)

(1− q2n)2
.

Multiply both sides of the above identity by (−q2; q2)∞/(q
2; q2)∞ to get

(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

qn(q; q)n(−q; q2)n
(1− qn)2(−q; q)n(q; q2)n

=
(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

nqn

1− qn
+ 2

(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

(−1)nq2n(n+1)

(1− q2n)2
.

(5.5)

Note that the left hand side of (5.5) is

(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

qn(q; q)n(−q; q2)n
(1− qn)2(−q; q)n(q; q2)n

=
(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

qn(q; q)n(−q; q)2n(q2; q2)n
(1− qn)2(−q; q)n(q; q)2n(−q2; q2)n

=
(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

qn(−qn+1; q)n(q2; q2)n
(1− qn)2(qn+1; q)n(−q2; q2)n

=

∞∑
n=1

qn(−qn+1; q)n(−q2n+2; q2)∞
(1− qn)2(qn+1; q)n(q2n+2; q2)∞

=

∞∑
n=1

sptω(n)qn,

where the last equality follows from the definition of sptω(n) in (1.11). This completes the proof. �

Lemma 5.2. We have
∞∑
n=1

(−1)nqn

(1− qn)2
= −

∞∑
n=1

(2n− 1)q2n−1

1− q2n−1
.

Proof. Note that
∞∑
n=1

(−1)nqn

(1− qn)2
=

∞∑
n,k=1

(−1)nkqkn = −
∞∑
k=1

kqk

1 + qk
.

Robbins [26, Theorem 3] has shown that this is the negative of the generating function for the sum of

the odd divisors of n which is the right-hand side of the identity we wanted to prove. �
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We now relate our sptω(n) to spt(n) and spt2(n).

Corollary 5.3. We have

∞∑
n=1

sptω(n)qn =
(−q2; q2)∞
(q2; q2)∞

( ∞∑
n=1

(2n− 1)q2n−1

1− q2n−1
+

∞∑
n=1

nq2n

1− q2n

)
+

∞∑
n=1

spt(n)q2n, (5.6)

=
(−q2; q2)∞
(q2; q2)∞

( ∞∑
n=1

(2n− 1)q2n−1

1− q2n−1
+ 2

∞∑
n=1

(2n− 1)q4n−2

1− q4n−2

)
+ 2

∞∑
n=1

spt2(n)q2n. (5.7)

Proof. From (5.3),

∞∑
n=1

sptω(n)qn =
(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

(2n− 1)q2n−1

1− q2n−1
+

(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

2nq2n

1− q2n
+ 2

(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

(−1)nq2n(n+1)

(1− q2n)2

=
(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

(2n− 1)q2n−1

1− q2n−1
+

(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

nq2n

1− q2n
+

∞∑
n=1

spt(n)q2n

=
(−q2; q2)∞
(q2; q2)∞

( ∞∑
n=1

(2n− 1)q2n−1

1− q2n−1
+

∞∑
n=1

nq2n

1− q2n

)
+

∞∑
n=1

spt(n)q2n,

where the second last equality follows from (5.1). Also, by (5.2),

∞∑
n=1

sptω(n)qn =
(−q2; q2)∞
(q2; q2)∞

( ∞∑
n=1

(2n− 1)q2n−1

1− q2n−1
− 2

∞∑
n=1

(−1)nq2n

(1− q2n)2

)
+ 2

∞∑
n=1

spt2(n)q2n,

which with Lemma 5.2 yields (5.7). �

6. Congruences for sptω(n)

The congruences satisfied by sptω(n), which are given in Theorem 1.5, are proved in this section.

6.1. Congruences modulo 3. We prove (1.15) and (1.16) here. Let

S(q) :=

∞∑
n=1

cnq
n =

(−q2; q2)∞
(q2; q2)∞

( ∞∑
n=1

(2n− 1)q2n−1

1− q2n−1
+ 2

∞∑
n=1

(2n− 1)q4n−2

1− q4n−2

)
. (6.1)

Then, by (5.7),

sptω(n) = cn + 2spt2

(n
2

)
, (6.2)

where we follow the convention that spt2(x) = 0 if x is not a positive integer.

