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A=+l
% f1 % min{a~l,\-2j+2) s min{a-1,a-2j+2) 5 a-j.
1=

Thus for a 2 X, Bk « a(n} denotes the number of partitions of n of the

form b o +;..+bs, wich b, b

172 i
b,=b, 4 2 ML with strict inequality 4f (A+1)[b;, and finally there

g4y® O parts £ 0 (mod A+1) are repeated,

areat most a=-1 summands that are = J+l,

Theorem [4; Th. 2]. If X, k, and a are positive integers with

M2sask, k2 2h-1, then

Makaa® 7 By @

for every positive integer n.

In the conclusion of [4), it is pointed out tﬁat while the proof of
this theoren heavily relies ypon the condition "k 2z 2A-1" numericgal
evidence strongly indicates that the theorem is still true provided only
that k 2 A\. TIndeed it was pointed out thar Schur's theorem is techmically

not a special case of the above theorem since 1t is the case k= A = a = 2

which does not satisfy k z 2)-1.

The object of this paper is to prove that the condition "k 2 \" dis

sufficient for the truth of the result.

Theorem 8.3, If X, k, and a are positive integers with

M2<ask, kz )\, then

A .o =B, ()
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for every positive integer u.

The method of proof may be briefly described as the application of che
sieving technique developed in [5] and [9] to the gq-difference equation
approach of the previous work on this theorem {4]. In Section 2, we shall
introduce notation and some interesting peripheral aspects of this theorem.
Then in Section 3 we gketch the general lines of the proof. In Section 4,
we shall study the g~difference equations related to certzin basic hyper-
geometric series. In Sections 5 and 6 we shall prove Theorem 6.3 which is
Theorem 8.3 with the added assumption that a 2 A. In Sectlons 7 and 8 we
shall prove Theorem §.3 in full geanerality. 1In the conclusion, we shall
describe further open questions that are not yet amenmable to the techniques
so far developed. Two conjectures that are supported by substantial numerical

evidence will be discussed.

2. General comments. Several conventions are followed throughout thia
paper. First we assume that whenever the integers k and )\ appear,
k2 A  Also if we assert that "f(x,q) generates the partitions that
satisfy condition A", we mean that if p{m,n) is the number of partitions

of n with m parts that satisfy condition A, then

£(x,9) =} | o(m,n)x"q".
m20 nzd

Before we begin preparations for the proof of Theorem 6.3 we wish to examine

some inceresﬁing aspects of this result.

Froposition Z.,1l. ir !ql < 1,
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1+ 7 Ax’k’a{n)qn

n=l
SR RO L VIS BRI T SE
j=1
(2k=AF1) (A#1) j- (a- 511) (Owl)
« (1-q )

(2k=M+1) (A1) (-1) (+a- %‘) (1)
.{1-q )

(2k=-2+1) (0W+1)3
.(1-q ).

Proof. This is merely the infinite product expansion of the generating

function for Ak K a(n) (see [&; Sectiecn 13-1] for the standard way that
p Py

such a product 1s obtained}. o

Definition 3. If X 1is an even positive integer, we denote by

AX X a(n) the number of partitions of n in which the parts are either odd
E Rl

and not divisible by Ml or else divisible by Ml but £0, t(a- %‘7\)(?&1)

(mod(Zk-M+1) (W#1)). If A3 1 (mod 4), we denote by A, L a@ the
number of partitions of n in which the parts are either odd and not
divisible by %(1&1) or else divisible by %(X+1) but not = Al {mod 2X+2)

and not =0, t(Za-M%()&l) (mod { Zk-M+1) (A1)

Proposition 2.2, If N\ = 0,1,2, (mod 4), then

A (n) = 4

Ak, a (n)

A k,a

for each positive integer n.
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Proof. Assume that A is aven, then the generating function for

Ak K (n) may be written in the following form.
s%,8

(1-q(23=1) 1),
L,

(2k-M1) (1) j- (a- %x)(x+1)

L+ ] A, ma = T (1=} OF1y7

n=l j=1 {l-q

. {l-q

(2Zk-3#1) (6D G-1)+am 30 OH)
. (-

(2k-3+1)Y O1) §
. (1-q ).

That this infinite product is equal to the one appearing in Propesition 2.1
follows from two applications of the simple identity of Euler [12; eq.

