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1. INTRODUCTION

On pages 2 and 17 in his Lost Notebook [23], Ramanujan recorded four identities involving
the rank generating function. Of course, Ramanujan would not have used this terminology,
because the rank of a partition was not defined until 1944 by F. J. Dyson [11]. He defined the
rank of a partition to be the largest part minus the number of parts. For example, the rank of
the partition 4 + 1 is 4 — 2 = 2. Let N(m, n) denote the number of partitions of the positive
integer n with rank m. Dyson showed that the generating function for N (m,n) is given by

2 2 Nemma's" =3 st

m=—oco n=0

n

RCTER =G(z,9), g <L (1.1)

Ramanujan’s four identities involve special cases of G(z,¢). Here, we use the standard
notation

(@)n = (a;q)n =1 —a)(l—aq) - (1—ag"™"), n>1, (a):=(a;q):=1.

In the sequel, we also use the notation

(a1,a9, ... am; q)n = (a1;9)n (ag, On(Am;@Qn, n >0,
(@)oo = (4 @)oo := 1lim (a;q)n,
(a17a2a"~7am;q)oo (ala ) (GQaQ) ’ (am’q)oov
[a; gl = (a; q)nlq/a; Q)m n>0, a#0,
[a17a27"~aam;CJ] [alvd [an ] '[am;(I]m n > 07
[a]oo := [a; ¢l = hm [a qln;
[aha?v"'aam;q] [ah(ﬂ [a27 ] '[am;Q]OO

Throughout this paper, |q| < 1.
To state the aforementioned four identities of Ramanujan, we need to define Ramanujan’s
theta function v (q),

g —4;0)% (03 @)oo = 57—, (1.2)
Z o s
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by the Jacobi triple product identity (given in its general form in (3.1) below) and Euler’s
theorem. Appearing in each of the four identities are instances of

00 2
y— qn
fa(Q) : RX% (1+aq+q2)(1+aq2+q4)...(1+aqn+q2n)’

(1.3)

where a 1s any real number. Observe that

i =6 (ZELE).

where G|z, q) is defined in (1.1). A focus in this paper is the special case when a = /2, for
which we can write

_ - q" _ 3mi/4
Q) - i i - G(€ 7Q) (14)
;::0 (e37i/1q),, (e57i/1q),,
Furthermore, define
o(g) = E NE /Z = Gi,q), (15)

which is featured in Ramanujan’s fourth identity.
We are now ready to state the four identities of Ramanujan, which were first proved in a
wonderful paper by H. Yesilyurt [26].

Entry 1.1. [23, p. 2] Suppose that a and b are real numbers such that a* + b*> = 4. Recall
that f,(q) is defined by (1.3). Then

b— a+2 b+a+2 b
fa( q) + ————f-a(—q )—§fb(9)
)ox l—bq +q*"
1.
H1_|_ a2b2_2 q4n+q8n ( 6)

Entry 1.2. [23, p. 2] Let a and b be real numbers with a* + ab + b*> = 3. Then, with f,(q)
defined by (1.3),

(a+1)f- () (b+1)f- (Q)—(a+b—1)fa+b(q)

=3

q q o0
” 1.7
1—|—aba—i—bq3”+q6" (1.7)

Entry 1.3. [23, p. 17] Let f,(q) and 1(q) be defined by (1.3) and (1.2), respectively. Then

y a0+ — Al _n:o(1+\/§q+q2)--'(1+\/§q”+q2n)

2 q q -
= 1.8
+\/§¢ H1+\/_q + ¢ (19

14++3 3+V3 =3 q"
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Entry 1.4. (23, p. 17] Let ¢(q) be defined by (1.5) and 1(q) be defined by (1.2). Then

S0+ e )i + %(1 e (~ig)

(1.9

1
= 1@ + (=) (=" OOHMFJ—Q e

Yesilyurt’s proofs [26] of Entries 1.1-1.4 depend upon the following famous lemma of
A. O. L. Atkin and H. P. FE. Swinnerton-Dyer.

Lemma 1.5. Let q, |q| < 1, be fixed. Suppose that ¥(z) is an analytic function of z, except
for possibly a finite number of poles, in every annulus 0 < z; < |z| < zo. If

I(2q) = AZF9(2)

for some integer k (positive, negative, or 0) and some constant A, then either V(z) has k
more poles than zeros in the region |q| < |z| < 1, or U(z) vanishes identically.

Since it is very unlikely that Ramanujan would have given proofs of Entries 1.1-1.4 using
complex analysis, in particular, using Lemma 1.5, the primary purpose of this paper is to
give completely different proofs using g-series, perhaps more in line with what Ramanujan
might have devised. However, although our proofs of Entries 1.1-1.3 are simple, our proof of
Entry 1.4 is much more difficult. Our proof of Entry 1.4 relies on the following 2-dissections
for two special cases of the rank generating function G(z, q), when z = i and when z is
a primitive eighth root of unity. These two 2-dissections of the rank, with their immediate
consequences, comprise a second major focus of this paper.

Theorem 1.6. The 2-dissection of the rank function G (i, q) is given by
e o] 2 ) 2
qn B 92 Z (_1)nq24n +8n [q47 q16]§o(q16; q16)

= - > 1.10
— (i9)n(a/D)n (4% ¢")o gt =g —¢* —¢% ") (10

n n=—0oo

n? n . .
N 2 Z 24 +24n+5 N [q4’ q16}c2>o(q16’ q16>oo
<q16 q16) 1 + q16n+6 q [_qQ’ _q67 _qﬁ; q16]oo

Theorem 1.7. Let a be a primitive eighth root of unity. Then

o0 2

¢*  _2-a-lja f’: (=g (a+1/a—1)lg* " 3@ 4"

“ (ag)na/a)n  (¢"%q"%)c0 1 — gt6nt2 4%, 4% 4% ¢"]oc

q[q4;q16]§o(q16;q16)oo L _atla i (—1)ngini2ants
[%,4%, 6% 0" ("% ¢"%)0

n= n=—oo

1— q16n+6

n=—oo

(1.11)
The proofs of Theorems 1.6 and 1.7 will be given in Sections 4—6.
2. PROOFS OF ENTRIES 1.1-1.3

Our starting point is a corollary of Lemma 2.3.2 from [3, p. 19]. (It is to be assumed in
the sequel that parameters, such as z and ¢ below, are chosen so that all relevant expressions
are well defined.)
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Theorem 2.1. For any complex numbers z, (,