By (1.12) and (1.13), it suffices to show that c3n ≡ c3n+2 ≡ 0 (mod 3). Now

S(q) ≡ (−q2; q2)∞
(q2; q2)∞

( ∞∑
n=1

(2n− 1)q2n−1

1− q2n−1
−
∞∑
n=1

(2n− 1)q4n−2

1− q4n−2

)
(mod 3)

=
(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

(2n− 1)q2n−1

1− q4n−2

=
(−q2; q2)∞
(q2; q2)∞

q(q4; q4)8∞
(q2; q2)4∞

= q(−q2; q2)9∞(q2; q2)3∞

≡ q(−q6; q6)3∞(q6; q6)∞ (mod 3),

where the third equality follows from [18, Equation (32.31)]. Hence c3n ≡ c3n+2 ≡ 0 (mod 3).
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6.2. Another proof of (1.15). Let

M1(q) :=

∞∑
n=1

dnq
n =

(−q2; q2)∞
(q2; q2)∞

( ∞∑
n=1

(2n− 1)q2n−1

1− q2n−1
+

∞∑
n=1

nq2n

1− q2n

)
.

Since [20, Thm. 1.2] implies spt(3n) ≡ 0 (mod 3), it suffices to show d3n ≡ 0 (mod 3) by (5.6). Now

M1(q) =
(−q2; q2)∞
(q2; q2)∞

( ∞∑
n=1

(2n− 1)q2n−1

1− q2n−1
+

∞∑
n=1

nq2n

1− q2n

)

≡ (−q2; q2)∞
(q2; q2)∞

( ∞∑
n=1

(2n− 1)q2n−1

1− q2n−1
−
∞∑
n=1

2nq2n

1− q2n

)
(mod 3)

=
(−q2; q2)∞
(q2; q2)∞

∞∑
n=1

(−1)n−1nqn

1− qn

≡ (−q2; q2)∞
(q2; q2)∞

∞∑
n=1

χ(n)qn

1− qn
(mod 3),

where χ(n) = 1 if n ≡ 1 or 2 (mod 6), is −1 if n ≡ 4 or 5 (mod 6), and is 0 if n ≡ 0 (mod 3). Thus,

M1(q) ≡ (−q2; q2)∞
(q2; q2)∞

∞∑
n=1

E1,2(n; 6)qn (mod 3),

where

E1,2(n; 6) =
∑
d|n

d≡1,2 (mod 6)

1 −
∑
d|n

d≡−1,−2 (mod 6)

1.

By (4.10), we see that

φ(−q) =

∞∑
n=−∞

(−1)nq9n
2

− 2q

∞∑
n=−∞

(−1)nq9n
2+6n

= φ(−q9)− 2qW (q3).

Hence, by [18, p. 80, eq. (32.39)],

M1(q) ≡ 1

φ(−q2)

∞∑
n=1

E1,2(n; 6)qn (mod 3)

≡ 1

φ(−q2)

(
1− (q2; q2)∞(q3; q3)6∞

(q; q)2∞(q6; q6)3∞

)
(mod 3)

=
1

φ(−q2)

(
1− φ(−q3)3

φ(−q)

)
≡ (φ(−q)− φ(−q9))

φ(−q2)φ(−q)
(mod 3)

=
−2qW (q3)(−q; q)∞(−q2; q2)∞

(q2; q2)∞(q; q)∞

=
−2qW (q3)(q; q)∞(−q2; q2)∞

(q; q)3∞

≡ qW (q3)

(q3; q3)∞
(q4; q4)∞(q; q2)∞ (mod 3)
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=
qW (q3)

(q3; q3)∞

∞∑
n=−∞

(−1)nq2n
2−n.