(19.4.7), p. 277]:

I k™ = 01—
o=l n=1 (1-x )
If A =1 (mod 4), then the generating function for Al X a(n) may
be written in the following form.
(23-1)301) '
- - 3 (23+2) §-2-1
A no_ (1-q ) | (=g )
1+ ] A g ama =T 71 1
=1 3=1 {1-q ) 3 E“‘H)
(1-g )
(2= W11 - (28-N)3 (1)
. (1-q )

(2k—l+1)(k+1)(j-1)+(2a—l)%(l+1)
. (1-q

(2k-A+1) (A4+1) §
» (1-q Y.
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To see that thig infinite product is equal to the one appearing in Proposition

2.1, we need only utilize the previocusly quoted identity of Euler which shows

that
- (23-DFO%1) (20+2) 1-)-1
(1-q Y . (l-q 3
1 2i=1 i
=1 (1-¢~ ) 2 3091
(1- ¢ )
-1 (1+q)) :
1 »
j‘l = j(}k‘*‘l) . = J(}\-'t’l)
(1 y(1agd OF)y g 2 )

- T () (ragd Dy (g d (FD -1
j=1

Thus in each case the identity of the generating functions provea that

Al K a(n) = Ak K a(n) for each . o)

The reason for proving Proposition 2.2 lies in the fact that most of
the standard statements of the classical partition theorems are generally in
terms of Al,k,a(n) and not Al,k,a(n) (except when A = 0 in which case
there is no difference in the definition of the two). TFor example, AZ,Z,Z(R)
iz just the number of partitions of n into parts that are odd and not-
divisible by 3, i.e. each part i8 =1 or 5 (mod 6), and Al,z,z(“) is just
the number of partitions of n into parts that are £ 2 (mod &) and £ O,
t) (mod 8), i.e, each part 18 =1, 4, or 7 (mod 8). Thus AZ.Z,Z(R) -

B, ; ,(n) 1is the standard formulation of Schur's theorem [14}, and

A (n) = B (n} 1s the standard formulation of the first GSllairz-
1,2,2 1,2,2
Gorden identity [10; p. 162].
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The definition of Al K a(n) is appealing in that the only restriction
on parts at all is that they lie in certain specified arithmetic progressioms.
Unfortunately no partition function of this simple character exists when

% s 3 (mod 4). This can be proved utilizing the results in [7; Sec. 3].

3. Outline of proof of Theorem 6.3. The approach of this paper
resembles that of [4). The first step is to define a set of functions
Jl,k,i(x) and Hk,k,i(x) {see equations (4,1) and (4.2) below) that turn
out to be the unique solution of the following-sets of g-difference equations

subject to certain simple boundary conditions (Theorems 4,1 and 4.2):

M1 -1 Ml
G.D By 0 By g )0 (ke 5 Ik k=115 )
S FIELON

GO 50 1w INCNNCE
G By - _(quﬂ)“i“k.k.i(x)’
where

: (l-q.x)"'(l-qk-j-kl) O § j S l

X (1-qd)... (1-q)

(3.4 {j] =

0, otharwise.

From thg definition of these functions we easily deduce that (see the

proof of Theorem 6.3):
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M (urgd) (g D) 71 (1g 30Dy -1
3=1

(3.5) J (1)

Aok, 1

- -(1- &
(J__q(Zk ML) O+ -1 21)(x+1))

(2k=X41) D) (3-1)+(i= 30 (k1)
. {1-g )

. (1-g (BN O

= A n
nEO Ak, 1™

In Sections 5 and 6, we focus our attention on generating functions

related to Bk,k,i(n)’ Let Pk,k,i(m’n) denote the numhber of partitions

of n intoc m parts of the form n = b1+b2+...+bm, with bj z bj+i’

no parts # 0 (mod X+l) are repeated, 2 Al wich seriet

bj-bj*k-l
inequality 1f {(\+1) |bj, and finally there are at most 1i-1 parts that are

s A+l Then we define

1.

(3.6) Jk,k,i

{x) = L 1(m.n)xmqn.

)
520 n20 K

and letcing (m,n} denote the number of those partitions enumerated
k1

by B, K i(m,n) that have no parts smaller than X+1, we define
* *

+ mn
(3.7) H (x)= § 1 q (m,n)x q .
k,1 0 n20 Ak, i

These functions turn out to satisfy a rather couplex set of g-difference

equations:
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t + Ml i-1 A+l
(3.8) Hl,k,i(x) -Hl.k.i-l(n = (xq ) Jk,k,k-iﬂ(xq h1s4isk;
t SN RIS I
(3.9} I, ™ ™ jgo x°q SSL NI CY
b 1" g e o @D,
gl L k er ‘x.q H—’\,k,r xq *
&=2 =0

where gl(t;k,k,r,i;x;q) is a polynomial In q and x depending upon the

5 parameters listed.

Everything prior to (3.9) is precisely like what occurred in [4];
however, the assumption "k 2 2x-1" allows the replacement of (3.9) by a
much simpler g-difference equation since then the only non-zero terms of

E oceur for £=2,
oz2

The final step in the proof of the theorem is to relate the H: k i(x)
and Hk K i(x). The relation is shown to be

-t-

(3.10) B« ifx) = Hl k i(x)

k
i- -
+ T ent e e TP o ).

