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Abstract

We provide partition-theoretic interpretation of two truncated iden-
tities of Gauss solving a problem by Guo and Zeng. We also reveal
that these results, together with our previous truncation of Euler’s
pentagonal number theorem, are essentially corollaries of the Rogers-
Fine identity. Finally we examine further positivity questions related
to the partition function.
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1 Introduction

In [3], we proved the following identity for the partition function, p(n):

Theorem 1. For n > 0, k > 1,

(−1)k−1
k−1∑
j=0

(−1)j (p(n− j(3j + 1)/2)− p(n− j(3j + 5)/2− 1))) = Mk(n),

(1.1)
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where Mk(n) is the number of partitions of n in which k is the least integer
that is not a part and there are more parts > k than there are < k.

Yee [13] has given a combinatorial proof of Theorem 1. This theorem was
directly deduced from the following:

Lemma 2. For k > 1,

1

(q; q)∞

k−1∑
j=0

(−1)jqj(3j+1)/2(1− q2j+1) = 1 + (−1)k−1
∞∑
n=1

q(
k
2)+(k+1)n

(q; q)n

[
n− 1
k − 1

]
,

(1.2)
where

(A; q)n =
∞∏
j=0

(1− Aqj)
(1− Aqj+n)

=
(
(1− A)(1− Aq) · · · (1− Aqn−1) if n is a positive integer

)
and [

A
B

]
=

{
0, if B < 0 or B > A

(q;q)A
(q;q)B(q;q)A−B

, otherwise.

Apart from Euler’s pentagonal number theorem (k →∞ in (1.2)):

(q; q)∞ =
∞∑
j=0

(−1)jqj(3j+1)/2(1− q2j+1), (1.3)

there are two other central, classical theta identities (often attributed to
Gauss and sometimes Jacobi) [2, p.23, eqs. (2.2.12) and (2.2.13)]:

(q; q)∞
(−q; q)∞

= 1 + 2
∞∑
j=1

(−1)jqj
2

, (1.4)

and
(q2; q2)∞
(−q; q2)∞

=
∞∑
j=0

(−1)jqj(j+1)/2. (1.5)

We remark that the truncated theta series were recently studied in several
papers by Guo and Zeng [7], Mao [10], Kolitsch [9], He, Ji and Zang [8], Chan,
Ho and Mao [4], and Yee [10].
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Guo and Zeng [7] proved analogues of the above Lemma 2 for (1.4) and
(1.5). First they note that the reciprocal of the infinite product in (1.4)
is the generating function for p(n), the number of overpartitions of n (cf.
Corteel and Lovejoy [5]). Overpartitions are ordinary partitions with the
added condition that the first appearance of any part may be overlined or
not. Thus there are eight overpartitions of 3:

3, 3, 2 + 1, 2 + 1, 2 + 1, 2 + 1, 1 + 1 + 1, 1 + 1 + 1.

They prove in analogy with Lemma 2:

Theorem 3. [7] For |q| < 1 and k > 1, there holds

(−q; q)∞
(q; q)∞

(
1 + 2

k∑
j=1

(−1)jqj
2

)
(1.6)

= 1 + (−1)k
∞∑

n=k+1

(−q; q)k(−1; q)n−kq
(k+1)n

(q; q)n

[
n− 1
k − 1

]
.

An immediate consequence owing to the positivity of the sum on the right
is:

Corollary 4. [7] For n, k > 1, there holds

(−1)k

(
p(n) + 2

k∑
j=1

(−1)jp(n− j2)

)
> 0. (1.7)

Next Guo and Zeng consider pod(n), the number of partitions of n in
which odd parts are not repeated. They note that the generating function
for pod(n) is the reciprocal of the product in (1.5), and in analogy with (1.1),
they prove

Theorem 5. [7] For |q| < 1 and k > 1, there holds

(−q; q2)∞
(q2; q2)∞

2k−1∑
j=0

(−1)jqj(2j+1)(1− q2j+1) (1.8)

= 1 + (−1)k−1
∞∑
n=k

(−q; q2)k(−q; q2)n−kq2(k+1)n−k

(q2; q2)n

[
n− 1
k − 1

]
q2
.
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As before, they deduced

Corollary 6. [7] For n, k > 1, there holds

(−1)k−1
k−1∑
j=0

(−1)j (pod(n− j(2j + 1))− pod(n− (j + 1)(2j + 1))) > 0.

