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Abstract

There have been a number of papers on partitions in which the parity
of parts play a central role. In this paper, the parts of partitions are
separated by parity, either all odd parts are smaller than all even parts or
vice versa. This concept first arose in a study related to the third order
mock theta function ν(q). The current study also leads back to one of
Ramanujan’s more mysterious functions.

1 Introduction

Probably the first appearance of parity in partitions arose in Legende’s inter-
pretation of Euler’s pentagonal number theorem

(1.1)

∞∏
n=1

(1− qn) =

∞∑
n=−∞

(−1)nqn(3n−1)/2.

Legendre [14, pp.128-133] interpreted (1.1) as follows:

Theorem (Legendre’s Theorem). Let De(n) (resp. Do(n)) denote the number
of partitions of n into an even (resp. odd) number of distinct parts. Then

De(n)−Do(n) =

{
(−1)i if n− j(3j ± 1)/2

0 otherwise.

F. Franklin [12] provided the famous combinatorial proof of Legendre’s the-
orem.

Subsequently parity has played a substantial role in assertion from Ramanu-
jan’s Lost Notebook [7, sec. 9.5] and in extension of the Rogers-Ramanujan
identities [4], [13] as well as many other instances.

In this paper, we consider partitions in which parts of a given parity are
all smaller than those of the other parity. We designate both cases where the
even (resp. odd) parts are distinct with the couplet “ed” (resp. “od”), or
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when the even (resp. odd) parts may appear an unlimited number of times
with the couplet “eu” (resp. “ou”). Our eight partition functions, pzwxy (n) will
designate the partition functions in question where the xy will constrain the
smaller parts and the zw the larger parts, with “xy” and “zw” will be among
the aformentioned couplets.

For example poueu(n) denotes the number of partitions of n in which each even
part is less than each odd part. It is a simple exercise (see [6, Sec. 2]) to show
that

(1.2) F oueu (q) :=
∑
n≥0

poueu(n)qn =
1

(1− q)(q2; q2)∞
,

where

(1.3) (A; q)n = (1−A)(1−Aq) . . . (1−Aqn−1).

The study in [6] was primarily centered on a subset of the partitions asso-
ciated with poueu(n), which were closely related to the third order mock theta
function ν(q). In this paper, we extend these considerations of partitions to
eight cases where there is no interlacing of parity in the parts.

Among the surprises resulting from this study are the following partition
identities.

Theorem 1. The number of partitions of n into parts each > 1 with each odd
part less than each even part equals

po(n)− pe(n)− pe(n− 1),

where po(n) (resp. pe(n)) is the number of partitions of n into odd (resp. even)
parts.

For example, there are three partitions of 10 described in the theorem,
namely 3 + 3 + 4, 5 + 5, 7 + 3. On the other hand po(10) = 10, pe(10) = 7 and
pe(9) = 0.

Theorem 2. Let Od(n) denote the number of partitions of n in which the odd
parts are distinct and each odd integer smaller than the largest odd part must
appear as a part. Then

podeu(n) = Od(n).

The 6 partitions enumerated by Od(9) are 8+1, 6+2+1, 4+4+1, 4+2+2+1,
5 + 3 + 1 and those enumerated by podeu(9) are 9, 7 + 2, 5 + 4, 5 + 3 + 1, 5 + 2 + 2,
3 + 2 + 2 + 2.

A further surprise occur for peuod(n), namely:

Theorem 3.

(1.4) F euod (−q) =
1

(q2; q2)∞

∞∑
j=1

∞∑
n=j

(−1)n+jqn(3n+1)/2−j2(1− q2n+1).
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Thus F euod (q) is closely related to the function

R(q) =

∞∑
n=0

q(
n+1
2 )

(−q; q)n

which arose in two enigmatic identities from Ramanujan’s Lost Notebook [3]
(cf [2], [8]), and has played such an important role in the study of weak Mauss
forms (cf. [9], [10], [15], [16]).

2 Proof of Theorem 1.

We begin by recalling the Rogers-Fins identity [6, p. 223] (cf. [11, p. 15]).