Now 2n2 − n is only congruent to 0 or 1 modulo 3. Hence this last expression has no non-zero

coefficients for terms where q is a power of 3. Hence 3 | d3n.

6.3. Congruence modulo 6. The congruence in (1.18) can be reduced to (1.16). Using (4.16), we

see that
∞∑
n=1

sptω(n)qn =

∞∑
n=1

qn(−qn+1; q)n(−q2n+2; q2)∞
(1− qn)2(qn+1; q)n(q2n+2; q2)∞

≡
∞∑
n=1

qn

(1− qn)2
(mod 2)

=

∞∑
n=1

σ(n)qn, (6.3)

where σ(n) denotes the sum of all positive divisors of n.

Now any number of the form 6n + 5 has all its prime divisors odd. The sum of the divisors of an

odd prime raised to an odd power is even. For any number congruent to 5 mod 6 there must be at

least one odd prime congruent to 5 mod 6 raised to an odd power in its prime factorization (otherwise

the number would be congruent to 1 mod 6). Since σ(n) is multiplicative, it follows that σ(6n+ 5) is

even. Hence the coefficients of q6n+5 in both series are all even.

6.4. Congruence modulo 5. The congruence (1.17) is proved here. Since spt2(5n+3) ≡ 0 (mod 5),

using (6.2), it suffices to show that c10n+6 ≡ 0 (mod 5), where cn is defined in (6.1). By (6.1),

S(q) =
(−q2; q2)∞
(q2; q2)∞

( ∞∑
n=1

(2n− 1)q2n−1

1− q2n−1
+ 2

∞∑
n=1

(2n− 1)q4n−2

1− q4n−2

)

=
(−q2; q2)∞
(q2; q2)∞

( ∞∑
n=1

(2n− 1)q2n−1

1− q4n−2
+

∞∑
n=1

(2n− 1)q4n−2

1− q4n−2
+ 2

∞∑
n=1

(2n− 1)q4n−2

1− q4n−2

)

=
(−q2; q2)∞
(q2; q2)∞

( ∞∑
n=1

(2n− 1)q2n−1

1− q4n−2
+ 3

∞∑
n=1

(2n− 1)q4n−2

1− q4n−2

)
=: qE1(q2) + 3E2(q2).

Thus, it suffices to show that the coefficient of q5n+3 in E2(q) is congruent to 0 mod 5, which follows

from the following lemma.

Lemma 6.1. Let

r(q) = q1/5
(q, q4; q5)∞
(q2, q3; q5)∞

,

and let E2(q) be defined as above. Then,

E2(q1/5) ≡ q(q; q)2∞(q10; q10)∞
(q2, q3; q5)5∞(q5; q5)2∞

(
r(q2)

r(q)2
+

1

r(q)2r(q2)
+

3

r(q)3
+
r(q2)

r(q)3

)
(mod 5).

Proof. As in [22], set

A(q) = q1/5
(q, q4, q5; q5)∞

(q; q)
3/5
∞

, B(q) =
(q2, q3, q5; q5)∞

(q; q)
3/5
∞

.
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Although A(q)±1 and B(q)±1 do not have integer coefficients, all of the series A(q)±5, B(q)±5, and

r(q)±1 have integer coefficients. We will use the following properties:

r(q) =
A(q)

B(q)
, (6.4)

A(q)B(q) = q1/5
(q5; q5)∞

(q; q)
1/5
∞

, (6.5)

2A(q)5 +B(q)5 ≡ 1 (mod 5), (6.6)

A(q1/5)5 ≡ r(q)

1 + 2r(q)
(mod 5). (6.7)

Identities (6.4) and (6.5) follow directly from the definitions of A(q) and B(q). By multiplying through

by (q; q)3∞ and using (6.5), we see that (6.6) has the equivalent formulation

(q2, q3, q5; q5)5∞ + 2q(q, q4, q5; q5)5∞ ≡ (q; q)3∞ (mod 5).