(1.9)

Guo and Zeng [7, p.702] note that the sum in (1.1) has a partition-
theoretic interpretation, namely Mk(n). They go onto assert: “it is still
an open problem to give partition-theoretic interpretations for our two sums
in (1.7) and (1.9).”

This paper has two main objects. The first is to provide the interpreta-
tions of the sums in (1.7) and (1.9) requested by Guo and Zeng. Our second
goal is to provide an unified treatment of (1.2), (1.6) and (1.8) by showing
that all three are essentially instances of Rogers-Fine identity [11, p.15] which
we write as

∞∑
n=0

(α; q)nτ
n

(β; q)n
=
∞∑
n=0

(α; q)n(ατq/β; q)nβ
nτnqn

2−n(1− ατq2n)

(β; q)n(τ ; q)n+1

. (1.10)

By means of (1.10), we shall give a new proof of (1.2), and shall prove
the following revisions of (1.6) and (1.8). First we treat (1.6):

Theorem 7. For n, k > 1,

(−q; q)∞
(q; q)∞

(
1 + 2

k∑
j=1

(−1)jqj
2

)
(1.11)

= 1 + 2(−1)k
(−q; q)k
(q; q)k

∞∑
j=0

q(k+1)(k+j+1)(−qk+j+2; q)∞
(1− qk+j+1)(qk+j+2; q)∞

.

From Theorem 7, we may immediately deduce

Corollary 8. For n, k > 1,

(−1)k

(
p(n) + 2

k∑
j=1

(−1)jp(n− j2)

)
= Mk(n), (1.12)

where Mk(n) is the number of overpartitions of n in which the first part larger
than k appears at least k + 1 times.
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For example, M2(12) = 16, and the partitions in question are 4 + 4 + 4,
4 + 4 + 4, 3 + 3 + 3 + 3, 3 + 3 + 3 + 3, 3 + 3 + 3 + 2 + 1, 3 + 3 + 3 + 2 + 1,
3 + 3 + 3 + 2 + 1, 3 + 3 + 3 + 2 + 1, 3 + 3 + 3 + 2 + 1, 3 + 3 + 3 + 2 + 1,
3 + 3 + 3 + 2 + 1, 3 + 3 + 3 + 2 + 1, 3 + 3 + 3 + 1 + 1 + 1, 3 + 3 + 3 + 1 + 1 + 1,
3 + 3 + 3 + 1 + 1 + 1, 3 + 3 + 3 + 1 + 1 + 1.

Next we revise (1.8):

Theorem 9. For n, k > 1,

(−q; q2)∞
(q2; q2)∞

2k−1∑
j=0

(−q)j(j+1)/2 (1.13)

= 1− (−1)k
(−q; q2)k
(q2; q2)k−1

∞∑
j=0

qk(2j+2k+1)(−q2j+2k+3; q2)∞
(q2k+2j+2; q2)∞

.

Corollary 10. For n, k > 1,

(−1)k−1
k−1∑
j=0

(−1)j (pod(n− j(2j + 1))− pod(n− (j + 1)(2j + 1))) = MPk(n),

where MPk(n) is the number of partitions of n in which the first part larger
than 2k − 1 is odd and appears exactly k times. All other odd parts appear
at most once.

For example, MP2(19) = 10, and the partitions in question are 9 + 9 + 1,
9 + 5 + 5, 8 + 5 + 5 + 1, 7 + 7 + 3 + 2, 7 + 7 + 2 + 2 + 1, 7 + 5 + 5 + 2,
6 + 5 + 5 + 3, 6 + 5 + 5 + 2 + 1, 5 + 5 + 3 + 2 + 2 + 2, 5 + 5 + 2 + 2 + 2 + 2 + 1.

A further interesting corollary of Theorem 9 relates to p(n).

