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Abstract. This paper delves into the number of partitions of positive

integers n into powers of 2 in which exactly m powers of 2 are used an

odd number of times. The study of these numbers is motivated by their

connections with the f -vectors of the binary partition polytopes,

1. Introduction. The study of the partitions of nonnegative integers n
into powers of 2 (here called binary partitions) has a lengthy history, going
back as far as Euler and extending through Cayley, to many others since (cf.
[1], Section 10.2). The main interest has been in determining or estimating
the total number of such partitions of a given positive integer n. Here a
refinement is considered: Given also a second integer m, with m ≥ 0, what
is the number L(m,n) of binary partitions of n in which exactly m of the
powers of 2 are used an odd number of times?

The question is motivated by a result of [3]. That paper studies a se-
quence Q1, Q2, . . . of convex polytopes, Qd being a certain dual-antiprism
of dimension d. It is found that the f -vector (f0, f1, . . . , fd−1) of Qd is
determined by the L(m,n)’s:

fm =

{
L(m, 2d+1) if 0 ≤ m ≤ d− 1 and m 6= 1,

L(1, 2d+1)− 1 if m = 1.
(1)

Each polytope Qd (d ≥ 2) is determined up to combinatorial equivalence
by the fact that its lattice of faces is isomorphic to the lattice of intevals of
the face lattice of Qd−1. In the 2-dimensional case the polytope is a square,
having f0 = 4 vertices and f1 = 4 edges. The ten binary partitions of 8 are
1 · 23, 2 · 22, 1 · 22+2 · 21,1 · 22+1 · 21+2 · 20, 1 · 22+4 · 20, 4 · 21, 3 · 21+2 · 20,
2 · 21 + 4 · 20, 1 · 21 + 6 · 20, and 8 · 20; and it can be seen that the f -vector
of Q2 agrees with its description above.

In the following section the values L(m,n) are studied. The binary
partition polytopes are described and some results on congruences modulo 2
are established in Section 3. The f -vectors of the binary partition polytope,
modulo 4, satisfy the recurrence relation of Pascal’s triangle. This is proven
in Section 4. In Section 5, binary partitions with bounded parts, a given
number of which are used an odd number of times, are counted.
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2. Values of L. Table 1 has values L(m,n), for 0 ≤ m ≤ 4 and 0 ≤ n ≤ 16.
Theorem 2.1, below, presents a recurrence relation that can be used to
compute these numbers.

The (total) number of binary partitions of n, here denoted b(n), is the
sum of the numbers L(m,n) as m varies. Also, b(n) = L(0, 2n). Clearly
the sequence of numbers b(n) and the values of L(m,n) are closely related.
Theorem 2.2 provides a summation formula involving b that gives L(m,n).

Theorem 2.1. For m ≥ 1 and n ≥ 1,

L(m,n) =

{
L(m,n− 2) + L(m, n2 ) if n is even and n ≥ 2,

L(m− 1, n− 1) if n is odd and m ≥ 1.

Proof. The generating function F (z, q) for L(m,n) is given by

F (z, q) =
∑

m,n≥0

L(m,n)zmqn

=
∞∏

j=0

(1 + zq2
j

+ q2·2
j

+ zq3·2
j

+ . . .)

=
∞∏

j=0

(1 +
zq2

j

1− q2j+1 +
q2·2

j

1− q2j+1 )

=
∞∏

j=0

1 + zq2
j

1− q2j+1
.

Hence

F (z, q2) =
∞∏

j=0

1 + zq2
j+1

1− q2j+2 =
1− q2

1 + zq
F (z, q),

or
(1 + zq)F (z, q2) = (1− q2)F (z, q).

Therefore
∑

m,n≥0

L(m,n)zmq2n +
∑

m,n≥0

L(m,n)zm+1q2n+1 =
∑

m,n≥0

L(m,n)zmqn(1− q2).