.2 ° ( ) CSn n(3n+1)/ nC 3n n(3n+1)/2
e n_z_oo L= 2q" = Cn;oo 1— zqn/C
_ (€% 4/¢% @)oo Jrgn(dnt1)/2
C(Cq/gq nzoo 1—zq

2(¢,q/¢. ¢ q/C% a4, 45 @)oo

" GlG a5 505 260 (20 d) e

Proof. Define

nc 3n 3n(n+1)/2

1— zq”/C

0 ) <3n 3n(n+1)/2

Scp- ¢y EIE Ly L

n=—oo n=—oo

(§2 Q/C2 oo n 3n (n+1)/2

Then from [3, p. 19, Lemma 2.3.2],

— N

n=—oo

(SIS
(2/€,qC/2, 2,4/ 2, 2C,q/(2€); @)oo

Hence, to conclude the proof of Theorem 2.1, we are required to show that

S(z,¢,q) = %R(z,c,q)-

Using the pentagonal number theorem in the second equality below, we find that

o0 __1\n3n,n(3n+1)/2
S(2,6,9)=¢ Sl (i—i(l—z@ ))

S(z,¢,q) =

e 1—x(gr X 2
nC 3n n (3n+1)/ C C > .
*n_zm S (i)
(C2 Q/CQ Oo n q" (Bnt+1)/2 /1 1 .
(€, 4/¢ @)oo Z 1—zq <5_;(1_2q >)

n=—oo

= R(:.Cq) - §<< S (-1

- __1\n,=3n,n(3n+1)/2 (CQaQ/CQaQ)oo .
+ 2 (e (€, 4/ @)oo (@)

—R(Z, Ca Q)a

because the expression inside the large parentheses equals 0, as it is a formulation of the
quintuple product identity [3, p. 221, eq. (8.2.18)], [8, p. 18]. In particular, if we take the
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formulation from [8, p. 18]

Z q3n2+n(23nq73n _ 273n71q3n+1>
= (0% 0°)oo(02:0°) oo (0/ 20" ) oo (2% 6" (0" /2% 6" o, (22)
replace ¢ by /g, and then set z = —(,/q, we find that the sum of the expressions within
large parentheses on the far right side above equals O. U

We frequently use the observation that if a = —t — 1/¢, then
o0 n? 1—¢ o0 (_1)nqn(3n+1)/2

q J—
nz:% t)n(a/tn (@) 2 T—tq" (2.3)

n=—oo

by [2, p. 263, eq. (12.2.3)].
Proof of Entry 1.1. First we note that we may parameterize the circle a? + b> = 4 by
b= —2cosfl, a= —2sinb,

and with z = ¢, we find that

b=—z—2"' and a=i(z—2z"). 2.4)
Hence,
Al —2=—z2*— 7% (2.5)
Let us now set ( =i (= y/—1) in Theorem 2.1. Thus, by (2.3), (2.4), and (2.5),
0 n 3n n(3n+1 n —3n ,,n(3n+1)/2
-y b gy
= 1 — z1q" = 14 zigm
(=1, -4 ) (€5 @)oo
_ 4 — Joo (4:9) fo(q)

(Z,—Zq; Q)oo (1 _Z)
_ Z(Z7 _ZQJ _]-7 —4,4,4; Q)oo
(_iZ,Qi/Z,Z,Q/Z 'iZ _ZQ/ZQ)
_2z(1—d)(= q7—q (g% q OOH (1 —bg" +¢*")
(1+2%)(1=2) +(a0? = 2)¢*" + ¢

Multiply both sides of (2.6) by

(2.6)

(1+2%)(1 - 2)
22(1 = i)(=¢; =)o
Upon doing so, we then see that the right-hand side of (2.6) becomes the right-hand side of
(1.6). The third expression on the left-hand side of (2.6) then becomes

(14 2°)(1 = 2)(=i) (=1, =¢; @)oo @)ox
22(1 — i) (= = @)oo (1, =15 @)oo (1 — 2)

fb(Q) = _gfb(Q)-
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Therefore, we will complete the proof if we can show that

(1+22)(1 - 2) (_ el

22(1 —i)(—¢; — @)oo 1 — zign

n=—oo

—3n n(3n+1)/2
i Z 1 + zig™

SO g+ R ()
bmat? (140 SN (1)(mgy @
4 (69w _Z L+ iz(—q)"

; 2.7

bta+2 (1—iz) = (—1)*(—q)"Br/2
T (=4 —9) 2 1 —iz(—q)"

where we have twice used (2.3). Proving (2.7) is equivalent to proving that

n=—oo

n 3n n(3n+1)/ —3n n(3n+1)/

_Z 1—zzq + Z 1+ZZQ

n=—oo n=—oo

)n(3n+1)/

o (D)= Q) 3t/
! Z 1+iz(— B Z 1—zz (—q)» 2.8)

n=—oo n=—oo

Combining sums on each side of (2.8), we see that our task has been reduced to proving that

e ) (_1)nqn(3n+1)/2 1_3n .
Z 1+ 22¢% ( (1 + 21g ) + (1 — < ))

n=—oo

n n3n+1)/ ) _y '
-y b 1+22 s (i(=1)" 21— iz(—q)")

n=—0oo

—(=1)"EmR(L 4 iz(—q)"))
and this follows immediately because
_7:371 + 7:1—371 — (_1)%(3714—1)/2(2 _ 1)

and
_Z-1+3n . ,L»2—3n _ _(_1)n(3n+1)/2+n(_1 + Z)

The last two assertions are most easily proved by noting that each expression is periodic with
period 4, and that the assertions hold forn = 0, 1, 2, 3. U

Proof of Entry 1.2. First we note that we may parameterize the ellipse a® + ab + b*> = 3 by
a = 2cos (0 + %ﬂ'), b = 2cosf. So with z = ¢, we find that

1

b=z+z"' and a= 2w+ (2w)

where w = ¢2™/3, Hence,
a+b=—z2®— (2w (2.9)
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and
ab(a +b) = —2* — 272,
Therefore, we now set ( = w in (2.1). Thus, the resulting right-hand side, by (2.9), equals
21— w)(1 - ) (% )3 _ (@0 3(¢*; ¢*)%
(1= 29)(22¢% 2736% *)os (1= 2%) (45 @)oo [ 152, (1 + abla + b) g™ + ¢o)”

We now observe that the latter quotient on the right-hand side of (2.10) is the same as the
right-hand side of (1.7). We are thus led to multiply the left-hand side of (2.1) with ( = w by

