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Abstract

The question to be considered is whether there is a power series, f(g),
whose coe�cients are±1 and for which

Q
n�1 f(q

2n�1
) =

P1
�1 qn(3n�1)/2

.

This question will be answered a�rmatively, following a study of the bi-

nary representation of integers. In addition, related theorems will be

developed.
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1 Introduction

In [2] and [3], the second author raised questions along the following lines. Given
the generating functions for p(n), [1, p.3, Th. 1.1]

X

n�0

p(n)qn =
1Y

n=1

1

1� q

n

=
1Y

n=1

�
1 + q

n + q

2n + q

3n + · · ·
�
, (1.1)

could one merely change some of the signs in this last product so that the
resulting power series has coe�cients of 0, ±1. The answer is still unknown.

A very natural step in this direction is to consider

B(q) =
1Y

n=0

⇣
1� q

2n
⌘

=
X

n�0

(�1)#1(n)
q

n (1.2)

= 1� q � q

2 + q

3 � q

4 + q

5 + q

6 � q

7 � · · · ,

where #1(n) is the number of 1’s in the binary representation of n.
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Now since every integer uniquely factors into a power of 2 times an odd
number, we see that

1Y

n=1

B(q2n�1) =
1Y

n=1

1Y

m=0

⇣
1� q

(2n�1)2m
⌘

=
1Y

N=1

�
1� q

N
�

(1.3)

=
1X

�1
(�1)nqn(3n�1)/2

,

by Euler’s pentagonal number theorem [1, p.11, Cor. 1.7].
In light of the success of (1.3), it is natural to ask whether there exists a

power series f(x) having ±1 as coe�cients such that

1Y

n=1

f(q2n�1) =
1X

�1
q

n(3n�1)/2
. (1.4)

Empirically, one finds that

f(x) = 1 + x+ x

2 � x

3 � x

4 � x

5 � x

6 � x

7 (1.5)

�x

8 + x

9 + x

10 + x

11 � x

12 � x

13 � x

14 + · · ·

In section 3, we show that f(x) exists and determine the sign pattern for
the coe�cients. In order to achieve this goal we must consider

Be(q) = 1 + 2
1X

n=1

(�1)nqbn

= 1� 2q + 2q3 � 2q4 + 2q5 � 2q7 + 2q9 · · · ,

where bn is the nth integer whose binary representation ends in an even number
of zeros (cf. [4, sequence A003159]). The explanation of (1.4) and the coe�cients
of f(x) relies on

Theorem 1.

1Y

n=1

Be(q
2n�1) =

1X

n=�1
(�1)nqn

2

. (1.6)

Section 2 will be devoted to background on Be(q). Section 3 will be devoted
to a proof of Theorem 1, and Section 4 will provide a full explanation of (1.4)
and (1.5). In Section 5, we provide an analogous representation of Gauss’s
triangular number series. We conclude with open questions.
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2 Background on Binary representations

The object of this section is to find a nice closed form representation of Be(q).

Lemma 2.

1X

n=1

(�1)nqbn =
1X

n=1

(�1)#1(bn)
q

bn
.

Proof. In light of the fact that b1 = 1 so that #1(b1) = 1, we see that all that
is required to establish this result is a proof that #1(bn) changes parity as we
pass from bn to bn+1.

There are 3 cases to consider:

1. bn in binary ends in 2j zeros, with j > 0.

2. bn in binary ends in 2k ones

3. bn in binary ends in 2k + 1 ones

In case 1., bn+1 = bn +1 and bn+1 has one more 1 than bn. Hence #1(bn+1)
has opposite parity from #1(bn).

In case 2., we see that in binary

bn = �1 · · ·�s0 11 . . . 1| {z }
2k times

,

so bn+1 = bn + 1. Thus

bn+1 = �1 · · ·�s1 00 . . . 0| {z }
2k times

,

and bn+1 has 2k�1 fewer 1’s than bn. Hence #1(bn+1) has opposite parity from
#1(bn).

In case 3., we see that in binary

bn = �1 · · ·�s0 11 . . . 1| {z }
2k+1 times

,

so bn+1 = bn + 2. Thus

bn+1 = �1 · · ·�s1 00 . . . 0| {z }
2k times

1,

and bn+1 again has 2k�1 fewer 1’s than bn. Hence #1(bn+1) has opposite parity
from #1(bn).

Lemma 3.

1 +
X

n�0

q

2n

nY

j=0

⇣
1� q

2j
⌘ =

1Y

n=0

1

1� q

2n
, (2.1)
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and
1X

n=0

(�1)nq2
n

nY

j=0

⇣
1� q

2j
⌘ = q. (2.2)

Proof. Equation (2.1) is the generating function for partitions into powers of
2 expressed in two di↵erent ways. The nth term of the series generates those
partitions whose largest part is 2n. The infinite product is the standard form
for the generating function [1, p.3, Th, 1,1].

As for (2.2), we shall prove

NX

n=0

(�1)nq2
n

nY

j=0

⇣
1� q

2j
⌘ = q +

q

2N+1

(�1)N

nY

j=0

⇣
1� q

2j
⌘ . (2.3)

When N = 0, (2.3) reduces to

q

1� q

= q +
q

2

1� q

,

which is immediate.
Assuming true up through a given N ,

N+1X

n=0

(�1)nq2
n

nY

j=0

⇣
1� q

2j
⌘ = q +

q

2N+1

(�1)N

NY

j=0

⇣
1� q

2j
⌘ +

q

2N+1

(�1)N+1

N+1Y

j=0

⇣
1� q

2j
⌘

= q +
q

2N+1

(�1)N
⇣�

1� q

2N+1�� 1
⌘

N+1Y

j=0

⇣
1� q

2j
⌘

= q +
(�1)N+1

q

2N+2

N+1Y

j=0

⇣
1� q

2j
⌘ ,

which proves (2.3).
Equation (2.2) now follows by letting N ! 1 in (2.3).