Corollary 11. If at least one of n and k is odd,

(−1)k−1
k−1∑
j=0

(−1)j (p(n− j(2j + 1))− p(n− (j + 1)(2j + 1))) > 0.

In section 2, we shall prove three key lemmas, each a special case of the
Rogers-Fine identity (1.10). In section 3, we deduce Theorem 7 and Corollary
8 from Lemma 12. In section 4, we deduce Theorem 9 and Corollary 10 from
Lemma 13. For completeness, in section 5 we deduce Lemma 2 from Lemma
14. Section 6 deduces Corollary 11 from Theorem 9. In the conclusion, we
discuss related work and an open problem.
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2 Background Lemmas

In this section, we collect three special cases of the Rogers-Fine identity
(1.10). The key to this unification of proofs of Lemma 2, Theorem 3 and
Theorem 5 is this use of (1.10), and this is made possible by treating what
may be called the complimentary problem; namely, we find directly a formula
for the tail of the relevant theta series instead of the truncation. It should
be noted that each of our three result in this section is effectively in the
literature. The next result is equivalent to [6, p.15, eq.(14.31)] and [1, p.571,
eq.(3.6)].

Lemma 12.
∞∑
n=0

(α; q)nα
n

(−α; q)n+1

=
∞∑
n=0

(−1)nα2nqn
2

. (2.1)

Proof. Set β = −αq, τ = α in (1.10) and multiply by 1/(1 + α).

Lemma 13. [1, p.571, eq.(3.5)]

∞∑
n=0

(α; q2)nα
n

(αq; q2)n
=
∞∑
n=0

αnq(
n
2). (2.2)

Proof. In (1.10), replace q by q2, then set β = αq and τ = α. The result is

∞∑
n=0

(α; q2)nα
n

(αq; q2)n
=
∞∑
n=0

α2nq2n
2−n(1 + αq2n)

=
∞∑
n=0

αnq(
n
2).

The next result was first proved by L.J. Rogers [11, p.333] (cf. [1, p.570,
eqs. (3.2) and (3.4)]) and M.V. Subbarao [12] combinatorially.

Lemma 14.

∞∑
n=0

(−1)nβ2nq(
n+1
2 )

(βq; q)n
=
∞∑
n=0

β3nqn(3n+1)/2(1− β2q2n+1). (2.3)

Proof. In (1.10), replace β by βq and α by β2q/τ . Then let τ → 0, and the
result follows immediately.
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3 Overpartitions

We are now ready to prove Theorem 7 and Corollary 8.

Proof of Theorem 7. Dividing both sides of (1.11) by

(−q; q)∞
(q; q)∞

=
1

∞∑
n=−∞

(−1)nqn2

,

we see that we need only prove

(−1)nq(n+1)2
∞∑
j=0

(qn+1; q)jq
j(n+1)

(−qn+1; q)j+1

=
∞∑

j=n+1

(−1)jqj
2

,

and this is merely Lemma 12 with α replaced by qn+1.

Proof of Corollary 8. We see that in

(−q; q)k
(q; q)k

∞∑
j=0

(
2q(k+1)(k+j+1)

1− qk+j+1

)(
(−qk+j+2; q)∞
(qk+j+2; q)∞

)
the expression preceding the summation generates parts 6 k. The first ex-
pression inside the sum accounts for the > k+1 appearances of the first part
> k, and the second expression inside the sum accounts for all the larger
parts.

4 Partitions with Distinct Odd Parts

We can now prove Theorem 9 and Corollary 10.

Proof of Theorem 9. Multiplying both sides of (1.13) by the reciprocal
of

(q2; q2)∞
(−q2; q2)∞

=
∞∑
j=0

(−q)(
j+1
2 ),

we see that we need only prove

(−1)nq(
2n+1

2 )
∞∑
j=0

(q2n; q2)j+1q
2jn

(−q2n+1; q2)j+1

=
∞∑

s=2n

(−q)(
s+1
2 ),
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and adding (−1)nq(
2n
n ) to both sides while shifting j to j − 1, we see that we

must show that

(−1)nq(
2n
n )

∞∑
j=0

(q2n; q2)jq
2jn

(−q2n+1; q2)j
=

∞∑
s=2n−1

(−q)(
s+1
2 ).

