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Abstract

The Bhargava-Adiga summation rivals the 111 —summation of Ra-
manujan in elegance. This paper is devoted to two applications in the
theory of integer partitions leading to partition questions related to
Gauss’s celebrated three triangle theorem.
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1 Introduction

One very useful and elegant identity discovered by Ramanujan (cf. [1]) is
(|2] < Jt| <1 and |g| < 1):
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From this result one sets b = aq to deduce the famous result from the
theory of elliptic functions (cf. [8, p. 21, eq. (18.61)]):
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where the second line follows from Jacobi’s triple product [2, p. 21, Th. 2.8].
As Bhargava and Adiga point out in [5], the j1; —summation may be
used to derive the classical theorems on representations of integers by two
and four squares, and in [1], Adiga treats two and four triangular numbers.
The focus of this paper will be on the following result also by Bhargava
and Adiga [6, eq. (1.1)]
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where |a| < 1,|d| < 1,]q| < 1, and b not a power of q.

Note that this result has as many free parameters as Ramanujan’s sum-
mation and is comparably surprising and elegant.

In the Bhargava-Adiga paper [6], they reveal the fact that now the clas-
sical theorems on two and four squares and triangles are even easier to prove
than in the earlier papers where the 19, was used.

In their paper [6, eq. (3.7)], they also deduce the following formula for
r3(n), the number of representations of n as a sum of three squares
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Their Theorem 3.7 then expands the right-hand side using the classical
partition interpretation of the expressions 1/(—¢; q)m and (—¢; q)m—1-

In [7], Bhargava, Adiga and Somashekara also consider the three square
theorem, and in [10] Somashekara, Murthy and Shalini provide a beautiful
generalization of (1.3) to the full 999 with four free parameters.
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Our first goal is to reinterpret (1.4) in terms of compact partitions. We
accomplish this in Section 2.

It is also possible to deduce from (1.3) (let ¢ — ¢2, then let a — 0, ¢ = ¢,
b = ¢ and multiply by 1/(1 — q))
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where the final expression follows from noting that ¢*"*! = ¢" —¢" (1 —¢***1),
and recalling [4, p. 238, Entry 9.5.2]
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In Section 3, we shall relate (1.5) to partitions with only odd parts, and,
as a consequence, we consider some open problems in the concluding Section
4.

2 Compact Partitions

N. J. Fine [8, p. 57] was perhaps the first to discuss partitions without gaps
(allbeit he was discussing only partitions with odd parts). In this section we
consider a mild generalization of Fine’s idea.

Definition 1. A partition 7 of n is called compact if every integer
between the largest and smallest parts of 7 also appears as a part.

For example, the compact partitions of 5 are 5, 3+2, 24241, 2+1+1+1,
1+14+14+1+1.

The conjugates of compact partitions are partitions in which only the
largest part may repeat. Thus the conjugate of the compact partitions of 5
are 1+14+14141, 24+2+1, 3+2, 441, 5.



This observation allows us to observe that if ¢(n) denotes the number of
compact partitions of n, then

n
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We note that ¢(n) is sequence A034296 in the OEIS [9].

Now if we consider the subset of compact partitions that contain a 1 (i.e.
partitions without gaps), then again the conjugates of these partitions are
generated by

1+ (G Dn1 = (G0 (2:2)

n>1

by [2, Ch.’s 1 and 2].
We now require some partition statistics associated with an integer par-
tition :

L(m) := the number of largest parts of 7
#(m) := the number of parts of ™
o(m) := the smallest part of 7

Y1 e = {1 if 1is a part of 7

0 otherwise.