(-2

2(¢3¢) oo

(2.10)

to deduce, with the help of three applications of (2.3), that

(1 _ 23) ) 0 (_1)nqn(3n+1 n n(3n+1)/2
: “ Z 1 — zwg™ +WZ 1—zw2

Z<q’ Q)oo n=-—00 n=-—00
W(l _ w2) 0 (_1)nqn(3n+1)/2
(1 -w) nz_:oo 1—2q"
(1= 2)w? (1— 23w (1— 23wl —w?)
= mffa((ﬁ + mfaer(Q) - 20 —w)1—2) f-(q)
= (a+1)f-alq) = (a+b—=1)fars(q) + (0 + 1) f-s(q),
which is the left-hand side of (1.7). This completes the proof. U

Proof of Entry 1.3. Leta = 1 and b = /3 in Entry 1.1 to deduce that

1+\f 3+3 V3

fi(—=q) + 4 ffl(—Q) - —ff(Q)

1+ q4n + q8n ’ :
Now multiply both sides of (2.11) by 2/ /3 to arrive at
3 + V3 1+V3
fi(—=q) + 2 ffl<_Q)_ff(Q)
Examining (1.8) and (2.12), we see that we are required to show that
w(_q: (¢% 4% OOH (1 —V3¢" + ¢®)(1 +V3¢" + ") 2.13)

oot 1+ q4n + q8n : :
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To that end,

q q oo H (1—=V3¢" + ¢*)(1+ V3¢" + ¢*")

1 +q4n + q8n

B (q;q)oo 1— g+ ¢

(4600 iy L@ + 0™

C] C] o] H 1_q )
1+ ¢ +¢")(1 = ¢*")
954 )oo \ 47547 )0 459" )co
:( .2) <6. 6) :( .2) =¢(=9),
(=460 (€% ¢%) e (=00
by (1.2). Thus, we have shown (2.13), and so the proof of Entry 1.3 is finished. Ul

3. PROOF OF ENTRY 1.4; PART 1

We show in this section that Entry 1.4 follows from the two 2-dissections for two special
cases of the rank generating function G(z, ¢) given in Theorems 1.6 and 1.7.

Proof of Entry 1.4. We need knowledge of theta functions. After Ramanujan, set

f(a,b) Z a™mED2pn=0/2 — (g ab) oo (—b; ab)oo (ab; ab)se, |abl < 1,  (3.1)

n=—oo

where the latter equality is the Jacobi triple product identity [7, p. 35, Entry 19]. To simplify
the product on the right side of (1.9), use (1.2) and (3.1) to deduce that

[e.e]

1 1
— (=) (—¢* ¢") oo
v ) gl+\/§qn+q2"
7 ¢ , '
’ i/ qe ™™ 4 ) o

_ 1 (%)%

T as (4€

V2 (@4 a5

1 (g% ¢%)2 f(=e™/* —qe ™)
T V2(ghd)n (L= enil

We need a special case of an identity of Ramanujan for theta functions [7, p. 48, Entry 31].

To that end, if U,, := ™" +1)/2pn(n=1/2 apnd V,, := ¢~ D/2pn(+1)/2 for each integer n, then

fUL V) = ZUf( o U) (3.3)

We apply (3.3) witha = U; = —e™/4, b = V; = —ge~™/*, and n = 4 to the theta function
in the last equality of (3.2). Thus,

f(_em'/4’ _qe—m/4)
= f(=¢", —¢"%) — ™/ f(—¢"°, —¢°) +iqf(—q", —*) + e ™R f(—¢"®, —q7?)
= (1= ™) f(=¢% —¢") + (i — e Mg f(—¢* —q").

(3.2)
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Hence,
f(—e”/4, _qe—m/4>
(1 _ 67ri/4)
= f(=¢%,—4¢"") = (V2 + 1) f(=¢"", —¢*)
= (¢%0")00(0"% 0")o0(0"% 0") e — (V2 + 1)a(0%: ¢"*) oo (0" ¢"%) o0 (0% ¢'%) o
(4% 4o ("% 4")o0 = (V2 + 1)al¢% ¢")c (0% ') o (3.4)
where we made two applications of (3.1). Hence, inserting (3.4) into (3.2), we deduce that
1 st 1
— V(=) (—¢* ¢ )
vl ) El+\/§qn+q2"
1 (¢%:q
= TH ([q 7"%00(0"% 0" — (1 4+ V2)qla%; 0% (¢"; q16)oo)

1 4. 1612 16. 16 o 1 4. 1612 16. 16 o
_1q 4 ]200(;1 X Joo (1+_>q[q 4 ]600((6] X )

V2 [ 4% 6% ¢ V2 4%, 4%, 4% "]
Therefore, identity (1.9) is equivalent to

U YN Gt iy L@ 0
f\/i(q)—2<1+ ) @i + (-ia)) - TR

N (U i P C i O
io(iq) — ig ) (1 + —) q = : (3.5)
2f ( lig) = #9(~ia) v2) " 1d% 4% a5
We now apply Theorem 1.6 twice, with ¢ replaced by ¢ and —i¢, obtaining, by (1.5), ng( q)
and qb(—zq) respectively. We next apply Theorem 1.7 with a = €*7/4 thereby obtaining, by
(1.4), f\/( ). If we substitute these three representations into (3.5), we see indeed that (3.5)

is valid. It therefore remains to prove Theorems 1.6 and 1.7, which we do in the following
sections. U

4. PROOF OF ENTRY 1.4; PART 2, IDENTITIES FOR THETA FUNCTIONS AND LAMBERT
SERIES

We offer the following lemmas that are needed to simplify the dissections in the proofs of
Theorem 1.6 and 1.7.

Lemma 4.1. We have

1 16. 16 o
() :(E]qi?p)i (=" ¢ ) +al=0"4")c) @D

Proof. By (1.2) and 3.3) witha = ¢, b = ¢3, and n = 2,

1 _ 1 (q2;q2)oo _ 1 i qn(2n+1)
(@ (%)% (@67 (D)%
_ <q16; q16)oo

) (4% ¢")se + al—0% ¢"%]) ,
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and so the proof is complete. U

Next, we state Halphen’s identity [14, p. 187] in the form discovered and presented in [5],

[ab, be, calo(a)3
[a, b, ¢, abc]s

H(a,b,c,q) := =1+ F(a,q) + F(b,q) + F(c,q) — F(abe,q), (4.2)

where

o

F(z) = F(z,q) == Zl—xq Z Q/k/x lq < 1. 4.3)

Below are three identities that are consequences of Halphen’s identity [10, Cor. 4.4].