éz2 =1

From here we are able to deduce that

+
(3.11) Hl,k,i(x) Hk,k,i(X)’ l1sisk~2+1
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sinece Y(&ik,A,r,f3x3q) =0 for L =4 £ k- Ml, Thus for A 21 3k,

~k+i -i-1 i1
(3.12) Jk,k,i(x) =% (Hl,k,k—i+1(xq )_Hk,k,k-i(xq ) (by (3.1

-k+i 1‘ .-)q._l -+ -’l—l
B et B B (x0T by (3.10))

+
- Jk,k,i(x) (by (3.8)).

Hence for A 5 i € k

n +
nio Bk, 1™ = 3y D

=3 @ (by (3.12))
= L A md” (by (3.5)).
n20 i

Thus Theorem 6.3 follows from the identity of the related generating

functions. The full proof of Theorem 8.3 relies on the results established

in Theorem 6.3, and the technique of preoof is much the same.

4. The q-difference equations. 1In [4], the relevant q~difference

equations were quoted from [3] where they are proved in the full generality

of general basic hypergeometric series. By restricting attention to only

the special case required, we may deduce the relevant q-difference egquations

in a slightly more straightforward manner. We are concerned with the

following q-series:
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(4.1)
(~xq) E aygn, ;..?L+1)((2k—l+1)n +(2k-21+1}0)
H (x) = = (-1) =
Ak, i (xzqzuz;qzuz)a -
(l_xiq(2n+1)i()~.+l)) x 2 2x+2 2)\+2)n -y, o
2k+2 2k+2
{(q ) (- xq))&m_k_kn
(4,2) 1 )
(-xq) = 0 kn 3D ((2k-241)n"+(2k-21+1) n)
Ik, i® T "I Twr Tl 1 D%
(x"q" Tiq" ), =0
1
5(%+1) (Zn+1) (21-2) . Antodl
(x 2 142, 2x+z) R xiqZ (-q N
. 1 -
. T2 2x+2) (xa) (-an}amﬂ)k

vhare (a;q)u = (a)n - (l-a)(l-aq)...(l-aqn-l). and (a;q)w = (a)u =

lim {a;q)_.
e n

In order to prove the relevant q-difference equations (i.e. (3.1)-

{3.3)) for these functions, we shall need the following identity due to

Cauchy [12; Th. 348, p. 280]:

- 31G-1)
@, = I nlg >

]
[
1=0 .

1a-,

Whare {}] is defined in (3.4).

Theorem 4.1, Equatioms (3.1), (3.2), and (3.3) hold for the funections

Hl,k.i(x) aﬂ% Jk,k,i(x) defined by equations (4.1) and (4.2) respectively.
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Proof. We begin by proving (3.1).

(x)-H (x) =

Bkl Ak, i-1

(-xq)_ - L) ((2k-M1) a2+ (2k+ 1) n)

nkn 2
T L Dk e
x q 39 ), n=0

(
2 242 2h42
(x"q H]

to A2 2hH2
[C I I N €55 DR

}_{-q} ; —(i-
i Andn (q—ln(l+1)_xiqi(n+l)(l+1)_q (i-Dn{3+1)

xi—lq(i—l)(n+1)(1+1)

+ ).

Now
q-in(k+1)_xqi(n+l)(1+1)_q-(i-l)n(l+1)+xi-1q(i-l)(n+1)(k+1)

- (CIORD Oy IS D () O3 (k) Oy

= El(n) + Ez(n).

Therefore we may write H (x)-H (x) as the sum of two series, the

Ak, i A, i,1-1

first containing El(n) as a factor of the nth term and the second contalning

Ez(n). Hence after some algebraic simplificatrion we find rhat
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(-xa)

H (x)=-H (x) =
X A - 2 252 222
Wk,1 Wk,1-1 (x%q iq )

o n 2<>w-1)((215t-’°"1)“ +(2"‘21+1)“)( 2,202 2%2

(-1 )0 D sgan
A YN ALY
a=l (q 9 )n—l(_xq)kn+k+n
(quﬂ)i'l(-xq)_
N3 Y )
(x'q iq )
1 2
3 (A1) ((2k-M1)n“+(2k+2i-1)n) , 2 2042 2h+2 _
(*l)nxknqz (x"q H] )n+l( q)}mn
: n+2 n+2
n=0 (q Yy (=X} 3 atntl

We now replace n by n+l 1in the first of these series and then combine the
series term by term. Therefore after some further algebraic siwplification,

we obtain that

By g, 16908y g a1
1 2
WLl 2 L0 ) ((2k-M1)n24+(2i-1)0)
= (xq (-xq9 "o 2 (_l)n(qu+l)kn 2

2 z.w. 252
(x"q i Jm

1
2,404 2042 ey 301 (2041) (2k-2842-3) . Aatntl \
(x“q ) Dy gem . (xq T it 2 (-q N
2h+2, 2?\+2 A+2 . An+Aa+nt2 :
@M Y lmxa s Ty {-xq sy I
a1 1-1 A+l
(xq" ) Jk.k,k-i+1(xq )y

and thus (3.1) is proved for these functions.