Lemma 2.1. If ¢y(n) is the number of compact partitions 7 where 7 is

counted with weight
(_1)#(7r)+o(7r)71

then

S am)e =Y (—1)"31—(;11; Q-1 (2.3)

Proof. The series in (2.3) considers the conjugates of compact partitions
counted with +1 if the number of largest parts has the opposite parity of the
largest part and -1 otherwise. Referring to the conjugate partition (i.e. the
compact partition) we see that the largest part conjugates to the number of
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parts and the number of largest parts conjugates to the smallest part. Hence
the series (2.3) generates partitions counted by the weight

(_1)#(7r)+0(7r)—1

as asserted. O

Lemma 2.2 If ¢;(n) denotes the number of compact partitions of n
containing a 1 and counted with weight

(—~1)#OL(m),

then
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Proof. The right hand expression in (2.4) is
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This series generates compact partitions containing 1 and counted with weight
L(m) - (=1)#™ (because z/(1 — 2)? = 2 + 222 + 32 + ...). Le. the right
hand side of (2.4) is the generating function for ¢i(n). O

Theorem 1. For n > 1,

(=D)"rs(n)/2 = ci1(n) + 2co(n) (2.5)
= Y DRI )+ 217,
reC(n)

where C(n) is the set of compact partitions of n.

Proof. Bhargava and Adiga have given us the proof via (1.4). Namely, we
divide (1.4) by 2, apply Lemma 2.1 to the second series on the right, apply
Lemma 2.2 to the first series on the right, and then compare coefficients of
q". O

As an example of Theorem 1, we examine n = 8. r3(8) = 12; so
(—1)%r3(8)/2 = 6. The following are the 10 compact partitions of 8 tab-
ulated so that we can compute the sum on the right of (2.5).
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s (-1)#™  L(m)if y(1em) =1 2(=1)°™=1  weight

I+1+4+---+1 +1 8 2 10
2+1+---+1 -1 1 2 -3
2424+1+1+1+1 +1 2 2 4
24+2+2+1+1 -1 3 2 -9
24+2+2+2 +1 — -2 -2
3+3+2 -1 — -2 +2
3+2+141+1 -1 1 2 -3
3+2+2+1 +1 1 2 +3
4+4 +1 — -2 -2
8 -1 — -2 2
21-15=6

3 Partitions with Odd Parts

Just as Section 2 was devoted to a partition-theoretic interpretation of (1.4),
we now formulate a partition-theoretic interpretation of (1.5).

Lemma 3.1. [9, A067357] If sfo(n) denotes the number of self-conjugate
partitions of 4n + 1 into odd parts, then

n24n

Z sfo(n)q" = Z (q— (3.1)

= = (4 6)nt
Remark. The series on the right-hand side of (3.1) is the third order
mock theta function v(q) [8, p. 61, eq. (26.82)].

Proof. First we note that there cannot be a self-conjugate partition of 4n + 1
with an even sided Durfee square. Schematically the Ferrers graph of the
partition would be

2j




In addition the bottom edge of the Durfee square cannot be exposed
(otherwise 25 would be one of the parts and 2j is not odd). Hence there
are 27 odd numbers in the upper triangle to the right of the Durfee square.
Hence since the partition is self-conjugate the number being partitioned is

(24)* +2x (2j) x Y Jodds =0 mod 4.

Therefore the Durfee square must be odd sided. Thus using a modified 2-
modular representation for the Ferrers graph, we have

11 1 1 11 1
1 22 2 2 12 2 2
1 22 2 2 |12 2 2
122 2 2
12 2 2 2 |2
1 |2 2 2
1 12 2 - 2
1 (2

as a Ferrers-like generic representation of the partitions in question. And
from this we see that when the Durfee square has side 2n + 1, the relevant
generating function is

n41)2
q(2 +1)

(1—g")(1—¢"2)...(1—g¥t+t)’

and summing over all allowable Durfee squares, we see that

Z _— Z q4n2+4n+2
sfo(n)g*" ™ = o (3.2)
which is equivalent to (3.1). O



We now recall the concept of the Frobenius symbol for a partition. This
is best understood by an example. Suppose we consider the Ferrers graph of

®\§>

We delete the diagonal (of 3 dots). The grouping to the right is 4, 2
and 1 and below is 3, 2 and 0. This produces the Frobenius symbol for this

partition, namely
4 2 1
3 2 0)°

Now it is obvious that the Frobenius symbol of a self-conjugate partition
has identical top and bottom rows.

