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1. Introduction

In[18), Rota and Mullin develop a theory of binomial enumeration by making an
extensive study of polynomials of binomial type, that is sequences py(X), p,(X),
p,{X), ... where p(X) is of degree n, and

n
PAX + ) = Eﬂ{j)pJ{X)pn_j(Y}. (11)
iz

As they remark early in their paper, such sequences arise naturally in problems
of enumeration. For example, if p(X) = X(X — 1)...(X — n+ 1), then p{(X)
enumerates the number of one-to-one mappings of a set of n elements into a set
of X elements. In this instance, equation {1.1)is an obvious combinatorial assertion.
Namely, p(X + Y} is now the number of one-to-one mappings of a set of n
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346 George E. Andrews
n

elements into a set of X + Y elements, while ( )pJ{X)pn_j{Y] is the number of
]

such one-to-one mappings with exactly j elements mapped into the set of X
elements.

In [12], p. 257, Rota and Goldman suggest the importance of a similar study for
polynomials related to enumeration problems in finite vector spaces. Namely they
suggest consideration of sequences of polynomials satisfying
H

biX, 2y =¥ (;

izd

) b;’(‘Ys Y}bn—j(y; Z)s (l 2)
g .

] is the Gaussian polynomial (see Section 2 for definition). They note,
I

however, t‘ilal such systems of polynomials are seemingly rare. Apparently only
one example of such polynomials appears in the literature [12], p. 252, equation (1);
however, as we shall see in Section 6, there are infinitely many systems satis{ying
{1.2) (sce Theorem 7).

The object of this paper is to develop a theoery for ¢enumeration problems in
finite vector spaces that is analogous to the theory Rota and Mullin [18] developed
for Onite sets.

In Sections 4 and 5, our theory very much parallels the work of Rota and
Mullin: however in succeeding sections, the two theories are seen 1o go their
separate ways. As it turns out the theory developed here has application not only
to finite vector spaces (Section 11) but also to certain areas of classical analysis,
for example, the Rogers—Ramanujan identities {Section 9).

n
where (

2. Notation

The theory of basic hypergeometric series has always been plagued with a one-to-
one correspondence between systems of notation and active researchers. The
following table lists the most common notation.

Table 1
=1

Notation for the Product [] (1 — ag”)

i=0
Rota,
Author Bailey Fine Jackson Goldman Slater Watson
A work In
which
notation
isused  [1] [10] s (121 [21] [24]

Notation (a),, [naq™';q) (1 — @'llogeal, Pll,a) {a;a), Tl{—a.q)

Some other works in the subject use a great varicty of symbols for special cases
of TJ(1 — ag’} (sec for example {2], p. 421).
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For reasons that will become apparent as our work progresses, we shall use
both the notation of Rota and Goldman as well as that of Slater. Thus the following
symbols will be used throughout our work.

Pix,z) = {x — 2){x = zq}.. . {x — z¢"™ )

IR R
<o, =R

For the Gaussian polynomial, we use the notation of Rota and Goldman {12],
p. 240

(q),
(“) _ @@

m

if0<mx<n,

q .
0, otherwise.

We also require some conventions concerning finite vector spaces. Upper case
script Latin letters 4, 7, % %, X, % and Z will denote finite vector spaces;
upper case Latin letters N, T, U, W, X ¥, and Z will, in this context, denote the
number of elements of such spaces, and lower case Latin letters n, ¢, u, w, x, y,and z
will, in this context, denote the dimensions of these spaces. Thus & 1s a vector
space of dimension x over GF(g) the finite ficld of g elements, and there are X = ¢*
clements of .

Also every time we refer to a “map’ or "mapping”’ we shall mean a one-to-one
linear transformation of one finite vector space into another.

A comment should also be made concerning the names given to various opera-
tors, sequences, and series that anse in the course of our work. First we have
decided against using “‘g-operator”, “g-basic polynomial’ etc., although g-
terminology is quite extensive in the literature. Rather we shall use the adjective
“Eulerian™ paying tribute to the first worker in g-series [3], p. 47. However this
requires that most things be given three-word names ; this is necessary since terms
such as “Euleriun operators”, “Eulerian numbers”, “Eulerian polyncmials™,
already have been used to describe constructs much different from those in this
paper (see [7], [8], and [9]).

3. Transformations of a finite vector space

Goldman and Rota [12), p. 252, have shown that P, (X, Z) is the number of one-to-
one linear transformations f from .47 (an »-dimensional vector space over GF(q),
the finite field of g elements) into # such that f(A4") n 2 = {0} where 2 is a sub-
space of . They have also shown that P (X, Z) satisfies eguation {1.2).

We propose to prove an equivalent form of (1.2) for the one variable pely-
nomials P,(X, 1. Let us count the number of one-to-one linear transformations
of .+ into T @ ¥ Since & @ # has XY elements, there are clearly P {XY, 1} such
mappings. On the other hand, since every element of ¥ @& # 1s of the form & + f
where xe & and B e % («is called the #'-component and £ the &-component), let us
look at mappings for which those elements of the image with 0 as #-component
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form a j-dimensional subspace of Z @ #. To form such maps we may choose a

n

j-dimensional subspace of 4" in { ) ways (see [20], p. 139, [11], (12}, {17)) and
q

then map it into % in P{¥, 1) ways. Since a linear transformation is completely

determined by the action on a basis, we choose a basis of 47, say b, b;,.. .. b,
such that b,,...,b; is a basis of the above mentioned j-dimensional subspace. I
claim now that f(b,, ), ..., f(b,) need only be chosen so that their #-components
are linearly independent in #. This follows from the fact that if f{b;) = «, + B, and
there exist C,; € GF{g) not all zero such that

Y Ca =0,

i=j+1
then
Z C.fb) = Z Cix; + B)
i=j+1 i=j+1

= Z Cp..

i=j+1

Thus Y C, f(b;) has 0 as Z-component and so i3 in the space spanned by
i=j+1

fiby),... . f(b)). Hence there exist Cy,..., C; in GF(q) such that
n j
- Z Cff(b:) = Z Cif(bi]-
i=j+1 i=1

Therefore
f( Z C:'bi) =0,
=1
and since f 15 a one-to-one linear transformation

Y Ch =0
=1

which is impossible since not all the C, are zero and the b, form a basis for 4
Conversely if the Z-components of f{b;,,),...,f(b,) are linearly independent,
then f(b,),...,f(b,}spanan n-dimensional subspace of # @ % with a j-dimensional
subspace having 0 as Z-component. Thus there are P,_ (X, 1) ways of choosing
the Z-components of f(b;, ),...,f(b,) and Y" / ways of choosing the #-com-
ponents.