(2.1)
∑
n≥0

(α; q)nτ
n

(β; q)n
=
∑
n≥0

(α; q)n(ατqβ ; q)nβ
nτnqn

2−n(1− ατq2n)

(β; q)n(τ ; q)n+1

Hence ∑
n≥0

peuou(n)qn =
∑
n≥0

q2n+1

(q; q2)n+1(q2n+2; q2)∞
(2.2)

=
q

(1− q)(q2; q2)∞

∑
n≥0

(q2; q2)nq
2n

(q3; q2)n

=
q

(1− q)(q2; q2)n

∑
n≥0

(1 + q2n+2)q2n
2+3n

(by (2.1) with q → q2, α = q2, β = q3, τ = q2)

=
1

(1− q)(q2; q2)∞

( ∞∑
n=−∞

q(2n+1)(n+1) − 1

)

=
1

(1− q)(q2; q2)∞

(
(q2; q2)∞
(q; q2)∞

− 1

)
(by [1, p. 23])

=
1

1− q

(
1

(q; q2)∞
− 1

(q2; q2)∞

)
Hence if we exclude the appearance of 1 from the partitions enumerated by
peuou(n), we find

(2.3)
∑
n≥0

q2n+1

(q3; q2)n(q2n+2; q2)∞
=

1

(q; q2)∞
− 1

(q2; q2)∞
.

Finally if we subtract q/(q2; q2)∞, we obtain∑
n≥1

q2n+1

(q3; q2)n(q2n+2; q2)∞
=

1

(q; q2)∞
− (1 + q)

(q2; q2)∞
(2.4)
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=
∑
n≥0

(po(n)− pe(n)− pe(n− 1))qn,

and comparing coefficient of qn on both sides of (2.4) we obtain Theorem 1.

3 Proof of Theorem 2

∑
n≥0

podeu(n) = F odeu (q)

=
∑
n≥0

q2n(−q2n+1; q2)∞
(q2; q2)n

= (−q; q2)∞
∑
n≥0

q2n

(q2; q2)n(−q; q2)n
.

Hence

F odeu (−q) =
1

2
(q; q2)∞

∑
n≥0

qn(1 + (−1)n)

(q; q)n

=
1

2
(q; q2)∞

(
1

(q; q)∞
+

1

(−q; q)∞

)
(by [1, p. 19])

=
1

2

(
1

(q2; q2)∞
+ (q; q2)2∞

)
(by [1, p. 5]).

Therefore

F odeu (q) =
1

2(q2; q2)∞

(
1 +

∞∑
n=−∞

qn
2

)
(by [1, p. 23])(3.1)

=
1

(q2; q2)∞

∞∑
n=0

qn
2

=
1

(q2; q2)∞

∞∑
n=0

q1+3+···+(2n−1),

and now comparing coefficients of qn on both sides of (3.1) we obtain Theorem
2.

4 Proof of Theorem 3

F euod =
∑
n≥0

(−q; q2)nq
2n+1

(q2n+2; q2)∞
(4.1)
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=
1

(q2; q2)∞

∑
n≥0

(−q;−q)2nq2n+1.

Hence

(4.2) F euod (−q) =
−q

2(q2; q2)∞

∑
n≥0

(q; q)nq
n(1 + (−1)n).

We now require two identities from the literature. First, by (2.1) with β = 0,
α = τ = q,

(4.3)
∑
n≥0

(q; q)nq
n = q−1

∑
n≥1

(−1)n−1qn(3n−1)/2(1 + qn),

and, by [8, p. 162] and [9, p. 153]

1+q

∞∑
n=0

(−1)nqn(q; q)n =

∞∑
n=0

qn(n+1)/2

(−q; q)n
(4.4)

=
∑
n≥0
|j|≤n

(−1)n+jqn(3n+1)/2−j2(1− q2n+1)(4.5)

Now substitute the relevant expressions from (4.3) and (4.4) into (4.2), and,
after simplification, we obtain Theorem 3.

5 An Anti-telescoping, Combinatorial Proof of
Theorem 1

Theorem 1 implies that if n > 1, then the number of partitions of n into odd
parts is always greater than the number of partitions of n into even parts.
It is worth noting that Theorem 1 has a very direct proof following the anti-
telescoping method of [5], and the crucial step in the anti-telescoping method
has an almost immediate bijective proof.