Comparing the coefficients of zmqn on both sides yeilds the case n even of
the theorem. When n is odd, it yields L(m,n−2)+L(m−1, n−1

2 ), which is
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easily seen to imply the odd case of the theorem statement. Alternatively,
a bijective correspondence is given by, from a binary partiton of n (odd), 1
being a necessary part, removing it.

Upon setting L(0, 0) = 1, L(m, 0) = 0 for m > 0, and L(0, n) = 0 when
n is odd, the recurrence gives the value of L(m,n) for all other m and n.
Of course, L(m,n) = 0 when n < 2m − 1. The values of b(n) appear in the
even positions of the first row: b(n) = L(0, 2n).

m\n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 1 0 1 0 2 0 2 0 4 0 4 0 6 0 6 0 10
1 0 1 1 1 2 2 3 2 5 4 7 4 10 6 12 6 17
2 0 0 0 1 0 2 1 3 1 5 3 7 4 10 7 12 8
3 0 0 0 0 0 0 0 1 0 1 0 3 0 4 1 7 1
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Table 1: Some values of L(m,n)

For an integer n ≥ 0, ν(n) denotes the number of 1’s in the binary
expansion of n.

Theorem 2.2. We have

L(m,n) =
∑

0≤l≤n
2 ,

ν(n−2l)=m

b(l).

Proof.

∑

m,n≥0

L(m,n)zmqn =
∞∏

j=0

1 + zq2
j

1− q2j

=
∑

k≥0

zν(k)qk
∑

l≥0

b(l)q2l

=
∑

k,l≥0

b(l)zν(k)qk+2l

=
∑

m,n≥0

∑

0≤l≤n/2,
ν(n−2l)=m

b(l)zmqn.
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3. The binary partition polytopes, Qd. In this section, a recursive def-
inition will be given for the sequence of “binary partition polytopes.” Two
polytopes are combinatorially equivalent if their face lattices are isomorphic.
Here, polytopes will be considered to be “the same” if they are combinato-
rially equivalent. If L is a lattice, a nonempty interval in L is a set of the
form {x ∈ L | a ≤ x ≤ b}, where a, b ∈ L and a ≤ b. The empty set is also
considered to be an interval. It is easy to see that the intervals of a lattice
also form a lattice when ordered by inclusion.

The lattice of faces of a line segment [a, b] is depicted in Figure 1(a); that
of a square, in Figure 1(b). It is apparent that the lattice of Figure 1(b) is
isomorphic to the lattice of intervals of the lattice of Figure 1(a).

(b)(a)

Figure 1. Interval lattices.

Binary partition polytopes are defined as follows. First, a single point
is the binary partition polytope of dimension 0. Take Q0 to be such a
polytope. Recursively, if d ≥ 1 and Qd−1 is a binary partition polytope
of dimension d − 1, then Qd is a binary partition polytope of dimension
d if its face lattice is isomorphic to the lattice of intervals of Qd−1. It is
proven in [3] that such a sequence of polytopes exists. It is obvious from
the definition that the binary partition polytopes of dimension d fall into
one combinatorial equivalence class, so we will speak of the binary partition
polytope Qd.

In [3] it is proven that the number of faces of Qd is b(2d+1), and that,
for 0 ≤ m ≤ d, the number of faces of dimension m of Qd is L(m, 2d+1)
when m 6= 1 and is L(1, 2d+1)− 1 when m = 1. Combining that result with
Theorem 2.2 yields the following.

Theorem 3.1. For 0 ≤ m ≤ d, The number of faces of Qd of dimension m
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is ∑

1≤l≤2d,

ν(2d−l)=m

b(l).

Proof. This is the summation from Theorem 2.2 with n = 2d+1 and with
l = 0 excluded from the summation.

The paper [3] also describes a partial ordering relation on binary parti-
tions of 2d+1 that yields a lattice isomorphic to the face lattice of Qd. The
next theorem, in which Bd denotes the set of binary partitions of 2d, gives
the gist of it.