Consequently the total number of one-to-one linear transformations of .4
into & @ # with j-dimensional image having 0 as #'-component is

('7) PAY.OY" P, (X, 1)
g

Hence summing over all j, we see that

P (XY 1)

5 (”) PAY.)Y"IP,_fX,1),
i=0 \Jiq
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and replacing j by n — j, we obtain

PAXY1) =Y () PAX, Y'P, (Y1) (3.1)
jzo \jl,
We remark that (3.1) is equivalent to the g-binomial theorem of Goldman and
Rota [12], p. 252, equation {1}, by the substitutions x - XY, y - ¥, 2z > 1 {to
reverse X — x/y, ¥ — y/z, then multiply (3.1) by z"). However, our derivation here
closely parallels the derivation of (1.1) in the special case p,(x} = x{x — I}...
(x — n + 1). Thus we are led to the following definition: :
DeFINITION 1. We say that py(X), p,(X), py(X),...1s an Eulerian family of
polynomials if

(i) polX) = 1,
(ii) p,(X)is of degreen,
(iii) for each n,
n

plXY)= ) {J

) PAX)Yp,_ LY.
jz0 3

This definition is analogous to the definition of Rota and Mullin for poly-
nomials of binomial type [18), p. 169.

The next section is devoted to constructing a theory of operators analogous to
the delta operators of Rota and Mullin [18), p. 180, and the differential operators
of Berge [4]. p. 73.

4. Fulerian differential operators

The role of the shift operators of [18], p. 179, used in binomial enumeration is now
played by the Eulerian shift operator

n°pX) = p(Xq°) = p(X A),

where A = 4°

To be consistent with our notation for finite vector spaces. we shall write
X=qg,Y=qg"A=q"B= ¢ andsoon; this notational convention allows us to
exhibit symmetries that might otherwise be hidden. Our polynomials will ail lie in
algebra (over the real numbers R) of all polynomials of one variable X = g7, to be
denoted by P.

Convergence questions here are trivial and will largely be ignored. Generally
we shall treat series as formal power series, and ¢ will denote a prime power;
however, the results obtained in Section 9 may be treated as analytic results valid
for {g} < 1, or as g-adic results valid for g prime.

DerFmITION 2. An Eulerian differential operator t is a linear operator on P that
satisfies the following conditions:

g~ = n°r, 4.1}
and

tX"#0 foreach n>0. (4.2)
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The most well-known Eulerian differential operator is the g-differentiation’
operator D :

1
Dq = ?[1 - ?]'J

Note that
DPX.D=X"HIX-DX~-qg.. (X -—¢ " N-(Xg— 1)(Xq—gq)...
x{Xq— g ')}
= X"'P (X D{X — g — ¢ Xg — 1))
={1 — g%, (X, 1)

LevMa 1. If v is an Eulerian differential operator, then 1C = 0 for each constant C.
Proof: Since ¢q7 "t = n’t, we see that ¢ %tC = y*tC. Let 1C = rXYeP.
Then we have

97X} = (X g,

If r(X) = O, this identity is obvious. If HX) 0, let d be the leading coefficient of r
and n the degree. Hence comparing coefficients of X" in the above identity, we
find that

g d=g"d

But since d # 0 and # = 0, this equation is impossible. Hence tC = 0.

LeMMa 2. If t is an Eulerian differential operator, and P(X) is any polynomial of
degree n, then tp(X) is of degreen — 1.

Proof: By (4.1}, for each n

9 X = X
Hence

g Ve = perxn
Suppose tX" = r(X) = eX/ + ... : then

g" " r(X) = f(Xq.

Comparing coefficients of X/ in this equation, we see that

qtn- l}ae = qaje‘

Since e # O by (4.2), we see that j = n — |. By linearity tp(X) is of degree n — 1.
DEFINITION 3. Let 7 be an Eulerian differential operator. A sequence of poly-
nomials po(X), p,(X), pa(X), ... is called the sequence of Eulerian basic polynomials
for tif:
{1} po(X} =1,
(i) p(1) =0, for cach n > 0,
(i) p,(X) = (1 — g")p,_,(X).

' F. H. Jackson [14] who introduced g-differentiation actually used (I — ¢)~ 'D,; the operator & of
L. J. Rogers[190is 1o, .
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It is clear by mathematical induction that each p,(X) is of degree n. By Lemma 2
it is clear that we can construct a unique sequence of Eulerian basic polynomials
for each ©.

THEOREM 1|

(@) If p,(X)is an Eulerian basic sequence for some Eulerian differential operator,
then it is an Eulerian family of polynomials.

(b) If p(X) is an Eulerian family of polynomials, then it is an Eulerian basic
sequence for some Eulerian differential operator.

Proof: (a) Iterating property (iii) of Eulerian basic polynomials, we see that

Tkpn(X} = (qn_k+ l)kpn —k(X)’
and hence by property (i}

P (X)] {(ql,.. ifk=mn,
P12, if k < n
Thus
(X)
pX)= T 2 (X)]e-
K=o (dh
By linearity. we see that for each p(X) e P,
X}, .
plX) = Z . ‘;TkP(X;']x=1-
szo Gk
Now suppose p(X) is the polynomial p,(X Y). Thus
(X
pixy) = ¥ B xv,.,
kzo (@l

But since ¥ = g°,
[Pl X Vg =y = [P X))y -,
= [P pX)]x=,
= [¢"7(@ " Pl XNk =1
= [Y4g" ™" Wpun X ¥]x=1

= YHg" 5 bl V)
Hence

1

n—h=1
> 4 ke xy Y, (V)

XY
Pl ) kzo gk

3 [k) P(X) Yop, _(Y),

kz 0

{b} Conversely suppose p{X) is an Eulerian family of polynomials. Putting
Y = 1 in equation (iii) of Definition 1, we see that

pAX) = 3 (H) pAX)p,- {1}

jzo \}
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Since this identity is valid for each n > (0 and since each p,(X) is of degree n, we
see that py(1) = 1 and that p,(1) = 0 for each n > 0. Since py(X) is a constant,
PolX) = 1. Thus properties (i} and (ii) of Definition 3 are fulfilled,

Let us now define a linear operator r on P by

IPO(X) = 0;
pdX) = (1 — q")p,_ (X)), foreachn = 1.
We need only verify that ¢~ 7ty = %1, where ¥ = ¢°.
Clearly if we replace j by n — k in property (iii) of Definition 1. we see that

(Y1,
XYy = ¥ Pellynrohp x) 4.3)
yzo @k
Operating on both sides of (4.3) with r, we first find that
UpAX YN = vp (X},

while on the right hand side we have

Myn—krk+l

X
kz 0 (g) Po(X)
Y
=5 2O - YR, (0
k=0 (q)y
-1
= ¥Y{l - 4") }: " ) pdY)Y" 14, (X))
kzx0 4 g

Y(1 — ¢g")p,- (XY}

W1, X).