Theorem 4. Be(q) = (1� q)
1Y

j=0

⇣
1� q

2j
⌘

Proof. In light of Lemma 2, it follows that

Be(q) = 1�
X

n�0

�
1 + (�1)n

�
q

2n
1Y

j=n+1

⇣
1� q

2j
⌘
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= 1�
1Y

j=0

⇣
1� q

2j
⌘X

n�0

�
1 + (�1)n

�
q

2n

nY

j=0

⇣
1� q

2j
⌘

= 1�
1Y

j=0

⇣
1� q

2j
⌘

0

BBBB@
1

1Y

j=0

⇣
1� q

2j
⌘ � 1 + q

1

CCCCA
(by Lemma 3)

= (1� q)
1Y

j=0

⇣
1� q

2j
⌘
.

3 Proof of Theorem 1

1Y

n=1

Be(q
2n�1) =

1Y

n=1

⇢�
1� q

2n�1
� 1Y

j=0

⇣
1� q

(2n�1)2j
⌘�

=
1Y

n=1

�
1� q

2n�1
� 1Y

n=1

(1� q

n) (by (1.3))

=
1Y

n=1

(1� q

n)

(1 + q

n)
(by [1, p.5, eq (1.2.5)])

=
1X

n=�1
(�1)nqn

2

(by [1, p.23, eq. (2.2.12)]),

and Theorem 1 is proved.

4 The Determination of f(x)

We define

f(x) =
Be(x3)

1� x

(4.1)

=

1 + 2
1X

n=1

(�1)nx3bn

1� x

=

1 +
1X

n=1

(�1)nx3bn �
1X

n=0

(�1)nx3bn+1

1� x
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=
1� x

3

1� x

+
1X

n=1

(�1)n
�
x

3bn � x

3bn+1
�

1� x

= 1 + x+ x

2 +
1X

n=1

(�1)n
�
x

3bn + x

3bn+1 + · · ·+ x

3bn+1�1
�
,

and we see that f(x) is a power series with ±1 as the coe�cients.

Theorem 5. Equation (1.4) holds for the f(x) given in (4.1).

Proof.

1Y

n=1

f(q2n�1) =
1Y

n=1

Be(q3(2n�1))

1� q

2n�1

=
1Y

n=1

1

1� q

2n�1
·

1X

n=�1
(�1)nq3n

2

(by theorem 1)

=
1Y

n=1

(1 + q

n)
1Y

n=1

�
1� q

3n
�

(1 + q

3n)

(by [1, p.5, eq. (1.2.5)] and [1, p.23, eq. (2.2.12)])

=
1Y

n=1

�
1� q

3n
� �

1 + q

3n�1
� �

1 + q

3n�2
�

=
1X

n=�1
q

n(3n�1)/2

(by [1, p.21, eq. (2.2.10), q ! q

3
2 , z = q

� 1
2 ])

and (1.4) is established for the f(x) given by (4.1).

5 Gauss’s Triangular Number Series

This paper would be incomplete without a result relating binary partitions to
Gauss’s famous series:

 (q) =
X

n�0

q

n(n+1)/2
. (5.1)

Here the relevant binary series is

Bg(q) =
Y

j�0

⇣
1 + (�1)jq2

j
⌘

(5.2)

= 1 + q � q

2 � q

3 + q

4 + q

5 � q

6 � q

7 � q

8 � q

9 + q

10 + . . .

Again we see that we have a series where all the coe�cients are ±1.
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Theorem 6.

Y

n�1

Bg(q
2n�1)Bg(q

4n�2) =  (q). (5.3)

Proof. We begin by noting that

Bg(q)Bg(q
2) =

Y

j�0

⇣
1 + (�1)jq2

j
⌘⇣

1 + (�1)jq2
j+1

⌘
(5.4)

= (1 + q)
Y

j�1

⇣
1 + (�1)jq2

j
⌘⇣

1� (�1)jq2
j
⌘

= (1 + q)
Y

j�1

⇣
1� q

2j+1
⌘

=
(1 + q)

(1� q)(1� q

2)

Y

j�0

⇣
1� q

2j
⌘

=
1

(1� q)2

Y

j�0

⇣
1� q

2j
⌘
.

Hence
Y

n�1

Bg(q
2n�1)Bg(q

4n�2)

=

0

@
Y

n�1

1

(1� q

2n�1)2

1

A

0

@
Y

j�0

Y

n�1

⇣
1� q

(2n�1)2j
⌘
1

A

=
Y

n�1

(1� q

n)(1 + q

n)

(1� q

2n�1)
by [1, p.5, eq. (1.2.5)]

=
Y

n�1

(1� q

2n)

(1� q

2n�1)

=
X

n�0

q

n(n+1)/2 by [1, p. 23, eq. (2.2.13)]

6 Conclusion

In light of the important role played by the sequence bn, one might as well ask
what happens if we consider the sequences, an, the nth integer whose binary
representation ends in an odd number of zeros [4, seq. A036554]. However,
nothing new arises because an = 2bn.

Apart from the classical theta series given by the right hand sides of (1.3),
(1.4), (1.6), and (5.1) , it would be interesting to examine other classical theta
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series. In light of the fact that binary representation played a crucial role in all
our results, it would be interesting to see if there are similar theorems related
to other bases apart from 2.
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