After applying Jacobi’s triple product identity [5, p. 21, Theorem 2.8] to each of the products on the

left hand side, applying the fact that the characteristic is 5, and using Jacobi’s identity [5, p. 176] on

the right side, we must show that

∞∑
n=−∞

(−1)nq
5n
2 (5n−1) + 2q

∞∑
n=−∞

(−1)nq
5n
2 (5n−3) ≡

∞∑
n=0

(2n+ 1)(−1)nq
n
2 (n+1) (mod 5),

which is easily seen to be true by breaking n into residue classes modulo 10 on the right hand side.

Next, from [22, Theorem 3.3], we have

A(q1/5)5 = A(q)5 − 3A(q)4B(q) + 4A(q)3B(q)2 − 2A(q)2B(q)3 +A(q)B(q)4,

so, by (6.4),

A(q1/5)5 = A(q)5 − 3A(q)4B(q) + 4A(q)3B(q)2 − 2A(q)2B(q)3 +A(q)B(q)4

= B(q)5r(q)(1− 2r(q) + 4r(q)2 − 3r(q)3 + r(q)4)

≡ B(q)5r(q)(1 + 2r(q))4 (mod 5)

≡ r(q)(1 + 2r(q))4

1 + 2r(q)5
(mod 5)

≡ r(q)

1 + 2r(q)
(mod 5),

where (6.6) was used to obtain the penultimate equality. Thus, (6.7) is clear. We will also require the

two identities

(q1/5; q1/5)∞ = q1/5(q5; q5)∞

(
1

r(q)
− r(q)− 1

)
, (6.8)

A(q)5 =

∞∑
n=1
5-n

qn

1− qn
·


1, n ≡ 1 (mod 5)

−3, n ≡ 2 (mod 5)

3, n ≡ 3 (mod 5)

−1, n ≡ 4 (mod 5)

. (6.9)
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The first identity can be found in [13, p. 270] and the second is the first equality in [22, Lemma 2.4].

Let us save space by writing r = r(q) and R = r(q2). Now, by (6.9),

E2(q1/5) =
(−q1/5; q1/5)∞
(q1/5; q1/5)∞

∞∑
n=1

(2n− 1)q(2n−1)/5

1− q(2n−1)/5
=

(q2/5; q2/5)∞
(q1/5; q1/5)2∞

∞∑
n=1

(
nqn/5

1− qn/5
− 2nq2n/5

1− q2n/5

)

≡ (q2/5; q2/5)∞(q1/5; q1/5)3∞
(q; q)∞

∞∑
n=1

(
nqn/5

1− qn/5
− 2nq2n/5

1− q2n/5

)
(mod 5)

≡ (q2/5; q2/5)∞(q1/5; q1/5)3∞
(q; q)∞

(
A(q1/5)5 − 2A(q2/5)5

)
(mod 5).

By the dissection formulas (6.8) and (6.7),

E2(q1/5) ≡ q(q5; q5)3∞(q10; q10)∞
(q; q)∞

(
1

R
−R− 1

)(
1

r
− r − 1

)3(
r

1 + 2r
− 2R

1 + 2R

)
(mod 5)

≡ q(q5; q5)3∞(q10; q10)∞
(q; q)∞

(1 + 2R)2

R

(1 + 2r)6

r3

(
r

1 + 2r
− 2R

1 + 2R

)
(mod 5)

≡ q(q5; q5)3∞(q10; q10)∞(1 + 2r5)

(q; q)∞

(1 + 2R)2

R

1 + 2r

r3

(
r

1 + 2r
− 2R

1 + 2R

)
(mod 5)

=
q(q5; q5)3∞(q10; q10)∞(1 + 2r5)

(q; q)∞

(
−4R

r2
+

1

r2R
− 2

r3
− 4R

r3

)
≡ q(q5; q5)3∞(q10; q10)∞

(q; q)∞B(q)5

(
R

r2
+

1

r2R
+

3

r3
+
R

r3

)
(mod 5).