Equation (3.2) is somewhat less difficult.
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(xa), ° akn, 2(1+1)((2k—h+1)n +(2k=2i41)n)
J:\'skri'(x) B 2 2A+2 2A42 i -1)"x
(x"q" 318" 7} n=0

2,202, 202 , 1
0D mmal, 1 FOPD @D QN 0y

(x
((-xq )\ =x'q (-q 35D
( 2k+2 2k+2) (X N A

(-xq)_ = (k+1)((2k—1+1)n +(2k-21+1)n)

- n kn 2
2 2N+2 2X¥2 E -L'x
(x'q 4 ), n=0

A+ e+
(x 2 2 2;q2 2) el

2k+2 2l+2

) An+n

) 1
LS ), A 4 3(0=1) O3+ + (1) Omtm)+E01) (2041 (241
(% xq *1- 1 <% r"n
320 1" 420
{(by Cauchy's identity)

E ), 2_‘1(.‘]+1) % (+xq), o kn 2(7\+1)((2k->\+1)n +(2k=2 (£=3)+1)n)
[j}( IIwT,_ T I C1'x

(x 2 2h+2 2\.+2

0P hatn () ded (D) () (),

27-+2 2X+2
(q ) N,
A (i+1)
= 7 xlq 3 X
jgo [y oy 0.

Hence (3.2) is established.
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Finally we remark that (3.3) follows directly from the simple idemtiry

qin(l+l)_x—iq-i(n+l(k+l) - _x-iq-i(kfl)<q~in(k+1)_xiqi(n+1)(h+1))_

Therefore Theotrem 4.1 is proved. a|

Next we shall prove that (subject to simple boundary conditioms) the
functions satiafying (3.1), (3.2), and {(3.3) are unique. This resulr is

equivalent to Lemma 3.1 of [4] but is included here for completeness.

1
3303+ 5
¥
* ®
Hk X i(x) (0s1i=k) and Jk Kk i(x) (1515k) be any 2Zk+1 functions analytic

Theorem 4.2. Let [q] < 1 set cj(l) = q ] and let

in x in the neighborhood of 0 that satisfy

M1,1-1 % A1

* *
(4.3) Hk,k,i(x)-ﬂl,k,i-l(x) = {xq ") Jl,k,k—1+1(xq Yo 1&1s5Kk,

(4.4) u; Lo =0,

* 1 j *
4.3 Iy g1 " 3§o x0, B, k,1-3%
-l % MDDyt (x)
ji+l 3T Rk, 3=

where the second sum 15 zero if 1L 2z X,

* +
{4.6) Hl,k,i(o) = Jh,k,i(O) =1, 1stsk.
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*
Then Hk,k,i(x) = Hk.k.i(x) and Jk K, i( Xx) = Jl,k,i(x)’ where Hk,k,i(x)
and Jl k i(x) are defined by (4.1) and (4.2} vrespectively.

Proof, We first establiash that the Hk,k,i(x) and Jk,k,i(x) do in
fact fulfill the conditions of the theorem. The analyticity condition
follows directly from che defining equations (4.1) and (4.2) as does (4.6).
Equation (4.3) 1s the same as (3.1), and equation (4.4) follows from {(3.3) by

setting i= 0. Finally by (3.2) and (3.3), we see that

A
Ik, 1 jza x Gj(X)HK , 1380

jzo x3 a (k)ﬂ1 k- j

A
+7  dooun

jag+1 3 Mk-i-i(x)

E xjo OVH

j20 Ak, -3

A
1 1 D A-D (\)H

j'i"‘l j klklj-i

- X {x)
Thus to complete the proof of this theorem we need only show that the solution
set of these equations is unique. From (4.3) we see that we need only show

*
that the Hl K, i( x) are unique, since this equation defines the Jk K i(x}

in terms of the ﬂk,k,i(X)'
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Combining (4.3} and (4.5), we see that

] *
(4.7 Hk,k,i(x) - Hl,k,i—l(x) -

k-i+L
(qu+l)i-1 E quj(?wl)cj(uH

§=0

* ( 7\.+1)
Ak, k=141~ ¥4

A
1.k At wit+l-1 s* Al
- (xq 1) E q( 1)(1!2 i+l J)O'

Jekiie LS L NI R

By our analyticity assumption, we may write

]
H

o n
NOILCL R N L o

a=0
where by (4.6) no(i) =] for 13i3xk, qO(O) = 0, By (4.7), we obtain

thac

k-1+1

4.8 n(w -n D= 3 Mo

30 3 a-j-1+1 (11D

A

q(x-rl) (1;:-1+1-j)':r

(Im_, (3=kH-1),
Juke 142 ik

for 1 51 s k.