We will denote a binary partition a in the form a = α0 · 2
0+ . . .+αk · 2

k,
where the parts of the partiton are the powers 2j that occur with a positive
coefficient αj > 0. The number of parts is the sum,

∑
αj. Terms αl · 2

l

with αl = 0 may be omitted. If a =
∑

αj · 2
j and b =

∑
βj · 2

j then a+ b

denotes the binary partition
∑

(αj + βj) · 2
j.

Theorem 3.2. For each integer d ≥ 0 there is a partial ordering �d of Bd

with respect to which Bd is a lattice having least element the single part

partition 1 · 2d. For n ≥ 1 there are functions ld, rd : Bd \ {2d} → Bd−1

such that, for each a ∈ Bd \ {1 · 2d}, ld(a) � rd(a), and a is the partition

whose parts are those of ld(a) and rd(a). Furthermore, if a ∈ Bd \ {1 · 2
d},

b, c ∈ Bd−1, the parts of a are those of b and c, and b �d−1 c, then b = ld(a)
and c = rd(a). If a, b ∈ Bd, then a �d b if and only if ld(b) � ld(a) and

rd(a) �d−1 rd(b). The lattice Bd is isomorphic to the lattice of faces of Qd−1.

From the theorem it follows that the partitions of Bd, other than 1 · 2d,
correspond to pairs a, b ∈ Bd−1, with a �d−1 b, Associating the partition
1 · 2d with the empty set completes the picture: The poset Bd is isomorphic
to the lattice of intervals of Bd−1. The partial ordering relation on Bd is
determined from that of Bd−1 by the rule, a �d b if and only if a is the
partion 1 · 2d or there exist a′, a′′, b′, b′′ ∈ Bd−1 such that a = a′ + a′′,
b = b′ + b′′, b′ �d−1 a

′, and a′′ �d−1 b
′′.

From this point on we consider the set Bd of binary partitions of 2d to be
partially ordered as in the theorem; and we will drop the subscript on the
symbol �. From the fact that Bd is isomorphic to the lattice of faces of the
polytope Qd−1 it follows that Bd has a height function h : Bd → Z for which
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h(a) is the length of any maximal chain a0 = 1 · 2d ≺ a1 ≺ . . . ≺ ak = a;
h(a) = k.

Theorem 3.3. If 1 ≤ k ≤ d − 1 then the number of elements of Bd of

height k in Bd is even.

Proof. We need only exhibit an involution on Bd that preserves height and
fixes only the top and bottom elements.

The 4-element lattice B2 has a unique involutory automorphism other
than the identity. We denote this automorphism by α2. The set of fixed
points of this automorphism is a lattice that is isomorphic to B1.

Any automorphism α of a lattice L induces an automorphism α̂ of its
lattice of intervals, by α̂([a, b]) = [α(a), α(b)]. If the fixed-point set of α is
M ⊆ L then the fixed-point set of α̂ is isomorphic to the lattice of intervals
of M .

Inductively, let αd (d = 3, 4, . . .) be the automorphism of Bd induced by
αd−1 as above. It follows from the above that the lattice of fixed points of
αd is isomorphic to Bd−1, for d = 2, 3, . . ..

We can define an involution βd on Bd that preserves the heights of ele-
ments and has as its fixed-point set only the top and bottom elements of
Bd. Define β2 = α2. Inductively, for d > 2, define

βd(x) =

{
αd(x) if x /∈ Fk

β̄d−1(x) : otherwise,

where Fd denotes the fixed-point set of αd and β̄d−1 is an involution on Fd

that fixes only the top and bottom elements and preserves height.

From [3], for k > 0, the elements at height k in Bd are the binary
partitions of 2d having exactly k− 1 powers of 2 appearing as parts an odd
number of times, excepting 1 · 2d when k = 2. It follows that L(m, 2d) is
congruent to 0 modulo 2 when m 6= 1 or d. The final theorem of this section
determines congruence of L(m,n) modulo 2 for all n. In the next section,
the f -vectors of the polytopes Qd will be determined explicitly, modulo 4.