Since the p,(X) form a basis for P, we see by linearity that
w =gt

which is equivalent to {(4.1)

5. Expansion theorems
DEFINITION 4. If ¢ is a linear operator on F, we shall say that ¢ is an Eulerian shift-
invariant operator if:
ay’ = e

for all Y (recall ¥ = ¢*).

THEOREM 2. (Eulerian expansion theorem). Let g be an Eulerian shifi-invariant
operator, and let © be an Eulerian differential operator with associated Eulerian
family p(X). Then

D you k
qg= — X",
kgu gk

where a, = [op(X)]y-;.
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Proof: Since the p,(X) form the Eulerian family associated with 7, we rewrite
property (iii) of Definition | as

pixt) = ¥ 2y )

vzo (gh

We now apply @ as an operator on polynomials in Y to the above equation. Thus

ap Y}

onpiY) = 3 ———X*t*p (X).

k=0 ( )k

By linearity, we can extend this identity to all elements of P. Thus we see that

UPk{

o (YY) = Xk “p(X).
k :vO (q),
Since on* = n*e, we see that
Y)
P?"Gp(Y) = Z apk( Xk K ( )
(=R 4) [qh
Consequently
Y
epixy) = ¥ 2P v,
ez gk

Setting Y = 1, we obtain Theorem 2.

So far our theory is a perfect g-analog of the results of Rota and Mullin [18].
However, as is well-known in classical analysis, the ¢-analogs of ordinary hyper-
geometric series are not a mirror image of the ordinary theory. The following
result exhibits the beginning of the divergence of these theories as the ring structure
Rota and Mullin obtained for their operators is replaced in the analog by an
additive group structure.

THEOREM 3. Let T be an Eulerian differential operator, and let E be the additive
group of formal Eulerian series over R. Then there exists an isomorphism from E onto
the additive group T of Eulerian shifr invariant operators which carries

z al 5 akX"r".

vzo lgh W0 gk

Proof: The mapping is already linear, and by Theorem 2 it is onto.

We remark that the factor X* is what prohibits our obtaining the ring structure
of formal Eulerian series. At this point we find that the corollaries that Rota and
Mullin [18; p. 189, Cor. t and 2] easily derived from their strong Theorem 3 are
not corollaries of our Theorem 3.

We shall now prove a strengthened form of Lemma 2 that will be important in
future develepments.

THEOREM 4. Let 1 be an Eulerian differential operator, then there exist constants
eo =0,¢,,e,5,...wheree, # 0 for eachn > 0 such that

X" =g, X"
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Conversely for any sequence of constants ¢; = 0, ¢,,¢,,... where e, # 0 for each
n > 0, the linear operator t on P defined by 1 X" = ¢,X" ! is an Eulerian differen-
tial operator.

Proof . First we assume 7 is an Eulerian differential operator. Let tX" = s{X).
Now

Y5 (XYY = Y5 iX) = Tt X" = o X" = Y"1 X" = Y"s,(X) Setting X = |, we
see that

¥y =503y L

Since 11 =0, and X" # 0 for each n > 0, we see that 54(1) = 0 and s{1) # 0.
for each n > 0. The first half of the theorem now follows with e, = s,41).

Conversely we consider t defined by X" = ¢, X"~ '. By lineartty, we see that 1 is
well-defined on P. Furthermore

YPtX" = Y@ e X" ' = VYe,Y" 'X" =YX ! = PP X"

and since the X° form a basis for P, we see that in general n*t = Y~ 'ty*. Thus
since alse 11 = Gand 1X" # Ofor each v > 0. we see that 1 is an Eulerian differen-
tial operator.

COROLLARY. Let 1 be an Eulerian differential operator with related Eulerian
Jamily of polynomials p{X). Let C, be the leading coefficient of p(X). and let e,
be defined by tX" = e, X""!. Then

_U -G,

e, C \ e =0
Ll

Proof: By Theorem 4 we know that ¢, = 0. Now
Coe, X'+ = 1pd X)
(1 = g"p,-1(X)

(1= gC,_ X" 1 4.

Comparing coefficients of X*7 1, we obtain the desired result.

Theorem 4 and its corollary give us much information about Eulerian differential
operators and Eulerian families. To c¢btain further information (especially an
analog to Corollary 2 of Theorem 3 in [18]), we move to a full-fledged study of the
relevant generating functions.

6. Generating functions

DEFINITION 5. We say that po(X,2), p(X,Z), p,(X,2),... is a homogeneous
Eulerian family of polynomials if each p,(X.Z) is a homogeneous polynomial
of degree n in X and Z such that

{1} polX,.Z) = 1.
{i1) p(X,0) 20,

{1ii) piX.2) =% 'f] pAX. Yip,_ (Y, 2).
q

iz0
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The relationship between homogeneous Eulerian families and ordinary
Eulerian families is explicitly described 1n the following theorem.

THEOREM 3. There is a one-to-one correspondence ¢ between homogeneous
Eulerian famities and ordinary Eulerian families given by

@:pdX. 2y — pliX. 1),
b pX) > ZpX:Z) = piX, 2).