This is the result as stated. �

Remark. In the proof of Theorem 6.4 in [10], it is written that

∞∑
n=0

(2n+ 1)q2n+1

1− q2n+1
= q

(q4; q4)8∞
(q2; q2)4∞

,

which is not correct. What the authors meant is

∞∑
n=0

(2n+ 1)q2n+1

1− q4n+2
= q

(q4; q4)8∞
(q2; q2)4∞

.

The proof can be easily fixed as the congruence concerns the odd power terms only. However, using

the functions A(q), B(q) and r(q) from the proof of the lemma above, we can also correct the proof of

Theorem 6.4 in [10]. With the parameter k = r(q)r(q2)2, we have the parameterizations [9, Entry 24]

r(q)5 = k

(
1− k
1 + k

)2

, r(q2)5 = k2
(

1− k
1 + k

)
,

and the dissection of the relevant q-series is found to be

1

(q1/5; q1/5)∞

∞∑
n=1

nqn/5

1− qn/5
≡ r(q2)B(q)5B(q2)5

q2/5(q10; q10)∞

(2 + k)3

(1 + k)2
(
4k + 2r(q)(1 + k) + r(q2)

)
(mod 5).

7. Congruences involving spt(n) and sptω(n)

This section is devoted to proving Theorems 1.6 and 1.7. We first need the following lemmas.
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Lemma 7.1. We have
∞∑
n=1

qn(n+1)/2

1− qn
=

∞∑
n=1

q2n−1

1− q2n−1
. (7.1)

Proof. This is proved in [25, p. 28]. �

Lemma 7.2. We have
∞∑
n=1

q2n−1

1− q2n−1
≡
∞∑
n=1

(qn
2

+ q2n
2

) (mod 2). (7.2)

Proof. We have

∞∑
n=1

q2n−1

1− q2n−1
=

∞∑
n=1

qn

1− qn
−
∞∑
n=1

q2n

1− q2n

≡
∞∑
n=1

qn
2

+

∞∑
n=1

q2n
2

(mod 2),

by (4.17). �

7.1. Proof of Theorem 1.6. By (5.1) and (5.3), we know that

∞∑
n=1

spt(n)qn ≡
∞∑
n=1

sptω(n)qn (mod 2)

≡
∞∑
n=1

nqn

1− qn
(mod 2)

≡
∞∑
n=1

q2n−1

1− q2n−1
(mod 2).

Therefore, the congruences in (1.19) follow from (7.2).

7.2. Proof of Theorem 1.7. Let us introduce the series

T (q) =

∞∑
n=1

qn
2

.

Several identities satisfied by this series are

1 + 2T (−q) =
(q; q)∞

(−q; q)∞
, (7.3)

T (q) + T (q)2 =

∞∑
n=0

(−1)nq2n+1

1− q2n+1
, (7.4)

where the first identity is a restatement of (4.10) and the second is [18, p. 59, Equation (26.63)]. By

applying (5.1), (7.1), (7.3), and (7.4) in the same sequence, we find that

∞∑
n=1

spt(n)qn =
(−q; q)∞
(q; q)∞

( ∞∑
n=1

nqn

1− qn
+ 2

∞∑
n=1

(−1)nqn
2+n

(1− qn)2

)

≡ (−q; q)∞
(q; q)∞

( ∞∑
n=0

(−1)nq2n+1

1− q2n+1
+ 2

∞∑
n=0

q4n+2

1− q4n+2
+ 2

∞∑
n=1

qn(n+1)

1− q2n

)
(mod 4)
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≡ (−q; q)∞
(q; q)∞

∞∑
n=0

(−1)nq2n+1

1− q2n+1
(mod 4)

≡ 1

1 + 2T (−q)
(T (q) + T (q)2) (mod 4)

≡ (1 + 2T (q))(T (q) + T (q)2) (mod 4)

≡ 2T (q)3 + 3T (q)2 + T (q) (mod 4).