This latter assertion is, in fact,

1

(1− q2j)(1− q)
+

q2j−1

(1− q2j)(1− q2j−1)
(5.1)

=
1

(1− q2j−1)(1− q)
,

which may be rewritten as

1

(1− q(2j−1)+1)(1− q)
+

q2j−1

(1− q(2j−1)+1)(1− q2j−1)
(5.2)

=
1

(1− q2j−1)(1− q)
.
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the first term on the left of (5.2) is the generating function for partition into 1’s
and (2j − 1)’s with at least as many 1’s as (2j − 1)’s. The second term on the
left of (5.2) is the generating function for partition into 1’s and (2j − 1)’s with
more (2j − 1)’s than 1’s. Consequently the two terms taken together generate
all partitions into 1’s and (2j − 1)’s , and that is precisely what is generated by
the right side of (5.2) (of course, (5.2) is immediately proved algebraically).

We now multiply both sides of (5.1) by 1/((q2j+2; q2)∞(q3; q2)j−2) and iso-
late on the left the term with q2j−1 in the numerator. Hence

q2j−1

(q3; q2)j−1(q2j ; q2)∞
=

1

(q; q2)j(q2j+2; q2)∞
(5.3)

− 1

(q; q2)j−1(q2j ; q2)∞
.

We sum (5.3) for 1 ≤ j ≤ N , to obtain (via telescoping the right hand side)

N∑
j=1

q2j−1

(q3; q2)j−1(q2j ; q2)∞
=

1

(q; q2)N (q2N+2; q2)∞
(5.4)

− 1

(q2; q2)∞
,

and letting N →∞, we obtain (2.3) which is equivalent to Theorem 1.

6 The Remaining Four Functions

Of the remaining four functions, both F oded (q) and F edod (q) can be transformed
by (2.1), the Rogers-Fine identity, but the resulting formulas are not noticeably
simpler than the original generating functions.

As for F oued (q), we find

F oued =
∑
n≥0

(−q2; q2)nq
2n

(q2n+1; q2)∞
(6.1)

=
1

(q; q2)∞

∑
n≥0

(q;−q)2nq2n

hence by (6.1),

F eued (−q) =
1

(−q; q2)∞

∑
n≥0

(−q; q)2nq2n(6.2)

=
1

2(−q; q2)∞

∑
n≥0

(−q; q)nqn(1 + (−1)n)

Now expanding (−q; q)∞ by considering the largest of the partitions generated,
we see that

(6.3) 1 +
∑
n≥0

(−q; q)nqn+1 = (−q; q)∞,
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and by (2.1) with α = q, β = 0 and τ = −q, we find that

(6.4)
∑
n≥0

(−q)n(−q)n+1 =
∑
n≥0

qn(3n−1)/2(1− qn).

Substituting (6.3) and (6.4) into the final expression in (6.2), we obtain

(6.5) F oued (−q) =
q−1

2(−q; q2)∞

(−q; q)∞ − 1 +
∑
n≥1

qn(3n−1)/2(1− qn)

 .

Finally, for F edou (q), we see that

F edou (q) =
∑
n≥0

q2n+1(−q2n+2; q2)∞
(q; q2)n+1

(6.6)

= (−q2; q2)∞
∑
n≥0

q2n+1

(q;−q)2n+1
.

Therefore

(6.7) F edou (−q) =
1

2
(−q2; q2)∞

∑
n≥0

qn

(−q; q)n
(1− (−1)n).

By Heine’s transformation [1, p. 19]

(6.8)
∑
n≥0

qn

(−q; q)n
= 2− 1

(−q; q)∞
,

and by (2.1) with α = 0, β = −q and τ = −q,

(6.9)
∑
n≥0

(−q)n

(−q; 1)n
=
∑
n≥0

qn
2+n

(−q; q)2n(1 + qn+1)
,

Thus

(6.10) F edou (−q) =
1

2

2− 1

(−q; q)∞
−
∑
n≥0

qn
2+n

(−q; q)2n(1 + qn+1)


7 Conclusion

Our discoveries plus those in [6] suggest that partitions with separated parity
are worthy of further study. In particular, in [6], the really interesting class of
partition was a subset of those enumerated by poueu(n). This points especially
to possible subclasses of the eight different type of partitions considered in this
paper.

Of course, Theorem 2 cries out for a bijective proof.
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