Corollary 4.2. We have

H(a,b,c,q*) — H(a,b,d,q*) = H(c,1/d, abd, ¢*), (4.4)
H(a,a,q/a,q*) + H(b,b,q/b,q*) = 2H(a,q/a,b,q), (4.5)
H(a,a,q/a,q°) — H(b,b,q/b,q*) = 2H(a,q/a,b/q,q"). (4.6)

Setting 7 = 0 and s = 3 in [9, Theorem 2.1] and then replacing ¢ by ¢'%, we derive the
generalized Lambert series identity

(q16; q16>go _ 1 i ( l)nq24n (n+1) b2
b,¢,d; ¢*%o  [c/b,d/b; ¢1%] =1 bg'on d
i 1 i (—1)ng2intntD) 7 2\ "
[b/c7 d/ca q16]oo e oo 1-— quﬁn bd

N 1 i ( 1>nq24n (n+1) d?
b/d,c/d;q")c —~  1—dg"o" be

Multiplying both sides by [¢/b, d/b; ¢*%]., and rearranging, we deduce the following lemma.

Lemma 4.3. We have
o0 (_1)nq24n(n+1) b? n d/b q oo n 24n(n+1) C2 n
Z 1 — bglon (a) d/c 7% Z 1 — ¢qlon (@)

_ g /i d /) Z e (EN )
[b, ¢, d; 4" ble/d; q")o dqlﬁ” -

be

0 (_1)n 24n(n+1)€n _ )n 24n(n+1)Cn

/(-1
Sz =Y 1fzq16n and 5= 3 1q_q16n , (48
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where the prime in the second sum denotes the omission of the term n = 0. Then by substi-
tuting (b, ¢, d) = (¢®, ¢'%, —¢?) and (¢®, ¢*?, —¢~°) in Lemma 4.3, we find that, respectively,

162 6. 16 4. 16
459 )ool™4 59 Joo 4959 Joo -
q6S(q8, —C]2) - q145(q12’ —C]14) _ ( ) [ ] o [ ] S(—QQ,C] 16)’

[—4% ¢% ¢"%] [—4%; ¢'%] 0
4.9)
q12S(q8,_q10) _ 225( 12 . 22>
Yt A PSS P ¥
[(—¢%, ¢ ¢'%] [—4?%; ¢'%) S~ 1 + gl6n—6
4. 16
- [—q),q[,qlﬁ]oo] i IGﬁS(_qm’qm)’ (4.10)

where we replaced n by n + 1 in the previous line. Similarly, substituting (b,c,d) =
(=1, —q" ¢"®), (=¢% —¢'%,¢*), (-1, —¢'?, ¢%), and (—q*, —¢®, ¢°) in Lemma 4.3, we obtain,
respectively,

S(=1,—¢*) — ¢?S(—q¢*, —¢ ")

N e U U S ¢?)
[—1,¢% —¢* ¢'%] [ ,qﬁ] ¢4
(€% "2 - d" ;0" | 0% ¢" %) 6
T LA ¢ +[—q, 1] S(@a7), 1D

rQ

16. 162 _ 4. 16
(" ¢")%la" =% "l 4% 4" (¢ ),

6 8 2 14 12 14 ’
¢S(—q¢°,—q°) —q S(—q°,—q") =
( ) ( ) (42, —¢®, —q¢*2; ¢*%] [—4%; ¢'%]

(4.12)

_ (@ d") 2% 0" =% a6 1050 o 6
S(—1,—-¢7") — ¢"°S(—¢", —¢"®) = 2 — " ———==5(¢",1),
=1, —q* ¢5% ¢*% [—¢5%; ¢

(4.13)

. 16 4. 16
S(dt a8 — (b gy = LNl a5 e o 1650 g6y
(=0 =a) = a5(=¢", =) [—q*, 4% —4¢%; ¢"%) LR (1)
(4.14)

I

Lemma 4.4. We have

© r(—=1)" 24n(n+1) 1\" d: g'6 > —1)» 24n(n+1) 2\ "
3 (=1)"q R S (Y 3 (=1)"q c
L gl cd [/~ 1= cqion d

0 (_ Cq16n qun+16/C dq16n q16n+16/d )
0

1 — quﬁn + 1 — q16n+16/c - 1 — dqlﬁn + 1 — q16n+16/d

d [C; q16]OO i (_1) q24n (n+1) d2
[c/d; ¢"%] o 1 —dg'n c )

where the prime on the sum on the left-hand side denotes the omission of the term n = (.
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Proof. Multiply both sides of (4.7) by (b — 1), differentiate with respect to b, and let b — 1.

We find that the only terms that remain are those in Lemma 4.4. U
Lemma 4.5. Recall that S(z,() and S*(() are defined in (4.8). Then

1

5 4 S*(_q722) - S*(_q714) o q2S(q4, _qfl()) + q45(q4’ _q72) (415)

_ g% 4" S q1%) + ¢ 9" 4" S(—ql® ¢1%) — 1[g* 6%, 6% ¢")oo (¢ ¢'%)%
[—¢?; %] (=45 ¢*%] ’ 2[4 —¢* 45, —4% ¢"%]w
Proof. Substituting ¢ = ¢* and d = —¢'® in Lemma 4.4, we find that
S*(—=¢*) = ¢*S(¢", —¢7")

g6+ 16n+12 16n+18 16n—2
- Z i q i q 49
11— q16n+4 1= glon+i2 T 1§ 6018~ ] 4 gl6n—2
32 24n2+56n
—4 —¢2 q16 Z 1 _|_ q16n+18
00 16044 16n+12 16042 160414
=-1+ Z (_ : Tontd ! Toni1a ! ont2 ! 16n+14)
o 1—g¢q 1—gq 1+g¢q 1+4¢
[q4; q16]oo 2 16
+ Ws(—q g 7). (4.16)
Similarly, substituting ¢ = ¢* and d = —¢'° in Lemma 4.4 gives
S*(—¢ ") —¢*'S(¢", —¢7?)
R g6 12 g6 F10 RIS
- Z < q1on+4 + 1 — gl6nt12 + 1 + ¢16n+10 R + q16n+6)
16 [q aq ]oo 10 16
— ¢ e S(=q", 7). (4.17)
[_q67 q16]oo

Taking the difference between (4.16) and (4.17), we obtain
S*(_ —22) _ S*(_ —14) _ 25«(q47 _ —10) + q45(q47 _ —2)

16n+2 16n+6 16n+10

q q glom14
=-1+ Z 1 + -
1 + q 6n+2 1 + q16n+6 1 + q16n+10 1 + q16n+14
9" ¢"%) 2 16 16 19" 4% 10 16
- [_q2;q16]005<_q 4 )ty [—q ,q—16] S(—=q7,q7). (4.18)
Note that by Halphen’s identity (4.2) with ¢ replaced by ¢' and (a, b, ¢) = (—q¢*, —¢*, —¢°),
1 & o +2 ¢167+6 ¢'67+10 glon+14
9 + (1 + glon+2 + 14 gl6nt6 1 4 gl6nt10 1 4 q16n+14)