We define the bottom, b(7), of a partition m as the smallest entry in the
Frobenius symbol for .

Lemma 3.2. Let dy(n) denote the weighted sum over all the self-
conjugate partitions of 4n + 1 into odd parts where the weight is

~(b(m)/2+ 1)

with s(m) being the side of the Durfee square. Then

0 (=)™t
2 h(md" =D, (¢ ¢?)nsa (1 — ?n+1) (3:3)

n>0 n>0

Proof. We replace ¢ by ¢* on the right side of (3.3) and multiply by ¢:

(_1)nq(2n+1)2

2 (1= =¢"?)... (1= g 4)(1 — g t)*

n>0

and as before the denominator supplies the two conjugate flanges of the
Ferrers graph except that now the final 1/(1—¢%"**)? contributes (b(7)—1)/2
to the weight, and the (—1)" in the numerator is just (—1)™~1/2, O
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We may directly observe that

2n+1(_q2; (]4)n
1 — q4n+2

a =q+2¢°+3¢+3¢" +... (3.4)

n>0

is the generating function for partitions into odd parts in which the largest
part appears an odd number of times and all other parts appear twice. For
example, the relevant partitions of 7 are 7, 5+1+1, and 1+1+1+14+14+141.

Lemma 3.3. Let dy(n) denote the weighted count of the partitions 7 of
2n + 1 just described for (3.4) with the weight (—1)*™~! where A(7) is the
number of different parts of 7. Then

2n+1

> da(m)g? =y I 4n+2 . (3.5)

n>0 n>0

Proof. This is readily deduced from the observations following (3.4) with the
added remark that replacing (—q?; ¢*),, by (¢%; ¢*), now weights the count by

(—1)A@=L O
Theorem 2.
Az(n) = di(n) + da(n) + e(n), (3.6)

where
if n=352+2jor3j%2+4j+1

—1)i-1
ey = 1 7Y .
0 otherwise.

Proof. By Lemmas 3.1 and 3.2, we may rewrite (1.5) as

D As(n)g" =D di(n)g"+ ) da(n)g" + > eln

n>0 n>0 n>0 n>0
and the result follows by coefficient comparison. m

As an example of Theorem 2, let us consider n = 5. There are three repre-
sentations of 5 by three triangles 3+1+1, 14+3+1 and 1+1+3. So A3(5) = 3.

For dy(5), we see that there are three self-conjugate partitions of 21 =
(4-5+1) into odd parts:



partition Frobenius symbol

10
11+1+.. .41 <10)
8 1 0
9+34+3+1+1+1+1+1+1
8 1 0
4 3 2
5+5+5+34+3 (4 3 2).
Hence
10 0 2
= —+1)=-(=4+1)=(=+4+1
4:(5) +(2 i ) (2+ ) <2+ )
= 6—-1—-2=3.

For dy(5), we see that the relevant partitions of 11 = 2 -5+ 1 are 11,
9+1+1, 5+343, 3+3+3+1+1, 1+1+... 41 whose corresponding weights are
+1,—1,—1,—1,+1. Hence dy(5) =1—-1—-1—-1+1=—1.

Finally since 5 =312+ 2- 1, we see that ¢(5) = (—1)*~! = 1. Thus

3= Ds(5),

and

4 Conjectures and Gauss’s Eureka Theorem.

It is well known (cf. [3]) that Gauss noted with “Eureka!” his proof of the
fact that every positive integer is a sum of three triangular numbers. I.e.,
Ag(n) > 0 for all n > 0. This means that the expression on the right of (2.5)
is always positive. This observation leads to the following.

Conjecture 1. dy(n) > 0 for n > 0.

This assertion is true for n < 1000.

Conjecture 2. dy(n) > |da(n) + €(n)| for n > 2.

Obviously by Theorem 2, if this last conjecture was true it would imply
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