Proof: Suppose the p(X,Z) form a homogeneous Eulerian family. Then
X, 00 = CX" % 0 by property (i1} of Definition 5. Hence p{X. 1) 1s of degree n.
By property (i) of Definition 5, p,(X. 1) = 1. Next by homogeneity and property
(111) of Defimtion 5, we see that

PAXY. 1) = } ( )p{XY Y)p.- (Y. 1)

j=0

Z ( ]leX Yp,_ (¥, 1),

j=0

which shows that the p{X, 1) form an Eulerian family.
Conversely suppose that the p(X) form an Eulerian family. Let

pdX)y =Y C X,
izt
where C,, # (; then
pX.Z2)=2Z"p i X Z)

=Y ¢, X'z
i=0

Clearly poi X. Z) = 1, and
PX.0) = CpuX" 2 0.

Finally

pAX. D)= Z"piX:2Z) = ZN'D"(YZ

= 5[5 -1

n X . Y
il el
jzzo J) ’ z
n A
Z ( ) pj{Xs }}pn—j(yaz]'
jz0 q
Noting that ¢ '¢p(X,2Z) = ¢~ 'p(X.1) = Z°p,(X/Z. 1) = piX,Z), and
dd 1A X) = Z"p(X/Z) = p(X), we see that Theorem 5 is established.
The value of Theorem 3 lies in the fact that we may easily determine the form of
the generating functions for the homogeneous Eulerian families (see Theorem 6).

XY)
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We then set Z = 1 to determine the generating function for ordinary Eulerian
families.

THEOREM 6. Let p,( X, Z} be a homugeneous Eulerian family withC, = p (1,0) # 0,
and let

C,t
S = kgn () .
Then
3 PiX, D" f(X1)
wzo (@ f(Zry
Proof: Let
pdX. 2)
Then

= pAX. VW plX )
j=0k=0 (q)j {q)k
= FX, Y,0OF(Y Z;1.

Replace Z by 0 and then replace Y by Z; this yvields

FIX,0,0 = F(X,Z,0)F{Z.0;1).
Hence

PAX DN by 70
m=0 (q)n
_F(X.0:1)

T FZ.0:1
c X"

nx0 (q}n
&Z"z"

By (Q]n
(Xt
fiz:

COROLLARY, If p (X)) i5s an Eulerian Jamily of polynomials, and if C, is the feading
coefficient of p(X), then

[}

s

—

pAX)"  f(X1)

nzo (@ fi)’
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where

cm"
() = .
fI ngo {Q)n

Proof : In Theorem 6, let p (X, Z) = Z7p,(X/Z). Thenset Z = 1.
THEOREM 7. If C, = 1,C,, C,....is any sequence of non-zero real numbers, and if

X C.
fn=Y =,

vzo (M

then the expressions p,(X, Z} defined by

v PX. 20 XY
o (g f1zy)

form a homogeneous Eulerian family of polynomials.

Proof : The argument required here merely reverses the steps in Theorem 6 so
we ot It.

Finally we derive a further result for the generating functions which greatly
resembles Corollary 2 of Theorem 3 in {18}

THEOREM 8. Let the p(X) form an Eulerian family of polynomials with C, as the
leading coefficient and let

Ct"
()

fiy="3
n=0
Then

finy = exp{ Y p;[lltj}h

nx1 {q)nn
Proof : By Theorem 6, if

. {X0)
FIX.Z:1) = {;{Z—r)
then
FIX,Z:ty= FIX, Y. )0F(Y, Z;1)
Therefore replacing X by XY, then Y by X and Z by 1, we see that
FIXY, l:0= FIXY. X:0F(X.1:0
= F(Y, 1, X0OF(X, 1:1).
Hence

FIXY, 1.0 - FiX, 1.0
Y-1

{F(Y,I;Xz}— 1}
=FX 1) —————

Y-—-1

CoopdTy X
_Rx.1y Y X
ng]}_l {q}n
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Letting Y — 1 (or y — o where ¥ = ¢%), we obtain

d pAX"" "t"
X—F(X, 1:t) = ) Y
ax’ } i g
this follows from the fact that, by Theorem 1. p,(1) = O for each n > 0.
Thus F(X. 1:1) satisfies a first order differential equation in X, namely

panxm"
Xy —y ) ——
ngl {an

=0

The solutions of this equation are of the form

= K(t)exp{ Y w}

wz1 ghn
Since F(0,1;0) = (f(t)} ™' = K1), we see that
fiXn P’H(I]X"f"}
=FlX,1;0 () tex —— s,
i - T L = U te 3 Z0
Hence

FXD) = exp{ 5 P"[.l)Xﬂrn}?

ro1  G).0

and this formula is clearly equivalent to the result stated in Theorem 8.

7. Further expansion theorems

Inthis section we shall be primarily interested in therelationship between expansions
of Eulerian differential operators 7 and the generating function obtained from the
Eulerian family related te .

First we observe that any Eulerian differential operator has an expansion in
terms of the g-derivative D, = (1/X)(l — n).

THEOREM 9. Let t be any Eulerian differential operator, then

aXD"

rmg ¥ A

nzO q}n

where

=X - DX —g)... (X = ¢ D=y

Proof : First we note that Xt is Eulerian shift-invariant. This follows from the
fact that

(X1 = XYrPr = XYYl = (Xoy.
Hence if ¢ = Xz, then by Theorem 2
_— a, X" "Dy
nx0 (QJ..
where a, = [op,{X)]y-, and where p{X) is the Euvlerian family associated with
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D,. As we observed just after Definition 2, p,(X) = (X = 1)...iX —g""). Thus
Theorem ¢ follows from the fact that g = X1.

Most of the Eulerian differential operators we shall meet are expressed in terms
of y rather than D,. The following theorem relates such operators 1o their respective
generating functions.

THEOREM 10. Suppose t is an Eulerian differential operator that has a Laurent
series expansion in n of the form

1z L1

";B bnq - XL{’I)A
Let p{X) be the associated Eulerian family of polynomials with C, the leading
coefficient of pJX). Then

(49)n ‘
_ﬂ Lig’)

i=1

C, =

1

Proof: We observe that
1 1 =
"= CLpX" = Y bgmX™ = X" L.
X X n=—-B
Thus in the notation of Theorem 4,
e, = L{g"),
and by the Corollary of Theorem 4

1 —g"
o, U -de
Lig")
Iterating this equation and recalling that C, = 1, we see that

C - .- (@)

[1 LUe’)

=1

We shall now examine some further results that are related to the symbeolic
method utilized by Goldman arnd Rota in [11].