1" ¢% 4% ¢"%)oo(q"%; ¢'%)2,
B 2 [_q27 _q27 _q67 _q67 q16]oo
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Therefore, (4.18) is equivalent to

1 * - * — _ _
5 +97(=a ) = 5 (=g = ¢*S(¢", =) + ¢*S(¢*, —¢7?)
4, 16OO 1 4 8 8 16<>O 16. ,16\2
_ g ;q 116 S(—g? %) + ¢1f " 661 11; S(—g g1%) — 1lg 261 ,qéq ]6 (q 676116)00
(=% "% [—¢% ¢ 2[—¢% —¢?, —¢5 —q¢C% ¢'9]
which is identical with (4.15). U

5. PROOF OF ENTRY 1.4; PART 3, PROOF OF THEOREM 1.6

Proof of Theorem 1.6. Invoking the partial fraction identity (2.3) with ¢ = ¢, we find that the
left side of (1.10) is

o an 1 ;X n n3n+1)/
= (1)n(q/1)n T (@ :Z 1—2q
L i ) n3n+1)/2(1 +ig")
" (@) 1+ g%
_ 1 i O P ) —i0 )] g
(@)oo, = L+ g

Replacing n by —n and multiplying both the numerator and denominator by ¢**, we see that

s (—1)"q n(3n+1)/2 n(3n+3)/2

Z 1+q2n o Z 1+q2n

n=—oo n=—oo

Therefore, the identity (5.1) simplifies to
[e%) an 2 [e%} (_1)nqn(3n+1)/2

N NP P D e 52

n=—oo

n=

We focus our attention on the series on the right side above. By subdividing the index of
summation into residue classes modulo 4 and using the definitions (4.8), we find that

s (_1)nqn(3n+1)/2 > q24n2+2n o0 24n24+14n+2

- - q
n:z—:oo 1 + q2n - S 1 + q8n S 1 + q8n+2

0 q24n2+26n+7 00 q24n2+38n+15

S 1+q8n+4 = 1+q8n+6

1 + Z, q24n +2n(1 q n) B i q24n2+14n+2<1 _ q8n+2>
B 1 — glbn 1 — glon+4

n=—oo n=—oo

oo q24n2+26n+7(1_ q8n+4) o0 24n2+38n+15(1 8n+6)

—4q
1 — glon+8 1 — gl6n+12

=5+ 5 (=) =S (= ") = ¢*S(¢", —¢7 ) +¢"S(¢", 77
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+4'5(¢%, ") — ¢"*S(¢*, —4"°) — ¢"°S(¢"*, —¢") + ¢*'S(¢"%, —¢**).  (5.3)
Therefore, by (5.2), (4.1), (5.3), (4.9), (4.10), and (4.15),
S n2 6 _ 10 ,16. .16 .2 14 ,16. .16
7 :{( it e bl Jo , (2T 47,034 )oo}
“ (iq)n(q/1)n (% %)3% (4% ¢*)%
[q4;q16]00 2 16 16 [q4§916]oo 10 16
o T Joo g0 2 4 g0 9T Joo g 10
{ v A e N
4 8 8. 16 16. ,16\2 16. ,16\2 [_ 6. 16 4. 16
g LAURY ]Zo(q 6,6116)0o +2q(q g 2)00£ ¢4 Joo lq 4 11500 S(—
[—¢%, —¢* —¢% —¢°% ¢'%] [—¢?, 4% ¢*%] [—4% ¢'%]
16. ,16\2 [_ 2. 16 4. 16
_2 3(q 7q )oo[ Q7q }00_2 15 [q 7q ]oo S(_qll)’qlﬁ)}' (54)

n=

[_q67 q87 qlﬁ]oo [—QQ, qu]oo
We now prove two identities that we use in our collection of the even powers from (5.4).
First, we prove the identity

[—=¢%¢"1% — ’—¢% 1% = [d°, 4" 4", 6% 6% 4" (5.5)
Replacing ¢* by —q and noting that [—¢, —¢*; ¢®cc = [¢°; ¢®]oc/[; ¢°; ¢°]s» We see that (5.5)
is equivalent to

[, ¢ ¢, 0" ¢l
4% ¢*% + dla; 1% = . (5.6)
9, 6% %o

Dividing (5.6) throughout by [q, ¢, ¢*; ¢®] . and rearranging, we see that (5.5) is in turn equiv-
alent to

R i PO U it e S (21 GU i

0.4,¢% ¢% %l (0,0, 0, 4% ¢®lo [0 Pl [6%1/0, 4% a4 ¥l
and this follows from (4.4) with ¢ replaced by ¢* and (a, b, ¢, d) = (q,q, ¢?, q).

Second, we establish the identity

[, % "% — 28* [~ %, % ¢, 4", % ¢")ee = [, 2 ¢4 0y 0 8L 68 0% 4 0 (5T)
Replacing ¢ by —g, we find that (5.7) is equivalent to
4", 4% oo +24l0. 0. -0, ¢, — ¢ Ploe = -0, 0, . . ¢, —¢°, —¢*, 4" ¢ o
which in turn is equivalent to

2 2.8 2 .2 .2 2 2 4. 8
4 4., 8 [qac.quaQ]oo [Q7Q7Q7qvq7an]oo
4,454 Joo +2q = . (5.8)
| | 4% @8 9,4, 4%, % ¢°]
We thus want to prove (5.8). We apply (4.6) with g replaced by ¢* and with (a,b) = (g, ¢*)
to obtain the identity.

%, a" a5 lo(@% %)% 0% 0" a5 ¢ loo (@ 00)5 _ ola7 00" ¢ (0% 675
4,4, 6%, ¢% ¢%) s (4%, 4% 4%, 4% ¥l 4,43, 072, ¢% ¢%]
4, 4% %o (¢®; )%
% ¢ ¢ ¥l

= 2q 5.9
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Multiplying both sides by [¢%; ¢®|%. and then dividing both sides by [¢%; ¢®](¢%; ¢®)2., we
see that (5.9) is (5.8) upon rearrangement.