We now observe that the subscripts of the n&(E) on the right-hand side
of (4.8) are all < n except for the case j =0, 1= 1. Hence we may

rewrite the system (4.8) in the following abbreviated manner:
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n(h+1)

nn(l)-q

nn(k) linear combination of nj(B) with j<n

nn(Z)-nn(l) = linear combination of nj(B) with j < n

nn(k)-nn(kvl) linear combination of n,(B) with j < u.

3

Thus we may solve for each qn(i) in terms of na(B) with A <n since the
determinant of this system is 1-q""1 4 0 (because lq| < 1). Therefore

the nn(i) are seen to be unique by mathematical induction. Hence the

*

*
Hh,k,i(x) and therefore the Jl,k,i(x) muat be unique. Therefore

* »*
Hk,k,i(x) = Hk,k,i(x)' and Jl {x)

) T Ty g, (0 o

3. The auxiliary partition functions. We must now consider auxiliary
partition functions similar to those considered in Section 2 of [4]. Through-
out this section, however, we shall only assume k 2 X and this will greatly

increase the complexity of our consideratioms.

Pefinition 4. Let n(AD,Al....,As_l;Dl,...,Ds_l;k;k;n} =

n{{A},: (D} 3k;Aim) denote the number of partitions of n of the form

f1-1+f2-2+---+£sl+s_l-(5l+8—1) {hence fi is the number of times the summand

1 appears) where

(5.1) +...+£

fc?\.‘l'C'l'l Ac, 0353cs -l

cxboth -

v

(5.2) kzf, =kD, 1lscs ¢,
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{5.2) fm+...+f 2 k for some m in each of rhe &1 closed intervals

o)

[1,%1], [M2,2082), 00, [( &2 O+, (E-1) (1) ]
(5.4) £ >1 ioplies (M1) la.
Definition 5.
8({Al, (D1 5k Niq) -ngo T({A},s (D} ki vmdq”.

Theorem 5.1, Let ¢ be an integer =z 1. 1If AU’AI""’A&-l'

Dl’DZ""DG—l are integers satisfying Aj s Dj+Dj+1~k, lsjs g2, Ag s Dl'
and 1f & » 1 A&—l - D&-l’ than
|
g({a},; (D},ikiXiq) = G({A},; {D},ikiNq),

where
(5.5) G({a},; {D},ikiNiq)

-1

b§-1 (k=D *+A. )b (A1)
= q g (WMo, (M...o No (M),

b, ", Dy AgtAit..tA, DD, o

Proof. We may assume throughout the proof that each Db 2\, for if

> A then .G({A},;{D} :k;%;q) is trivially zero since o (1) = 0, and
£ £ D

b
B({A}s;{D}z;k;l;q) = 0, since for m € [(b-1)(M1)+1,b(M1)] by (5.2) and

(5.4)
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+-|- =% -~
fm +fm+k s Atk Db <k

and so no partitions exist fulfilling both (5.3) and (5.4) in thia case.
We proceed by a double mathematical induction on € and A,

First we consider X = 0, In this case, we see rhat there is only one

possible partition te be enumerated by n({A}a;{D}c;k;k;n) and it is

-1
fiij, where fc = k-Dc for each ¢, and in order that this partition
j=1

satisfy (5.1)~(5.4) we must have AU = (0 and Ac = Dc= 0 for each ¢ 2 1.

Thus the only possible partition is k-l+c-2+,..+k(i-1) = % k2(f-1). There-

fore

{ 3w

| 4 if Ag=Aj=...=A, =D =D,=...=D, =0
gl{a},; {Dl,5ki05q) =

Q in all other admissible cases.

Now let us examine G({A}s;{n}&;k;o;q). In order that cj(D) # 0 wa must

have 3 = 0; therefore G({A}e;{D}s;k;D;q) is zero unless D, = D, ...=D =0

1 2 &~1

and A0+A1+...+ﬁs_l = D, But since this implies each Ai £ 0 for
0515 £-1 (by conditions of our theorem) we must have AD-A1=...=A8;1-0
also. Hence

%ks(e-l)

q if A=A =...=A,  =D.=...=D, =0
Gl{a}, (P} skinq) =

)] in all other admissable cases.