THEOREM 1. Let 1 be an Eulerian differential operator with associated Eulerian
Samily piX). Let

where C,, is the leading coefficient of p{X). Suppose that

T X)e"
X.1)=
g{ I] ngﬂl (q]n

where the m,(X) are polynomials in X, ng(X) = 1, = {1) = O for eachn > 0, and

tglX, N = rg(X, 1)
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Then
glX.n = f{X1) fi)
Proof : We observe that

[z, (X))t"
T2l X, t) = _—
ngﬁ (q}n
By by hypothesis
tg(X, 1) = tg(X. 1)
_ X!
B HEO {q]n
- E (1 - q"]nn—l(x)t".
nx(Q (q}n

By comparing coefficients of t"/(g), in our two series for 1g( X, t). we see that
X)) = (1l — ¢"m,. (X)rmil})=0 for each n > 0.
and

mo(X) = 1.
However the only family of polynomials satisflying these conditions is p,(X).
Thus

pAX) = n,(X)

Therefore

.
gx. 0= X0 s

n=0 [q)n

as asserted.
COROLLARY. Let 1, p(X), and f(t) be defined as in Theorem 11. Suppose that

and
th{Xt) = th{X1).
Then

hit) = fit.
Proof : Define
g(X, t) = hXr)hx).
Then g( X, 1) fulfills the conditions of Theorem 1]. Therefore

WXt _fXy
K} TSy

Setting X = 0, we see that h(t) = f{(t).

gX, 1}
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8. Eulerian Sheffer polynomials

In {15], Rota and Kahaner extend the work in (18] te Sheffer polynomials. Let us
recall that a Sheffer set relative to the delta operator @ is a sequence of polynormials
Solx), 5,4x), 5,{x), ... such that

an(‘\:] = ns,. l(x)a

and
Slx) = L.
It 1s then possible to prove that
sxp" 0"
ngﬂ = hit)exp {xngn ,

where p,{x) is the basic polynomial set associated with Q and hit) is 2 formal power
series in ¢ with h(0) = 1. Conversely one can show that any family of polynomials
s5.(x} defined by a function of the above form is a Sheffer set relative to Q. The
Eulerian analogs of these facts will be important in Section 10, and so we develop
them now.

DerINITION 6. Let T be an Eulerian differential operator. A sequence of poly-
nomials s4{X), 5,{X), 55(X),...15 called an Eulerian Sheffer family relative to t if:

(i) sl Xy = 1
(i) X1 = {1 — g"s,_ i X).

THEOREM 12. Let v be an Eulerian differential operator with p X} the associated
Eulerian family. If 5,(X} is an Eulerian Sheffer fumily relative to T, then

s(XY)= ¥ (”) SAX)X"Ip, Y) (8.1)
q

2014

Jor each n. Conversely any family of polynomials satisfying (8.1) with 55(X} =1
is an Eulerian Sheffer family relative to .

Proof : Suppose first that the s,(X) form an Eulerian Sheffer family relative to 7.
Thus if

) s,(X)e"
( r ngo {q)ﬂ
we see that
S(X ;1) {1 — g%s,_ (X)" -1
_= Si1,
S(1;0 Zo @), [ (. )

= tS(X ;)/5(1.1).
Hence by Theorem 11,

S(X, 0 5y pAX)t"
S{LI} nz0 [Q]n .
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Therefore
s (X0

Z n — Z Snll)tﬂ Z p"(X]rm

nz0 {q]n nzl (q)n m = (q]m

Comparing coefficients of t” on each side of this equation, we see that
panng q

WX= ¥ (

J=0

n

) pjl.X)sn—j[l)‘
PN

Therefore

S"[X Y) = Z (n) Z (1) pr[X)erj—r(. Y}‘Sn—j(l)

r=0 ¥

Z (g, c 1 -
= (X Yr T P;-/ Y 'n-_j(.l.]
L@ P LAY

H—r

(”] PAXIYT Y (” - ") PLY)Synr_ A1)
q 1 q

r =0l

I
1=

r=0

) (”) pAX)Y"s,_ (Y)

rz0 \F

Conversely suppose that s,(X) = 1 and the s,(X) satisfy (8.1). Then by setting
X = 1in(8.1) and then replacing ¥ by X, we see that

T5,(X)

jel

Z (H) TP}'{X)sn—j(ll
}a

]

> (n) (1 = gp, -, (X)s,— (1)
g

jzo0 \J

-1
=(1-q9 3 (" ) pi-1(X)s,_ (1)

jzr V=1
n—1
=(l—-4q" Z . P_;(X]Sn—l--,-[l]
i=z0 JI q
={l — g"s,- (X}
COROLLARY. If 5,{X) is an Eulerian Sheffer family relative to T, then

Zawwzmnzmﬂw

n= [q]n nx=0 ( )n

£l

where h(t) is a formal Eulerian series with h(0} = 1. Conversely any family of poly-
nomials defined by the above type of function is an Eulerian Sheffer family relative
to .

Proof: The first part follows directly from the first part of the proof of Theorem
12. On the other hand, suppose that s,(X) is defined by the above equation. Then

$o(X) = h(OIpg(X) = 1,
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and

pA X"
—
@ T T

(1 ~ g"p, - (X"
=h
{r} ng() (q]n

Pl XM
Ih{ f} ngﬂ [q ) n

s (X"
=1

n;ﬂ [Q]n
_ o =g, (X
B ngﬂ {q)u

Comparing coefficients of ¢", we see that
15,(X) = (1 - ¢")s,_,(X).

Therefore the s (X) from an Eulerian Sheffer family of polynomials relative to 7.
There are at least two examples of Eulerian Sheffer polynomials that have been
studied extensively. First we consider

HiX)=Y (") xi,
izo il

the g-Hermite polynomials studied by Carlitz [5], (6] and introduced independently
by Szegd [22] and Rogers [19].

DH(X)= Y (:) (1—g)xi—t
g

iz0

(- ("*.1) X’
jz0 i T
= (1 — g, _(X).