Invoking (5.5) in the second equality below and (5.7) in the last equality below, we find
that the even powers from (5.4) are equal to

[=0" 4" (0% 0 ) {2 Ul
[

4% "]
[—4%;¢"%]

2 16 10 16

(¢ 2)2 —q2;q16]oos(_q ,q%) 4+ 2¢ S(—=q¢",q7")

4 16. 1612 9. 16 16. 16
] (q 142, }+q[ 0% 0" (0% ")

2, —45; %) (a2 %)%

g,
¢

( q q } [q4§q16]oo 2 16
{2q —¢2, ¢&; qlﬁ] _Qq[—QG;q16]mS(_q’q )

,q ) [ q q ] 15 [94;916]00 10 16
—2¢° —2¢7°—————5(—q ", q
q [ 7°, 4% ¢*%] LT ( )

16. 16)

(" ;Z)OOS(—QQ, ') ([=¢%¢")% — #l—a% ¢'°1%)

0 q®, 4% ¢"%oo (4% ¢"%)2%,
[

(0% ®)2% =% —¢%, —4% ¢'%]
Lo (¢'% ¢'%)3,
(4% 4*)2 4% ¢% %]
2(¢"% ¢"%) _
= (q2;2) <q4)q4) S(—QQ,(] 16)[q27q47q47q67q8;q16]00

(=% "% — 4% ¢"12%)

4 16. ,16\3 16. ,16\3
q ,q 7(] 7(] 959 ) 959 )
[ ) : ] ( ) 2 ( ) [qQ’q4,q4’q6’q8;q16]oo

+ 2q

[—¢% —¢* =45 ¢"] (4% ¢*)%[—4% 6% ¢"%]
_ 2(61 100
(4% ¢%)o0(q%; 4" ) oo

16] (g% q16)?
—¢% —¢?, —4% "]
9 B a% q"T2 (4" ¢'0) oo

= 7.16. ,16 S(=¢*,a7") - [ 2 ]2 6. 116
(4" ¢"%) o [—4% —¢?, =45 "]
We now collect the odd powers of ¢ from (5.4). In the analysis below, we need to use the
identity

S(—=¢*, 4 ") ¢" q*, 4% ¢* ¢"%)

(4% ¢% 0" — 2¢°[- 4%, —¢*, ¢*, 4" 4% 4" )

) (5.10)

2%, ¢" ¢, —4°, =% ¢")e — [®, &% ") = [¢* %, 4", 0, 4" 6500, 0% 4", (5L10)

which we now prove. Replacing ¢? by —¢ and rearranging, we see that (5.11) is equivalent
to

7% ¢l oo _ 4%, 4% 4% 4%l
9, 6% ¢*5% (45 ¢%)o0

[q* ¢®)% (5.12)
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Multiplying both sides of (5.12) by [¢*; ¢®](¢%; ¢®)2, and dividing both sides by [¢%; ¢°]1.,
we obtain

[0 15 (6% 65 | 10% 68 a5 Ploold )% 167 6h @l )5

4% ¢®]4 4, 4% %1% 9,42, 4% ¢®] o

(5.13)

If in (4.5), we replace ¢ by ¢* and set (a,b) = (¢?, ¢), we arrive at (5.13). Hence, (5.11) has
been established.

In the first equality below, we employ (5.5) twice, and in the penultimate equality below,
we utilize (5.11). Thus, collecting the odd powers of ¢ from (5.4), we find that

[q q16]oo(q q16)oo 10 16 6. 1672 2 2. 1612
2¢"° S(—¢", ¢")[—¢% "% — *[—¢* ¢'°)%)
(¢ ¢*)% [ -5, ¢%]
+2 (qQ qg)( [ q >q qlﬁ] ([_qﬁ;qw]go_q2[_q27q16]go)
iy lq", ¢° ¢ q ] (q 1 q'%)3
(% ¢*)2%[—q q%; ¢*9]
)
o 15
- _q (q16,q16)005(_q ’q )
ey (q"%q"°)3, Podt ) — g 0" ¢, % "o ("% ¢"0)3,
(0% a*)%[—a% 6% 4" Y (g% ¢*)%[—a% —4% —45% "]
2
15 10 16
=—q S(—q ", q
(4% ¢'%) ( )
4. 16 16 16\3
q;q ]oo(q 1 q )oo 2 4 6 6 6. 16 8
+q ., ¢ ¢, -4, —¢";q 4, ¢ q
(¢% )% [—a?, —45, —¢5; ¢'°] 2] Joo = | Joo)
9
_ 15 10 16
= —q (q16; qu)OOS(_q N )
[q4;q16]oo(q167q16)go 2 92 4 4 4 6 6 8. 16
+q .05 4.4,4.9,4,¢; ¢ |~
(¢%4*)2% = ¢ —d¢b, q(";qlﬁ}m[ ]

— g% 2 S(—¢", ¢'%) + ¢ 9" 4" (¢"% ¢'%)
(¢'%;¢'%) o ’ [ a?,—q% —q% ¢*%

4% ¢"°12. ("% ¢"%) o

6
S(=d 1) +q[—q2,—q6,—q 1 "]

(5.14)

We now return to (5.4). On the right side of (5.4), we substitute the expressions that we
found for the even powers in (5.10) and the representation for the odd powers from (5.14).
We immediately obtain the proposed identity (1.10), thus completing the proof of Theorem
1.6. Ul
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6. PROOF OF ENTRY 1.4; PART 4, PROOF OF THEOREM 1.7

Proof of Theorem 1.7. Let a be a primitive eighth root of unity. Then by the partial fraction
identity (2.3),

(9] 1 . 0 1) n(3n+1)/2

> ty B 6.1
- q/ ) (Do . 1—ag

B 1—a i (_1)nqn(3n+1)/2(1 + aqn + a2q2n + a3q3n)

(@ 1+ ¢*

_ 1 i (—1)ng"CnD2[(1 — at¢®™) — a(1 — a®¢*") + ag™(1 — a*q") — a’q"(1 — ¢")]
(@ 1+ g* '

Replacing n by —n and multiplying both the numerator and denominator of the summands
by ¢*", we see that

() ( 1>nqn(3n+l)/2qkn nqn(3n+l)/2q(3—k)n

- o (5D
Z 1+q4n o Z 1+q4n

n=—oo n=—oo

Therefore, we deduce that

o0 ( 1)nqn(3n+1)/2<1 _ CL4 3n o n q" (3n+1)/2

n;oo - T zn_zoo 1 +q4n : (6.2)
i:: (_1)nqn<3n1+i/23:(1 —a’q") _ (1 a?) % (—1)1"1";)’:3)/2, (6.4)

and
i (—1)"<J"(3::L”; ig”(l —4") _, 6.5)

n=—oo

Thus, noting that —a® = 1/a and putting (6.2)—(6.5) in (6.1), we find that

i n 2 —a— 1/a i (_1)nqn(3n+1)/2 N a -+ 1/CL i (_1)nqn(3n+3)/2
= (aq)n(q/a)n (@)oo = L1+g™ ) e S
(6.6)
We now proceed as we did in the proof of Theorem 1.6. We first work out the dissections of
the relevant Lambert series. For each of the two Lambert series below, we divide the index

of summation n into residue classes modulo 4 and express each sum in terms of S(z, (),
defined in (4.8). By applying (4.11) and (4.12) in the first case and (4.13) and (4.14) in the