This last identity follows immediately from Lemma 13 with α = q2n and

multiplying by (−q)(
2n
n ).

Proof of Corollary 10. We see that in

(−q; q2)k
(q2; q2)k−1

∞∑
j=0

qk(2j+2k+1) (−q2j+2k+3; q2)∞
(q2j+2k+2; q2)∞

the expression preceding the summation generates parts 6 2k− 1. The term
qk(2j+2k+1) produces the k appearances of the first part, 2j+2k+1, larger than
2k − 1, and the final expression generates the parts larger than 2j + 2k + 1.

5 Ordinary Partitions

As mentioned in the introduction, we shall provide a new proof of Lemma 2
to make clear how all these results are related to the Rogers-Fine identity.

Proof of Lemma 2. Multiplying both sides of (1.2) by (q; q)∞ and recall-
ing (1.3), we see that we need only prove

(−1)k(q; q)∞

∞∑
n=1

q(
k
2)+(k+1)n

(q; q)n

[
n− 1
k − 1

]
=
∞∑
j=k

(−1)jqj(3j+1)/2(1− q2j+1).

Now

(−1)k(q; q)∞

∞∑
n=1

q(
k
2)+(k+1)n

(q; q)n

[
n− 1
k − 1

]
= (−1)kqk(3k+1)/2(qk+1; q)∞

∞∑
n=0

(qk; q)nq
(k+1)n

(q; q)n(qk+1; q)n
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(where we have shifted n to n+ k nothing that when n < k the terms
vanished)

= (−1)kqk(3k+1)/2

∞∑
n=0

(−1)nq(
n+1
2 )+2kn

(qk+1; q)n

(by [2, p.38, eq.(3.3.13), a = 0, t = c = qk+1, b→ 0])

= (−1)kqk(3k+1)/2

∞∑
j=0

(−1)jq3kj+j(3j+1)/2(1− q2j+2k+1)

(by Lemma 14 with β = qk)

=
∞∑
j=k

(−1)jqj(3j+1)/2(1− q2j+1).

6 Corollary 11

Corollary 11 may be easily deduced from either Theorem 5 (due to Guo and
Zeng) or Theorem 9.

Proof of Corollary 11. Multiply both sides of (1.8) (or (1.13)) by (−q2; q2)∞.
After simplification, we find

(−1)k−1

(q; q)∞

k−1∑
j=0

(−1)jqj(2j+1)(1− q2j+1) = (−1)k−1(−q2; q2)∞ +Gk(q), (6.1)

where

Gk(q) = (−q2; q2)∞
∞∑
n=k

(−q; q2)k(−q; q2)n−kq2(k+1)n−k

(q2; q2)n

[
n− 1
k − 1

]
q2

has nonnegative coefficients. Note that (−q2; q2)∞ is an even function of
q with positive coefficients. Now if k is odd then every terms in (6.1) is
nonnegative. If k is even, then because (−q2; q2)∞ is an even function of q,
all coefficients of odd powers are nonnegative.
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7 Conclusions

We have successfully provided partition theoretic interpretations for the three
classical theta series (1.3), (1.4) and (1.5). There were further conjectures
on the full Jacobi triple product that appear in both [3] and [7]. A. J. Yee
[13] provided a combinatorial proof of (1.1) and also answered most all of
the questions posed in [3] and [7].

Relevant to Conjecture 6.4 of [7], it would be very appealing to have a
combinatorial interepretation of

Jk(n) = (−1)k
k∑

j=0

(−1)j(2j + 1)t(n− j(j + 1)/2),

where
1

(q; q)3∞
=
∞∑
n=0

t(n)qn.

Also for n odd or k even, there is a substantial amount of numerical
evidence to conjecture that the sum in Corollary 11 is less than or equal to
Mk(n).

Conjecture. For n odd or k even,

(−1)k−1
k−1∑
j=0

(−1)j (p(n− j(2j + 1))− p(n− (j + 1)(2j + 1))) 6Mk(n).

Finally combinatorial proofs of Corollaries 8 and 10 would be very inter-
esting.
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