Thus the H,(X) form an Eulerian Sheffer family relative to D,. Carlitz [5] also has
considered a related set of polynomials

qn(n—l}.fZG"[__X) = qmn—l';-'z Z (n) qjt.i—N)(_X}j_
q

jz0 Y}
Now

g0 IIG(~ X) = 1,
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and with Ag = ¢:X{1 —n~ 1)

Aqq"{"'”'zGu{—X} — qn(n—l};2 Z (J) q;u—rr)(_ I)J—IXJ—lq‘J* l(’l —_ q)]
q

iz0
e IRl BT R | n—1 JU—m =+ 1 i~1
q 1-q) 3 |, q (- XY
EYRVAE IR
n—1

} qj{j—ﬂ*-IJ(_X}j—l
I iq

— (l _ anqln—l}ln—Ei'Z Z (
jz0
— {1 — qn}q{n— Iun-2) ZG“(—X).

Therefore g""~'¥2G,{ - X} is an Eulerian Sheffer family relative to 4, .

9. Applications to basic hypergeometric series
9.1 g-Differentiation. We have already discussed D, = |/X(]1 — ) with related
Eulerian family P{X,1} = (X — 1}.. (X — ¢"~'). Since the leading coefficient
of P {X.1}is always 1, we see that by the Corollary to Theorem 6

PlX D xtyretn, (9.1)
nz0 (q}rl
where
r"
elt) =
( ) ngo (q]n
P
Since [P X, 1)]y=,; = lim AX 1) {q),_,, we see that by Theorem §
x~1(X = 1)
tﬂ
= eft)
nz0 (q)n (

a well-known result due to Euler.
Equation (9.1) may now be rewritten as

P (X, 1y
nzx{ {q]n
the well-known summation due to Heine [21], p. 92, equation (3.2.2.12),

= (), MtX),, (9.2)
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9.2 Backwards g-differentiation. Here we consider the Eulerian differential
operator

q _
Aq=§(1‘—q 1).
P, X)— Pf1,Xg"
AP X) = gtk X) = Pl Xa )
X
- Xq ' — 1+ Xq"
=qP,_1u,X){ L = 4 }

= P,_ (1, X)}{1 — g7
A repetition of the arguments used in Section 9.1 would yield

P X)"
) POXT %0, 10.., (9.3)
n>0 (q]n

a result equivalent to {9.2).
9.3 The Heine—Gauss theorem. We now examine the Eulerian differential
operator
1 1 1=
e — p =
1—byp 9 X1—bng

with associated Eulerian family g,{X) and generating function (i), that is

X
v &0 _ cixn/G.
n=0 (q]ﬂ
Now by Theorem 10
1 (9)n
Gl = —
0= 2, YY)
j=1 (L — bqj-l]
B (b}t
H§0 [Q)n
Hence
by,
Gl = {0y’
by (9.3).
Therefore

gAXN"  (bX1),(8),,
nzzﬂ g, (X000, (9.4)

Now let us expand (9.4) in the following manner
C(P,(X,1)

ga(X)t" P
= e 9.5
ng(:‘ (q]n ngo [Q]n [ ]
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That such a formal expansion exists is obvious from the fact that P (X, ) forms a
basis for P over R. We wish to determine C{1).
Since

?gn[X) = “ - q")gn—l(X],
we see that
DgaX) = (1 ~ byl — gg,- (X}
= (1 - ¢")(g,_ (X} — bg,_(Xq)).
Hence
Cl|+ 1{fJP,|(X, 1} - Cn(”':l - qﬂJPn— I[X)
azQ {q}n nz=0 (q}n
o COD,PX)
- Eo (@),
_ g.( X"
qngo {q:l
oo 8- i (X)) = bg, (Xt
ngl lq}n— 1

(8.(X) — bg(Xq)t"

n=qQ (qJn
oy GOPIX s ClOPXa )

nz g {q}n B nz=0 lQJ,.

(9.6)
Now
| .
PiXg )= q"(X — a)P,,_l(X, 1)
=gX - g WP, _{X. 1)+ (g™ — ¢ WP, _iX, 1)
= q”Pn(X! 1] - q"_l(l - q")Pn-l{Xs 1]
Substituting this identity into (9.6), we see that

CooP(X, 1)
HEZO {Q]n

tC (N1 — bg"P (X, 1) + brg” Y1 — g")C (0P, X, 1)
,,EZO (q), '

Comparing coefficients of P,(X, 1)/(g), on both sides of this equation we see that
Corld) = K1 — BEIC{0) + btg'C, , ,(¢)
Therefore

(l—bq

T b OO 9.7)

Cypiill) =
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By iterating (9.7) and noting that Cyit} = 1, we find that

(),
Cit) = o0, (9.9)
Substituting (9.8) into (9.5), we see that
bXolt)s _ - 8K
(X)obt), 50 (9
_ ¢ GPLX. 1)
B nazo {Q]n
1¢p),
. PX, 1){(b), (9.9)

B nxQ {QJn(br]n

Equation (9.9) is the Heine-Gauss theorem [21], p. 97, equation (3.3.2.5).
94 The Rogers-Ramanujan Identities. Here we consider the Eulerian dif-
ferential operator

Let r(X) denote the associated Eulerian family, and let
rd X" p(Xt)
rnz0 (q}n p([] '

By Theorem 10,

o)=Y e ()

nzo(q}n. - [q—zj _ q-—j}
=1

4

R
g %1 - ¢)

i=1

::

fl

a qn1+nr1|
- ugo {q)n .

Thus p(r) is indeed one of the functions involved in the Rogers—Ramanujan
identities (see [21], p. 103).
Now let us consider the following function :
-1 t.Zn {Sn+ 32 [ —1t 2n+l}
Fy= % (=1ye g +£ q
w0 [q}n{[qﬂ }:0
Then in the notation of Hardy and Wright [13], p. 294, equation (19.14.11)
Fl) = H\(tq, q),
and by [13], p. 294, equation (19.14.15)
(n™% — n~HF(X1) = XtF(X1)
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Thus
R, F(Xt)y = tFiX1).
Hence by the coroliary to Theorem 11,
plt) = Fix). (9.10)

Setting t = ¢~ ! in (9.10), we obtain

" 1+ z{_qunmn—l:d(l +qn)

Z q H= ]
L=

(), - ()
=(g:9%). (9% ¢ (9.11)

by Jacobi’s identity [13], p. 282.
Finally setting ¢t = 1 in (9.10), we see that

wen z (___l)nqﬁlSrr-'-J].’Z[l _ q2n+l]

nzQ (q)n (q):(,
={*; ") gL 9.12)

by Jacobi's identity [13], p. 282.

Equations {9.11} and (9.12) constitute the Rogers-Ramanujan identities.