18 GEORGE E. ANDREWS, BRUCE C. BERNDT, SONG HENG CHAN, SUN KIM, AND AMITA MALIK

second, we find that

- <_1)nqn(3n+1)/2 —92 2 4 ~10

+ q751<_q87 _q2) o q155(_q12’ _q14)
_ _(qlﬁ;q16)c2>o[_q27q4; qlﬁ]oo + [q4;q16]oo S( ) q—16)
[—1,¢%, —q% ¢"] [—¢% "%
+q(q16;q16)§o[q47—qﬁ;qlﬁ]oo L l4*; 4" oo S a7 ) 67)
[q2’ _q4’ _qS7 q16]oo [_qﬁ7 qlﬁ]oo
and
oo n,(3n%2+3n)/2
> ( 1)1(i i " S(—1,—¢ ") = ¢’S(—=q",—¢"%)

+ QQS(—QS, _q6> o q18S(—q12, _qls)
(%2 l¢" —¢% 0" 6 4" ") S 1)
(1, —¢* ¢% ¢"] s %
3(6"% )5 a5 a e ’ 9" 4" S ). (68)
(4" 4% —¢% 4" [~¢% ¢
To study (6.7), we first verify two theta function identities, both used in the second equality
of (6.13) below. The first equality that we shall employ is

=% 4" — *[~ 110" = [0*. ¢*, 4", 4%, % 0] e (0% 4" cer (6.9)
which, after multiplying both sides by (¢'°; ¢'%)., and utilizing the Jacobi triple product
identity (3.1), is equivalent to the elementary identity

—4q

oo

f: q8n2 . 2q2§:q8n(n+1) _ f: q2(2n)2 o f: q2(2n+1)2 _ Z (_1)nq2n2'
n=0

n=—oo n=—oo n=—oo n=—oo

The second equality that we shall use is given by
[—1,-¢% =% 0" = [=¢*, =", =% ¢"°lc = [, ¢ 4", ¢4 ' %)oc (6% ¢'%) o, (6.10)
which we now prove. Multiplying both sides of (6.10) by [¢*; ¢'%]..(¢'%; ¢'®)%, and then
dividing both sides by [—1, ¢%, ¢*, —¢*, —¢®; ¢*®] o, We see that (6.10) is equivalent to

[¢*, =% =% ") (d'% ¢"0) % [0 =2, 4% 4] (¢'%; ¢"0)

4%, 4%, —q¢* —¢% ¢'%) —1,¢% ¢% —q¢* ¢
et at dh a0 (65 00 (0% 02 [t 0t @B ) (010 410) % 611
B (=1, —¢*, —¢% ¢"%) L =t =gt %% @1
Note that
4. 16 8. 16\ __ (4% 4" oo _ (4% 4" oo . (¢%q"°)2
(6% ¢°)(0%50 )00 = = = 6.12)
’ ’ (—¢% ¢ (0% (—0% %) [—¢% ¢’

which we use on the right side of (6.11). Then (6.11) follows from (4.4) upon replacing g by
¢* and setting (a, b, ¢, d) = (%, ¢%, —q', —1).
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We now focus on (6.7). By invoking (4.1) and using (5.5) in the second equality below
and, as we mentioned above, (6.9) and (6.10) as well, we find that

0 n ,n(3n+1)/2

1 (=D"q
(Q)oo ZOO 1+ gin

4 16.
759 loe(q° )0 -
= (qQ[,qg) [] PR ; o S(a% ") ([~¢% "% — ¢*1-¢%¢"1%)
_ ( 16)20[ q ’q4’ q ;q16]00 ([_qs.q16] _q2[_1'q16] )
(g% ) [—1,¢% —¢*, —¢% "] ™ o
16\3
 q
+Q<q2 q )( [ 1 ; [ q4 _]q 'q16] ([_17_q6’_q6;q16]00 - [_qgv_q27_q8;q16]00)
4. 16 16. 16
q*; q'%q _
= (qg[, E []ooq(Q - 2{1 i S(¢%, a7 N q" d" 6 6% ¢ ¥
- (4" ¢"°)%[=d% d", 4" ") [ &%, q" 6%, 4% 4"]oo (g% ¢'©)
(% )21, ¢% —qt, —¢% q"0) " 77 7T T T A
16)\3
1 q'°)2
+q(q2'q)( =y )2 [_q4 _]q g [ a0 s 0) s
_ 1 S( ) —16) B (q16; qlﬁ)oo[q4; q16]go q(q167 qlﬁ)oo[q4; qlﬁ]go (6 13)
(@'% %) 2l¢%, 4%, 4% ¢") 2¢%, 4% % ¢"% '

To study (6.8), we again need to first establish a certain theta function identity, namely,
[=¢%, =%, =4 4" — ¢'[-1, =% =" ¢"*lc = 0", 4", ¢ 4% 4"%)oe (6% 4") oo (6.14)
Multiplying both sides of (6.14) by [¢*; ¢'%]o(¢'%; ¢'®)%, and then dividing both sides by

-1, —q* % ¢% —q®; ¢'%] oo, e see that (6.14) is equivaloeont to
4", —4°, =% %] (¢% ¢")%  [-4* —¢* 4" 0" ("% 403
1,45, 4% —q* ¢ 45, 4% —q—%, — % q'%]
U e S U
(=1, —¢* —¢* —¢% ¢*%]o
where we applied (6.11) and the elementary identity

; (6.15)

4% 4" = ¢' -4 "%l
In (4.4), replace g by ¢® and set (a, b, c,d) = (¢°, ¢ —1,—q*). Then (6.15) follows imme-
diately.
We now give our attention to (6.8). As before, we utilize (4.1), and then applying (5.5),
(6.14), and (6.9) in the second equality below, we find that