Theorem 3.4. For n ≥ 2, L(m,n) is even unlessm = ν(n) orm = ν(n−2),
and m is not congruent to 4 or 5 modulo 8; in these cases L(m,n) is odd.

Proof. When n ≥ 2, b(n) is even. Also b(0) = b(1) = 1. From these facts
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and Theorem 2.2 it follows that L(m,n) ≡ ǫ1 + ǫ2 mod 2, where

ǫ1 =

{
1 if ν(n) = m

0 otherwise,
and ǫ2 =

{
1 if ν(n− 2) = m

0 otherwise.

Consider the binary expansion n− 2 = α0+α1 · 2+α2 · 2
2+ . . ., where each

αi is 0 or 1. If α1 = 0 then ν(n) = ν(n − 2) + 1. Otherwise let s be the
smallest index > 1 such that αs = 0, so that n − 2 = α0 + 2 + 22 + . . . +
2s−1 + αs+12

s+1 + . . .. Then ν(n) = ν(n− 2)− s + 2 ≤ ν(n− 2). Equality
holds if and only if s = 2, in which case n ≡ 4 or 5 mod 8. It follows that
ǫ1 = ǫ2 when n ≡ 4 or 5 mod 8, in which case ǫ1 + ǫ2 ≡ 0 mod 2. In all
other cases, ν(n) 6= ν(n − 2), so in those cases ǫ1 + ǫ2 is odd if and only if
ν(n− 2) = m or ν(n) = m.

4. The f-vectors of the binary partition polytopes, modulo 4. We
write f(m, d) for the number of m-dimensional faces of the d-dimensional
binary partition polytope, Qd. We know that

f(m, d) =

{
L(m, 2d+1) if m 6= 1

L(1, 2d+1)− 1 if m = 1.
(2)

We will determine the numbers f(m, d) up to congruence modulo 4 by using
Theorem 2.2 and some facts about the function b(n).

1. b(0) = b(1) = 1.

2. If n is odd then b(n) = b(n− 1).

3. b(n) = b(n− 2) + b(⌊n2⌋).

4. For even n ≥ 2 of the form n = 2k(2l + 1), (so in particular k 6= 0) we
have b(n) ≡ 2k mod 4.

5. If 2 ≤ n < 2d then b(n+ 2d) ≡ b(n) mod 4.

Except for the last, proofs of these statements can be found in [2]; the last
follows easily from the third by induction.

Lemma 4.1. For 0 ≤ m ≤ d− 1,

f(m, d) ≡ 2|{k : 2 ≤ k ≤ 2d, ν(2d − k) = m,

and b(k) ≡ 2 mod 4}| mod 4.

7



Proof. By Theorem 3.1,

f(m, d) =
∑

1≤k≤2d,

ν(2d−k)=m

b(k).

Also ν(2d − 1) = d > d − 1, so the sum doesn’t extend over 1 when m is
in the stated range. The result then follows at once upon noting that when
k ≥ 2 and b(k) 6≡ 2 mod 4, b(k) ≡ 0 mod 4, since b(k) is even for k ≥ 2.

Lemma 4.2. When 0 ≤ m ≤ d− 2,

f(m+ 1, d+ 1) ≡ f(m, d) + f(m+ 1, d) mod 4.

Proof. By the preceding lemma,

f(m+ 1, d+ 1) ≡ 2|{k : 2 ≤k ≤ 2d+1, ν(2d+1 − k) = m+ 1,

and b(k) ≡ 2 mod 4}| mod 4.

The number on the right side is the sum of the numbers

2|{k : 2 ≤k ≤ 2d, ν(2d+1 − k) = m+ 1,

and b(k) ≡ 2 mod 4}| mod 4

and

2|{k : 2d <k ≤ 2d+1, ν(2d+1 − k) = m+ 1,

and b(k) ≡ 2 mod 4}| mod 4.