Next, set

t =

∞∑
n=1

q(7n+0)2/7 = T (q7), b =

∞∑
n=−∞

q(7n+2)2/7,

a =

∞∑
n=−∞

q(7n+1)2/7, c =

∞∑
n=−∞

q(7n+3)2/7,

and note that T (q1/7) = t+ a+ b+ c. Therefore,

∞∑
n=1

spt(n)qn/7 ≡ 2T (q1/7)3 + 3T (q1/7)2 + T (q1/7) (mod 4)

= 12abc+ 2t3 + 3t2 + t

+ 6at2 + 6at+ a+ 6b2t+ 3b2 + 6bc2

+ 6a2t+ 3a2 + 6ab2 + 6ct2 + 6ct+ c

+ 2a3 + 12act+ 6ac+ 6b2c

+ 6a2c+ 6bt2 + 6bt+ b+ 6c2t+ 3c2

+ 12abt+ 6ab+ 6ac2 + 2b3

+ 6a2b+ 12bct+ 6bc+ 2c3,

where the terms in the expansion have been collected according to the residue classes modulo 1 of the

exponents on q. Taking the terms involving only integral powers of q gives

∞∑
n=1

spt(7n)qn ≡ 12abc+ 2t3 + 3t2 + t (mod 4)

≡ 2t3 + 3t2 + t (mod 4)

≡
∞∑
n=1

spt(n)q7n (mod 4).

This proves the congruence (1.20). Similarly, by (5.3),

∞∑
n=1

sptω(n)qn =
(−q2; q2)∞
(q2; q2)∞

( ∞∑
n=1

nqn

1− qn
+ 2

∞∑
n=1

(−1)nq2n(n+1)

(1− q2n)2

)

≡ (−q2; q2)∞
(q2; q2)∞

 ∞∑
n=0

(−1)nq2n+1

1− q2n+1
+ 2

∞∑
n=0

(−1)nq4n+2

1− q4n+2
+ 2

( ∞∑
n=1

qn(n+1)/2

1− qn

)4
 (mod 4)

=
1

1 + 2T (−q2)

(
T (q) + T (q)2 + 2T (q2) + 2T (q2)2 + 2(T (q) + T (q)2)4

)
(mod 4)

≡ (1 + 2T (q)2)(T (q) + 3T (q)2 + 2T (q)8) (mod 4)

≡ 2T (q)8 + 2T (q)4 + 2T (q)3 + 3T (q)2 + T (q) (mod 4).
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This polynomial in T (q) may be dissected in the same fashion, and we find that

∞∑
n=1

sptω(7n)qn ≡ 2t8 + 2t4 + 2t3 + 3t2 + t (mod 4)

≡
∞∑
n=1

sptω(n)q7n (mod 4),

which proves the congruence (1.21).

8. Concluding remarks and some open problems

In concluding, we remark that the study involving the partition function pω(n) and its associated

smallest parts function sptω(n) is more difficult than the one involving pω(n) and sptω(n). Nonethe-

less, these functions are as interesting as their aforementioned counterparts. This certainly merits

further study of these functions. In particular, we give two open problems below.

Problem 1. Is the generating function of pω(n) representable in terms of some more important

functions, say for example, mock theta functions or more generally, mock modular forms or mixed

mock modular forms? Is it possible to further simplify the series involving the little q-Jacobi polyno-

mials in Theorem 1.2?

We were able to obtain another proof of the mod 4 congruences in Theorem 1.4 assuming the

conjecture that the function Y (q) defined by

Y (q) :=
∑
n,m≥1

(−1)mq2nm+m

(1 + qn)(1− q2m−1)
(8.1)

is an odd function of q. Some coefficients in the expansion of Y (q) are

Y (q) = −q3 − 2q5 − 3q7 − 5q9 − 4q11 − 7q13 − 9q15 − · · · − 53q91 − 62q93 − 38q95 − 55q97 − · · · .

Unfortunately we are unable to prove that indeed it is an odd function, hence we state it below as

another open problem.

Problem 2. Prove that the function Y (q) defined in (8.1) is an odd function of q.
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