Hence the theorem is true for A = J,
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Next we consider the other initial case =1, From Definition 4 we see

that since (5.2), (5.3), and (5.4) are vacuous, n(AO

number of partitions of n dinto AO distinct parts each £ . Therefore

;3kix;n)  is just the

g{a

0;;k;7\:q) = GAU(X)

= G{A i3k %q),

1
A (Ag*D) o
since Oy {(A) = ¢q [AD] is the generating function for partitions into
0
AO distinet parts each S %, [12; Th. 348, p. 280]. Thus the theorem is

true for £ = 1,

For the induction step we shall use the following notation: {Are}&
denoce {AD-EQ’AI-El""’As—l—sa—l}’ and {D—-e,}8 denotes

{Dl—al.Dz-az,....Ds_l—ec_l}.

We now prove a recurrence satisfied by both GC{A}z;{D}s;k;\;q) and

s({A}a;{D}g;k;l;q) that will provide the passage from X~1 to X, namely:

$=1
j£1 (koD A, M+EA,
(5.6) G({A}a;{n}g;k;l;q) =q
1 1 1
-l oo 1 SUa-elysip-cl,iksn-1;q).
eo=0 51=0 58_1-0

First we prove that G satisfies (5.6). We recall that [13; p. 85)

(5.7) [;‘] - [;*:i] + q [131};
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therefore
= q3 - -
(5.8) crj(?\)‘ q (cj_l(k 1) + Gj(l 1})).
5
a g g._ (1),
=0 1-e

We now apply (5.8) to each of the £ o-functions appearing as factors in

{5.5). Hence

G({A}Z;{D}g;kzk;q)

-1
1 1 N N (k=Dy +4, )b (M+1)
=7 Y. 01 Rt oy . Doy o O=Deoy o O
£g=0 €70 &, ;=0 1751 2752 -1 %ol
- T, . R ¢ P53 b
Agme tApte A, D Dyme..=Dy
Agth to HA,
- q
T ;
(k=D,_+A )b +
O WP T B
q
-1
11 1 bgl(k-(ﬂb-zb)ﬂs.b-ab)hk
T 7... 14 S 1 I P £ >
eg=0 %0 &, 1.4 11 2 "2 &-1""e-1
' A - A + (-1)

B e A R B Rt 0 R B Rk R P LS W Bk
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-1
) (k-nb+gb_l)b+£as_l
b=1
= q
1 i 1
R AL LR R U PH AR ST IR
Eozo Elzo 58_1’0

Thus we see that G({A}t;{D}a;k;l;q) satisfies (5.6).

Next we wish to show that g{{A}G;{D}s;k;l;q) satisfies the same
functional equation. We shall prove the equivalent telation for the

coefficients involved; namely

{5.9} "({A}a;{D}z;k;k;n)
L] —
. . a{{A-c},; (D~e} ;kiM1in - (k=D +A, NI=8A, ).
= - - & ¢ - I I -1
£y 0 £ 0 ) 0 =1

Tp prove (5.9) we transform the partitions enumerated by ﬁ({A}a;{D}&;k;l;n)
as follows: we subtract 1 from each summand lying in [1,M+1]; 2 from each
summand lying in [A42,27\+2], and in general, j from each summand lying in

[(§=1) (M1)+1,jA+j]. Referring to equations (5.1) and (5.2), we see that the
{-1

number being partitioned is now reduced to n - E (k-Dj+Aj—1)j‘5A8—l'
i=1

now consider 25 different disjoint classes of partitions depending upon the

We

relations

(5.100 ey = £riey = £05¢ ™ fadt 03801 7 Teomny Quyer

where aj = 0,1 for 035 js &1
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In a particular class as given by (5.10), we see that for the trans-
formed partitions each Aj 1s replaced by Aj-gj; furthermore the frequency
of appearance of j\ is now k-Dj+5j, i,e. Dj is replaced by Dj-aj, and
finally we remark that the role played by X\ in the original partitions is

now played by A-l.

Since the above transformation is obviously reversible, it therefore
establishes a bijection between the partitions enumerated by
n({A}g;{D}E;k;X;n) and the partitions enumerated by the totality of the 28
partition functions

-1

m({A=g},; (D-g},ikid=1sm = ] (k=D +A

=1 4t )

)i-24, |
This is equivalent to the assertion that (5.9) is valid. Therefore (5.6)

holds for st{A}z:{D}g;k;k;q).