The first of these is

2|{k : 2 ≤k ≤ 2d, ν(2d − k) = m,

and b(k) ≡ 2 mod 4}| mod 4,
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since ν(2d+1 − k) = ν(2d + (2d − k)) = 1 + ν(2d − k) when 2 ≤ k ≤ 2d; so
the number is f(m, d). The second is

2|{k : 2 <k ≤ 2d, ν(2d− k) = m+ 1,

and b(k + 2d) ≡ 2 mod 4}| mod 4.

Here we have used the fact that ν(2d+1−(2d+1)) = ν(2d−1) = d > d−1 ≥

m+ 1. For 2 ≤ k ≤ 2d, b(k + 2d) ≡ b(k), so this number is (̄m+ 1, d).

Theorem 4.3. For 0 ≤ m < d,

f(m, d) ≡ 2

(
d+ 2

m+ 1

)
mod 4.

Proof. For m = 0 we get f(0, d) = b(2d) ≡

{
2 d even

0 d odd.
and f(0, d) ≡

2(d+ 2) =
(
d+2
1

)
. For m = d− 1,

f(d− 1, d) = f(0, d− 1) + f(0, d− 2) + . . .+ f(0, 1) + 2

= b(2d−1) + b(2d−2) + . . .+ b(2) + 2.

Since b(2k) ≡ 2 mod 4 when k is odd and ≡ 0 mod when k is even, this
sum is congruent to 0 mod 4 when d is congruent to 2 or 3 mod 4 and to
2 mod 4 when d is congruent to 1 or 4 mod 4; that is, it is congruent to
2
(
d+1
d

)
, as given by the statement of the lemma. Considering the recurrence

relation of Lemma 4.2 and the equality
(
d+3
m+2

)
=

(
d+2
m+1

)
+

(
d+2
m+2

)
when 0 ≤

m ≤ d− 2, it is clear that the congruence is valid for all m, d with 0 ≤ m <
d.

5. Binary partitions with bounded parts. Let Lp(m,n) denote the
number of partitions of n into powers of 2, m of which are used an odd
number of times, all parts at most 2p. Let Fp(z, q) =

∑
m,n≥0 Lp(m,n)zmqn
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be the generating function for L.

Fp(z, q) =

p∏

j=0

(1 + zq2
j

+ q2·2
j

+ zq3·2
j

+ . . .)

=

p∏

j=0

1 + zq2
j

1− q2j+1 =
F (z, q)

F (z, q2p+1)
.

Then the following equation holds:

Fp(z, q
2) =

1 + zq2
p+1

1− q2p+2

1− q2

1 + zq
Fp(z, q).

Equivalently,

(1 + zq − q2
p+2

− zq2
p+2+1)Fp(z, q

2) = (1− q2 + zq2
p+1

− zq2
p+1+2)Fp(z, q),

and

(1 + zq − q2
p+2

−zq2
p+2+1)

∑

m,n≥0

Lp(m,n)zmq2n

= (1− q2 + zq2
p+1

− zq2
p+1+2)

∑

m,n≥0

Lp(m,n)zmqn.

From the coefficient of zmq2n we get

Lp(m,n)− Lp(m,n− 2p+1) =

Lp(m, 2n)− Lp(m, 2n− 2) + Lp(m− 1, 2n− 2p+1)

− Lp(m− 1, 2n− 2p+1 − 2)

and from the coefficient of zm+1q2n+1 we get

Lp(m,n)− Lp(m,n− 2p+1) =

Lp(m+ 1, 2n+ 1)− Lp(m+ 1, 2n− 1) + Lp(m, 2n+ 1− 2p+1)

− Lp(m, 2n− 2p+1 − 1).

10



From this the following analogue of Theorem 2.1 is a consequence.

Theorem 5.1. For even n,

Lp(m,n) = Lp(m,
n

2
)− Lp(m,

n

2
− 2p+1) + Lp(m,n− 2)

− Lp(m− 1, n− 2p+1) + Lp(m− 1, n− 2p+1 − 2);

for odd n,

Lp(m,n) = Lp(m− 1,
n− 1

2
)− Lp(m− 1,

n− 1

2
− 2p) + Lp(m,n− 2)

− Lp(m− 1, n− 2p+1) + Lp(m− 1, n− 2p+1 − 2).

