ON THE ¢-ANALOG OF KUMMER’S THEOREM AND
APPLICATIONS

GEORGE E. ANDREWS

1. Introduction. The g-analogs for Gauss’s summation of ,F,[a, b; ¢; 1] and
Saalschutz’s summation of 3Fsfa, b, —n;c,a + b — ¢ — n + 1; 1] are well known,
namely, E. Heine [8; p. 107, Equation (6)] showed that
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(See also [12; p. 97, Equation (3.3.2.2)].) F. H. Jackson [9; p. 145] showed that
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The g-analog of Dixon’s summation of ;F,[a, b, ¢c;1 +a — b, 1 4+ a — ¢c; 1] was
more difficult to find, and indeed only a partial analog is true; namely, W. N.
Bailey [5] and F. H. Jackson [10; p. 167, Equation (2)] proved that if a = ¢~*"
where n is a positive integer, then
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There are three other well-known summations for the .F, series, namely,
Kummer’s theorem [12; p. 243, Equation (III. 5)]
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Gauss’s second theorem [12; p. 243, Equation III. 6)]
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and Bailey’s theorem [12; p. 243, Equation (III. 7)]
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Of these three, only a g-analog of Kummer’s theorem is known, namely, [6; p. 711]
(see also [5; p. 173)])
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The only known proof of (1.7) consists of a specialization of parameters in
Jackson’s summation of the well-poised o5 .

Our object here is to provide a very simple proof of (1.7) and to show that
the following g-analogs of Gauss’s second theorem and Bailey’s theorem hold:
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2. The g-analog of Kummer’s theorem. Here we utilize the summation
technique that was successfully employed in [1], [2], [3] and [4]. We shall need
the elementary summation [12; p. 92, Equation (3.2.2.11)]
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and so (1.7) is established. Technically what we have done is to set « = b,

B =a,v = qa/b, and r = —q/b in [3; Equation (I 1)]; we then have observed
that the resulting ¢, with base ¢ reduces to a ¢, with base ¢°.

3. The g-analogs of Gauss’s second theorem and Bailey’s theorem. As is
well-known [12; p. 32], both (1.5) and (1.6) may be deduced by the application
of Kummer’s theorem to the following identity:

(3.1) (1 — 2)7%F, [a, b; —zc/(l - z)] — 7, l:a, c —(;— b;z} .

The following lemma is the g-analog of (3.1), and from it we may deduce (1.8)
and (1.9) utilizing the g-analog of Kummer’s theorem. Actually this lemma
was given by F. H. Jackson [9; p. 145, Equation (4)]; his proof entails the
development of a g-analog of Euler’s transformation of power series. We include

a short proof that shows this result to be a limiting case of an identity of
N. Hall [7].
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Proof. N. Hall [7] (see also [11; p. 174, Equation (10.1)]) has proved the
result
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Our lemma follows directly by the substitutions @, = 8, a3 = @, b, = v, b, = za
if we then let @, — .

To obtain (1.8), weset « = a, 8 = b, v = ¢*alb? and = —¢*b*a"in the lemma.
Hence
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which is (1.8).
To obtain (1.9), we set & = ¢/b, 8 = b,y = c and x = —b in the lemma.
Hence
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