The following recurrence which holds for both G({A}g;{D}s;k;K;q) and
3({A}8;{D}z;k;l;q) supplies the necessary passage from {1 to £, If the

conditions Aj = Dj+Dj+1-l, lzjs ¢e2, AO = Dl’Aﬂ-l = D&—l' ¢ > 1, hold,

then
{5.11) g(Dl.Al,...,Ag_l,Dl,....Dz_l;k;k;q)
-]
. b§1 (k=D +4 ) (W+1)
Gnl( )q gl{A }&-1;{D }E_l:k:h:q) if 0 s Dl =)\

0 {if D, >\ er D, < 0,

where
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a7}, =

and

L7}y

First we prove (5.1l) for

ks £ +...+f
m

or

and by (5.2) Dl z 0.

Thus the lowar line of (5.

Since D, = A,

1 0 then

fl+. L) +Ek+l

and so {5.3) is automatic when

= {Di,D’...

{DZ""

o 1

25

{Ao ’A'l) b IAs_z}

Aseee iy )

Dy}
'Dﬂ-l}.

g By (5.3) with m ¢ [1,\1]

$ k=D 4\,

£\

11} must obtain if D1 > A oOr Dl < 0.

= A +k-Dl =k

0

n £ [1,01]. We now transform the partitions

under consideracion by deleting the AO (-nl) parts beloanging to [1,)A],

delering
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the k—Dl appearances of A+l, and subtracting *+1 from each of the

remaining summands. This transformation produces a bijection between parti-

tions enumerated by n(Dl,Al....,Ae_l;{D}&;k;k;n) and those enumerated by

) m(Agsskirid)
320 .
8_
L L JYRIT M ST RS b bzl (k=D +4,) (W¥l))

Hence for 0 s Dl R

g(DlyAla LRI |A8_1;D1! L ’Dg_l;k;)";q)

-1
L (k=D +4,) (1)
= oy (K)qb-l

BlA ,eva A
1 1

PRELUTRIRTUPETLIP o

which iz the top line of (5.11).

Now we prove (5,11} for G. We note immediately from (5.5) that
G({A}&;{D}&;k:l:q) =0

if either D1 <0 or D1 » A since in these cases %y (A} = 0. If

1
0 s Dl £ %, then

G(Dl, 15 L] 'Aﬂ'-l; {D}e;k; }\;Q)

£l
L (k=B +a )b (0rl)

b=l

= g (\gq g (N...o (Ao (\)
D1 ' Dz Dz_l A.1+. - .+Ae_1"'D2_- - ‘-Ds-l
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-1

(k=D +a ) (A1)
b=1

=o, (Mg G(fA'}B_l;{D‘}&_l;k;h;q).

as desired. Hence (5.11) holds for both g and G.

It is now an easy matter to finish the double induction on £ and
A, We have already established the theorem for » = 0 and also for ¢ =1.
1f we assume the truth of the theorem for all (£4”,%") such that either
A<M or A =X 8" < £, then we see that the right-hand side of (5.6) is
unaltered when "G" 1s replaced by "g", provided A. < Dl' To see this we

Q
must check that the {A—a:-:}g and D-£}, all satisfy the conditions of the

theorem: first A, % D.+D . -* implies A,-&, S D =€ 4D, -t  _-(*1) since
s R - N SRS T Mt Rl K5 A 5

Ej+1 =0 or 1, and if originally Ao < Dl’ then Ao-ao -3 Dl-e-l since

51-'50 =1, also Aﬂ-l-sﬂ-l s D&—l-s&-l' Note that the assumption Ao < D1

1s clearly critical to our use of (5.6). Thus to ecomplete the induction we
must establish the theorem for ¢ and X when Ao = Dl. In this case we
turm to {5.11) and we see that the right hand sides are identical by the
induction hypothesis for ¢-1 and the fact that the conditions on the

{A'}&_:L and {D‘}g_l are exactly as they were on the {A}g and {D}g except
for At s Dy which is easily established since Ac; A S Dl+D2—’t gD, for
Dl % A may be assumed by the first paragraph of this proof., Hence by (5.11)

(and the induction hypothesis with A’ = A, &% a 2]
B(Y,; DIk Nq) = 6 Blg Dliking)

when AO - Dl. Thus in all eases the truth of the theorem for (€7, 2\ with

either A’ < A or A = ) £< ¢ implies the truth of the theorem for

(£,%. Thus by a double mathematical induction First on A and then on &
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we see that Theorem 5.1 is wvalid.