The resuits of this section give a small sampling of the relationship of the
theory of Eulerian differential operators to the classical theory of basic hyper-
geometric series.

10, Applications to Eulerian Rodrigues formulae

One of the most useful results in {18] is Theorem 4 which presents several formulae
for the iterative calculation of families of basic polynomials, In particular if Q is
the delta operator related to the family of basic polynomials p,(x}, then the Rodri-
gues-type formula [18; p. 194, equation (4)] may be rewritten as

(@x = xQ)x ™' p,(x) = p,- (%),

or equivalently
Qx7'p, 11 (x) = nx"!p(x) (10.1)

Thus the Rodrigues-type formula of Rota and Mullin [18), p. 194, equation (4),
is equivalent to the assertion that the family x™!p,(x), x ™ 'py(x), x " 1ps(x),...isa
Sheffer set (in the notation of [16] which was described in our Section 8) provided
each polynomial is multiplied by p{{0) so that [x " 1p,(x)/py(®)]y-, = L.

Hence we may prove the Rodrigues-type formula of Rota and Mullin [[8], p. 194,
equation (4), if we can establish that {x " 'p,, ,(x)/pi(0)} is a Sheffer set relative
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to Q. This is possible in the following manner'®

X P 1 d pAXI”

nz piOm! _xP,l[O) dI,,;_.g n!

_ 1 d ;e
"xpﬂO)drexp{XHE% n! }

i . o (0)"
ZP. n{!)t exp{x zp( ) }

_p;{o)ngo nzd n!

= hit)exp {x Z P;(O!)rn}

n=o B

where h(0} = 1. Thus by our remarks in the beginning of Section 8, the

X7 P 1(x)ipy(Q)

do indeed form a Sheffer set relative to Q.

Our object now is to follow the g-analog of this procedure. As we shall see a
simple formula like (10.1) does not hold in general for Eulerian families ; however,
more complicated recurrences can be obtained. We shall content ourselves with
examining the polynomials g,(X) introduced in Section 9.3. Define for n > 0

_ fora(X) = bXg, (001 — &)

G,(X) X - 1 LGofX)=1-0b {10.2)
Then if D,, denotes g-differentiation with respect to ¢,
G X" - gn+ 1 (X
=(X — )7 - bX1 T
L@, 7 2,
= (X - )71 - bX0D,, ¥ ALY
' nz (q}n
(X = 1)7ME — bX)(bX1tq) (1),

KXt} (bt),
x {1 —bX)(l = 1) = {1 — X0)(1 — br)}
_ (1 = b) (bX1)(0)s
Tl -t (X (b,

(=B g
(- E‘o (g),

Therefore by the corollary to Theorem 12, the (1 - b}~ !G,{X) form an Eulerian
Sheffer family relative to y. Hence

YGX) = (I — 4G, (X} (£0.3)

As we see (10.3) is quite a bit more complicated than (10.1), and, in general, matters
are even worse. The reason is that for basic families p,(x) associated with delta

I wish to thank Gian-Carlo Rota for supplying me with an equivalent form of this argument.
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operators {by Corollary 2 of Theorem 3 in []18]),

palx)t" A1
I = ’
8 n;ﬂ n! xn§0 nl
which is a linear function of x. For Eulerian families n,{X) associated with
Eulerian differential operators, we see by Theorem 8 that

(X" o)X a1t
o= 5 _ el

n
lo . RR
& Z Azl (@) asn (qyn

a2 0

and 1n general this is a very complicated function of X. Thus it is not surprising
that recurrences among the n,(X) are more compticated.

In actual fact, Theorem 4 and its corollary provide very effective means for
recursively defining Eulerian families.

11. Applications to finite vector spaces

Just as the theory of delta operators developed by Rota and Mullin is useful in the
combinatorics of finite sets, so our theory is useful in the combinatorics of finite
vector spaces.

First we remark that Rota and Goldman [12), Section 5, have studied P(X, Z)
in detail and have shown that P{X, Z) is the number of one-to-one linear trans-
formations f of .47 into & such that f(.47) n ¥ = {0} where Z is a subspace of ¥
They also established combinatorially the g-binomial theorem:

P(X,Z)= Y ';) P(X,Y)P,_{Y,2), (11.1)
q

iz0

a result equivalent to our (3.1). We have already seen that the P(X, 1) form an
Eulerian family. We conclude by considering a new Eulerian family, and we show
how combinatorial studies may lead to analytic identities.

DerINTION 7. Let #(X, U, W) denote the number of one-to-one linear trans-
formations f of 4" into # @ Z where all non-zero %-components of Sf-images lig
outside of ¥ a subspace of %,

DeFmviTION 8. h{X) = (X, U, UX "'}

Combinatorially we may think of 4,(X) as being defined exactly as (X, U, W)
1s with the added condition thatw = u — x.

ProposITION 1. For each n > 0,

HX, U, W)= § ") P{X, )P, _{U, W)X,
g

jz0

Proof: Let uslook at the maps f counted by #,(X, U, W)for which the subspace
of f(47) with 0 as %-component is j-dimensional. The number of such maps is
. . L
obtained as follows: We can choose a j-dimensional subspace of .4 in ( ) ways,
q
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We can then map this chosen subspace into 2 in P{X, 1) ways. If v;,..., v; form
a basis for this j-dimensional subspace of 4", we canextend tov,, ..., v, & basis for
A". By the same argument used in Section 3, we need only choose f(v;, 1},..., f(v,}
s0 that their %-components are linearly independent (and now outside of ¥ as
well). This can clearly be done in X" ~/F,_ (U, W) ways, Hence

"

H(X, U W)= ¥ (
4

jz0

) P{X,1)P,_{U, whxr4
q
ProrosITION 2. Foreach n > 0,

hiX)= ¥ (”) P(X, )P, (X, DU~
Ha

je0
Proof:

h(X) = A(X. U, UX"Y)

¥ (") P{X, 1)P,_{U, UX~1yx"
Ja

Jz0

Z (n) PiX, l){UX'l}""'P,,_j(X, nxn—4
ia

jz0

5|

jiz0

") P(X, 1)P,_ (X, YU,
Jia

ProrosiTioN 3. The h, (X} form an Eulerian family of polynomials,

Proof: By Proposition 2 we see that hy{X) = 1 and k(X) is a polynomial of
degree n in X for each n. Finally h,(X Y} counis the number of one-to-one linear
transformations f of A" into # @ ¥ © ¥ where all non-zero #-components of
Sfimages lie outside of 7, a subspace of % withu — t = x + y.