The coefficients L(m,n) and Lp(m,n) of the power series expansions of
F (z, q) and Fp(z, q) agree for those terms having degree less than 2p+1 in q.
For those having degree 2p+1 in q, the single difference is in the coefficient
of zq2

p+1

, which in F (z, q) exceeds by 1 its value in Fp(z, q).
We can write Fp(z, q) =

∑∞
n=0 ρn(z)q

n, where each ρn(z) is a polynomial
in z of degree at most p. The coefficient of q2

p+1

is of interest in connection
with the binary partition polytope Qp. It is ρ2p+1(z) = f0 + f1z + . . . +
fp−1x

p−1 + zp, where (f0, f1, . . . , fp−1) is the f -vector of Qp, as is clear from
Theorem 3.2.

The value Lp(m,n) is the number of solutions in integers x0, . . . , xp, with
m of the xi’s odd, of the system

x0 + 2x1 + 4x2 + . . .+ 2pxp = n,

x0, x1, . . . , xp ≥ 0.

This system of inequalities defines a simplex of dimension p in R
p+1. Let

Tp denote this simplex in the case n = 1. In the general case the simplex is
then nTp. The vertices of Tp are (1, 0, . . . , 0), (0,

1
2 , . . . , 0), . . ., (0, 0, . . . ,

1
2p ),

and the simplex 2pTp has all vertices in Z
p+1. The simplex 2p+1Tp has all

vertices in 2Zp+1 and its relative interior contains a unique point of Zp+1,
namely, (2, 1, 1, . . . , 1). This is the unique element of (2p+1Tp) ∩ Z

p+1 that
has exactly p odd components.
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Some facts from the theory of valuations on convex polytopes have a
bearing. A valuation on convex polytopes is a function ν on convex poly-
topes in, say, Rp+1 such that, for any two polytopes P and Q such that
P ∪Q is convex, the equation ν(P ∪Q) + ν(P ∩Q) = ν(P ) + ν(Q) holds.
The valuations of interest are the functions νm(P ) that take the convex
polytope P to the integer that is the number of points of Zp+1 ∩ P that
have exactly m odd components. Each of these valuations is invariant un-
der translation by elements of 2Zp+1; that is, for each x ∈ Z

p+1 and each
polytope P , νm(P + 2x) = νm(P ). It follows by a theorem of McMullen [4]
that for any polytope having vertices in 2Zp+1 and for each m, the function
n 7→ νm(nP ) is given by a polynomial in n. Notice that the valuation ν0
simply counts the elements of Zp+1 ∩ P that have no odd components, or
equivalently, the elements in 2Zp+1∩P . When all vertices of P lie in 2Zp+1,
the resulting polynomial is just the Ehrhart polynomial of the polytope 1

2P .
From this it follows that for each m the coefficient of zm in ρn(z), where

n is restricted to multiples of 2p+1, is given by a polynomial in n.

This can also be seen as follows. We have Fp(z, q) =
∏p

j=0
1+zq2

j

1−q2
j+1 . This

can be written as

1

(1− q2j+1)p+1

p∏

j=0

(1 + zq2
j

)(1 + q2
j

)j.

We can extract the terms that are the powers of qn for which 2p+1|n by
averaging over the 2p+1-th roots of unity:

∞∑

n=0

ρn2p+1(z)qn2
p+1

=
1

2p+1

2p+1−1∑

k=0

Fp(z, qe
kiπ/2p).

We see that this can be written as η(z,q2
p+1

)
(1−q2

p+1)p+1 , where η(z, t) is a polynomial

in z and t. Substituting t for q2
p+1

we have

∞∑

n=0

ρn2p+1(z)tn =
η(z, t)

(1− t)p+1
.

A basic fact concerning generating functions implies that the coefficients as
functions of n are given by polynomials of degree at most p.
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The function
η(0, t)

(1− t)p+1

is the generating function for the Ehrhart series of 2p+1Tp.
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