00 (_1)nqn(3n+3)/2

1
<Q)<>o Z_ 1+ q4n
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16
7'%q q*q
+ (q2,q2)(2 1 zqi - _]q . (=%, =¢°, =% 0o — @'~ 1, —0* —¢* ¢'%])
P C Tl G T A (g 4 — 1 4])
q(q2;q“[—1,—q4,q6,—q8;q16]oo O34 Joo =50 o
4 16 16 16
5 [Q§Q]oo(Q§Q)oo 6 2 4 4 6 8. 16
=q S,V q,0,0,0%:0 |
(% )% [—a? —45% ¢"%] (¢ 1)l )
(qlﬁ q6)3 [q q ] 4 4 6 6. 16 8. 16
+q(q16;q16)oo[q iqt ]oo
2[¢%, 45, ¢%; ¢'%] o
1 16. 16Oo 4. 1612 16. 16OO 4; 1612

VRO A2 %0 200 ¢ 0% 0
We can now complete the proof of Theorem 1.7 by substituting (6.13) and (6.16) into
(6.6). U

7. SOME CONSEQUENCES OF THEOREMS 1.6 AND 1.7

In this final section, we give some immediate consequences of Theorems 1.6 and 1.7
related to ranks and to mock theta functions. First, let N(k,t,n) denote the number of
partitions of n with rank congruent to £ modulo ¢. Denote

o0

Ryo(t,1,d) = [N(b,t,In+d) — N(c,t,In + d)|q"
n=0
Then the following results follow from Theorems 1.6 and 1.7.

Corollary 7.1. We have

R0,2(4 4 0) R0,4<87 47 0)7 (71)
Ro2(4,4,2) = —Ro4(8,4,2), (7.2)
Ro2(4,4,1) = Ro4(8,4,1) + 2R 5(8,4,1), (7.3)
Ry2(4,4,3) = —Ro4(8,4,3) — 2R, 5(8,4, 3), (7.4)
i.e., forn >0,
N(0,4,2n) — N(2,4,2n) = (—1)"[N(0,8,2n) — N(4,8,2n)], (7.5)

N(0,4,2n+1) — N(2,4,2n + 1) = (—1)"[N(0,8,2n + 1) + 2N(1,8,2n + 1)
—2N(3,8,2n+1)— N(4,8,2n+1).  (7.6)

Proof. On page 72 of [12], F. G. Garvan explains how one can obtain results on rank differ-
ences from the dissections of the rank generating functions. We follow his argument here.
First, note that

o0 2 o0

'~ Tig) nq/z =22 Nl Amity —Z<N<0747n>—fv<274,n>>q"



FOUR IDENTITIES FOR THIRD ORDER MOCK THETA FUNCTIONS 21

since N(1,4,n) = N(3,4,n) [12, egs. (1.09), (1.10)] and i* = —i. By extracting the terms
with even powers of ¢ on both sides of (1.10), we deduce that

> (N(0,4,2n) — N(2,4,2n))¢™"
n=0
) O (—1)ng24n’+8n 4. 1612 (416. 416
(4% ¢') 1 + qlon+2 [—% —, —¢% ¢"]
As above, let a denote a primitive eighth root of unity. Using the relations a®> = —a®,

N(2,8,n) = N(6,8,n), and a® + a® = —(a + a”), we see that

Since 1 and a + a” are linearly independent over the set of integers, extracting the terms with
even powers of ¢ on both sides of (1.11), we obtain the two identities

> (N(0,8,2n) — N(4,8,2n))¢™
n=0
_ 2 §i04Wf““%_J¢mﬂéwmem 7.8)
- (q16;q16)oo = 1— q16n+2 [q2,q2,q6;q16]oo ’ :
> (N(1,8,2n) — N(3,8,2n))¢™
n=0
L 1 i (_1)nq24n2+8n [q4;q16]go(q16;q16)oo 79
o (q16; qlﬁ)oo e 1 — q16n+2 [q2, q2’ qﬁ; qu]oo : :

We see that the right side of (7.7) is exactly (7.8) but with ¢ replaced by —q?. This implies
(7.1), (7.2), and (7.5). Equations (7.3), (7.4), and (7.6) are proved similarly by selecting the
terms with odd powers of ¢ on both sides of (1.10) and (1.11). ]

Remark 7.2. N. Santa-Gadea and R. Lewis proved many results on ranks and cranks modulo
4 and 8. See, for example, [16, 17, 18, 19, 20, 21, 22, 24, 25]. Equation (4.5) of Santa-
Gadea’s Thesis [24] gives the generating function of the relation

N(0,4,n) — N(2,4,n) = N(0,8,n) — 2N(2,8,n) + N(4,8,n). (7.10)

Through (7.10), the relations given in equations (4.1)—(4.4) of [24] are immediately seen to
be equivalent to (7.5) and (7.6). The relations (4.1)—(4.4) in [24] were originally conjectured
by Lewis in two papers [16], [18]. They were proved again in a later paper by Santa-Gadea
and Lewis [22].
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Each of Ramanujan’s mock theta functions satisfies a transformation formula involving
the rank function G(z, q), defined in (1.1). For example, the famous mock theta conjectures,
first proved by D. Hickerson [15, egs. (0.9), (0.10)], are given by

o0 n2 . .
Z q _ 2 (q2 q10>+ (q57q5)00(q57q10)oo
— (=a)n 1—g2 7 4 ¢°]oe

< gt 9 9 5..5 5. 10
Zq _c 4G(q4’qm)+(q7q)§o(z,q )oo
—~(—q)n ¢ q(l—q*) 4% 6o

By summing the odd and even indices n’s separately, we can write down the 2-dissection
of the rank function modulo 4 directly as

- " = < )
nZ:O (iq)n(q/D)n HZ:O (—¢%¢*)n nzo (—4% ¢%) ZO Dant1’
By applying (2.3) and the identity [12, eq. (7.10)]
5 ') (_1)nq3n(n+1)/ 1
=—1 —G
(€)oo nz_:oo L —zg" 100

in Theorem 1.6, we can then derive analogous identities.

Corollary 7.3. We have

i "2 Gl=g.q) — 4%, 4% 4]0 (0 0°) oo
(= m  1+g 7 4, =4, =% ¥l
2(n?+n) 2 9 2 2.8 8. 8
q ¢, 0% 0%loo (0% ¢%)se
Z—:__ G(_qS’qS)_‘_[ Joo ( )

—~ (= Q)1 ¢ q(1+¢3) =0, =6, —¢% ¢*l
n=0

This is not the first time these two functions have been studied. For example, in [I,
eqs. (1.14), (1.15)]), the first author gave Hecke-type series representations for the two func-
tions

n

Zq4n2+n 6n+3) Z (—1)jq_j2,

Z 2n -
n=0 Jj=—n
i Q(n ) Zq4n +3n 2n+1) i (_1)jq—j2
o \ T q 2n+1 j=——n .
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