Let us look at the maps counted by h,(XY) for which the subspace of f{.4")
with 0 as % @ Z'-component is j-dimensional. The number of such maps is ob-

n
tained as follows: We can choose a j-dimensional subspace of 4 in ( ) ways.
A

We can then map this subspace into % in P{Y, 1) ways. Extending a basis v,,. .., v;
of this j-dimensional subspace of 4" toa basis v, ..., v, for A", we see by the same
argument used in Section 3 that we need only choose f{v;,,),..., f(v,) so that
their @ 2'-components are linearly independent and their non-zero #-com-
ponents are outside F This choice can be made in Y“‘J'.;i‘f,_J{X, U, T} ways.
Therefore ’

hXY) =Y (”) PAY, )Y" Vs, (X, U,T)
e

Jjz0

Now choose # so that % > # > 7 and u — w = x (consequently w — t = y).
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Utilizing (11.1), we see that

hXY) =Y (”) PAY. )Y i#,_ (X, U, T)
Ia

jz0

? n=j n__j . i Xrl—j—r
Y ()qPJ{Kl]Y rz:o( . )qP,(X,l)P"_J_,[L,TJ

jz0

i
1

(”) PY, Y Y (” B ") P(X, X"~
jz0 \jla rz0 rofa

) (" o ’) P{U.WIP,_,_,_ (W, T) (11.2)
zo ! ]

Now if p = r + |, then

)
Jlav r g i g (q}j{q)r(q}l(q)n-j—r—l

“[
Piel\lfag j q.
Hence interchanging the summations in {11.2) and replacing I by p — r, we see that

h(XY)= % ") Y’ Y (p) PAX, 1)P,_(U, W)X~
q q

pz=0 P rz0 \F

7 (” B p) P(Y.1\P,_,_ (W, T)XY) i™r
jiz0 7 q

y (”) DY (p) PAX, )P, (X, )UP"
q q

pz0 P rz0 ¥
5 (" B p) PAY.1)P,_,_ (Y. 1)U
jzo i la

I

T (;) Yoh(Xh,_ (Y)

pz0

Knowing that the 4,{X) form an Eulerian family, we can derive an identity of
Carlitz [5], p. 361, equation (2.2}, First we see by inspection of Proposition 2 that
the leading coefficient of £,(X) is

HU)= Y ("] v,
jz0 _f q
the g-Hermite polynomial mentioned in Section 8. Furthermore forn > 0
m(1) = Em(X — D7 'h(X}
X—-1
H

J

im(X —1)°' ¥ (

X1 jzo
UMg)y-y + (@)
= (q),- ({1 + U".

) P{X, DU /P, (X, 1)
q
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These facts now allow us to establish the foliowing result:
ProrosiTiON 4. ([5], p. 361, equation (2.2))

H LUy i ree
= {r}; el h
ngo {q)n
Proof . By Theorem 8,
H (Ut i
5 { ox { tllr
nz0 nzl lq] "

= EXp

b "}
| g g ALY
{

Z log{l — tg™ Z logil — rL'q’“)}

= EXp
mz i) mzQ
=J] « )M = tUgm T = (02U
m=0

12. Conclusion

In light of the characterization of Eulerian differential operators given in Theorem
4, and since the factor 1 — g" does not appear in this characterization. we may
reasonably ask what happens if the sequence 0, 1 — ¢, 1 — g7,... were replaced by
uy =0, u, Uy,... (where u, # 0 for each n > 0) in Definition 1. Actually we can
prove all the theorems through Section § with

1 —-g" replaced by u

n

n e U
( ) replaced by ntlaon o Ynopvt -,
Fla U,y ..U
(), replaced by  wu,_ ;... 4

Indeed the results would extend the work of Morgan Ward in [23]; however, sucha
generalization seems of little immediate value in applications (such as in Sections
3,9, 10, and 11), and we have, therefore, not bothered to write our results in this
more general form.

There are many other possible applications of our theory. For example, the
series-product identity of F. H. Jackson [21], p. 96, equation {3.3.1.3)

T {aq),— (1 — ag*") (B)a(c)u(d)ag/bed)” _ {aq).(ag/be),(aqibd) . (agicd)

1+ = _
e (@)ag/b)fag/c) laq/d), (ag/b}.(agic) . (ag/d) Aag/bed),

can be transformed into a generating function for a family of Eulerian polynomials
by the substitutions @ = Xt, b = X. Further aspects of the classical theory of basic
hypergeometric series can be included in the theory of Eulerian differential
operators.
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As for applications 1o finite vector spaces. we first remark that it should be
possible to extend the results of Section 11 to polynomials of the form
e BP0, W0, U,

o @, (X0 U X0 U, X0, .. (U X0,

A more tantalizing problem involves a finite vector space interpretation for the
g2.{X} defined in (9.4) (obviously g (X) = P(X,11if b = Q).

Professor L. Carlitz has drawn my attention to the paper by A. Sharma and A.
Chak (The basic analog of a class of polynomials, Revista di Matematica della
Universita di Parma, 5(1954), 325-337) and to the paper by W. A. Al-Salam
{g-Appell polynomials, Annali di Matemartica, 77 (1967), 31-43). In the present
context, the polynomials studied in these papers are essentially Eulerian Sheffer
polynomials related to the Eulerian differential operator D,. The g-differential
operators L, discussed by Al-Salam on page 43 of his paper are not Eulenan
differential operators (as defined here} except when L, =D, {cf. our Theorem 9).

Also Professor W. A. Al-8alam has drawn my attention to the extensive literature
on generalized Sheffer polynomials. In particular, he pointed out the forthcoming
paper by A. M. Chak {An Extension of a Class of Polynomials} in which our
Eulerian Sheffer polynomials are named “Appell Polynomials to the Base ¢™.
Also Professor Al-Salam mentioned the work by Mourad El Houssieny 1smai!
{Classification of Polynomial Sets, M.S. Thesis, 1969, University of Alberta) in
which an extensive account of generalized Sheffer polynomials is given and in
which appears a list of 1 19 references. Presumably our results in Section 8 duplicate
those of Chak : however, other than there, our results appear to be new,
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