6. The general theorem for a 2 X, The arguments in this section will

follow the outline presantad in Seccion 3,

- +
Theorem 6.1. Llet |q] <« 1, kx| < |q] 1, then the functions Hl K i(x)
1] L]

and Ji K i(x) defined by (3.6) and (3.7) are analytic in x in this region;
3’ ’

they satisfy (3.8) and (3.9), with

(6.1) 31(&;k,?-.r,i;:t;q)

i xk{€—1)+A0+Al+. saA,_=Dy=D=...-D

¢

e (A}, (D) ks 9),

where C 1is the set of those (2¢{~1)-tuples (AD’AI"'"Aa—l'Dl’D2""’DZ—1)

that satisfy

(6.2), AjH-D, & 1-1,
6.2), keD,_+A, | = k-t
(6.2) 03 Ay s A,
‘ (6.2), Lsp sk, (1s)s e,
(6.2 0sA,sD,, (lsis &),
) 480, (sis e
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k=D +A,+k- < k-1, 1538 £-2)
furthermore
(6.3) W (x) =0

: A\, k,0 !

6.4) =t -1, 1sizx
(6. Ak, 1 Ak, i ’ £ k.

Proof. We note that (6.3) is immediate because no partition can have
»1 occur = -1 times. As for (6.4), we observe that the only partition
with zero parts is the empty partition of zero, a partition which is
enumerated by both Q}\,k,i(o’o) and Pk,k,i(o’m for 15%41isn. Con-

sequently (6.4) holds.

Couwparing coefficients on each side of (3.8}, we see that we may

equivalently prove that
(6 [ 5) Ql,k'i(mln)_q-x‘k'i‘_l(msn) el Pl,k,k-i'l'l(m-i*-l ,n—m('?d-l) ) .

Now Qh,k,1(m‘“)-ql,k.1-1(m’“) enumerates the partition of n into w parts
of the type enumerated by Qk.k,i(m'“) with the added restrictions that

all parts are 2 M1, and that ’+1 appears as a part exactly i-1 times.

We now delete the i-1 copies of X1 from sach partition under consideratiom,
and we gsubtract X+l from the remaining parts. The number being partitioned

1s reduced to ua-m(A+l), and the number of parts is reduced to mi+l. Siace

originally
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fx+2+‘"+le.+2 £ k'l'f)u-l = k-1 = (k-i+1)-1,

we find that afrer the above trasformation we have

£ (k-i+1}-
51+fz+"‘+fk+1 £ (k-i+l}-1.

Otherwise the conditions on the summands are just shifted by unaltered; con-
sequently the transformed partitions are of the type enumerated by

P (a=i+1,n~m({A+1)).

Ak, k-1+1
Since the above 1s clearly reversible, we see that we have established a bi-
jection between the partitioms enumerated by Qk,k,1(°'“)'Qk,k,1-1(“’“) and
those enumerated by Pl’k,k_i+l(m—i+l,n—m(l+1)}. This establishes (6.5),

and cousequently (3.8) is established.

We now treat equation {3.9). First we comsider

L1
31(j+L)
(6.6) jZO xq? [?Iﬂi,k,i—j(x) JI,k,i(x)
i xj + '
jgu O OO, Ty 1)
= Sl[:x)-

Now since cj{l) is the generating function for partitions with J distinpet

parts each S &, we see that xjaj(k)ﬁi X 1—j(x)' is the generating function
ey
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for partitions of the type enumerated by Pk X i(m,n) {m and n arbitrary) with
* 1

the conditions that (i} there are exactly j parts £ X, and (ii} the

inequalicy fm+fm+l+'°'+fm+K z k might occur for some m with 1 s m s A.

Condition (ii) is of course a vioclation of one of the conditions originally

imposed on B (n)} wherein always fm+f o, +f & k~1. This possible

hk,1 m+1 m+A
violation arises from the fact that we are multiplying together the two
3 +
generating functions «x Uj(K) and Hk,k,i—j(x)'

3 +

If we now sum x aj(R)HK " i_j(x) for 0= j 5 i, we see that the

result is the generating function for partitions of the type generated by

JI K 1(x) with the added condition on the partitions that possibly
LR |

Em+fm+1+"'+fm+k 2k forsome m with ! sm s X,

Hence Sltx) as defined by (6.6) generates the partitions which satigfy
fm+fm+1+"'+fm+k 2k for some m with 1 s ms %, but otherwise Fulfill the

conditions imposed upon the partitions generated by Jk K i(x).
3y

We now define gl(z;k,R,r,i;x;q) to be the generating function for

partitions of the form fi'1+£ -2+...+f2k+l-(2k+1) where

2

6.7, BTty = keor
(6.7)2 f1+"'+fx+1 s 11
(6.7)3 fm+fm+1+"'fm+k 2k forsome m € [1,\]

(5-7)4 f,>1 dmplies (A+1)|a.
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Therefore

. —_— + A+l
gl(2,k,h.r,1,x,q)Hk,k!r(xq )

is the generating function for parritiens of the type enumerated by Sl(x)
that have exactly k-r parts in the interval [X+2,2A+1] but that might also be

..t 2 i .
such that £ +f . +. fm+1 k for some m now in [AZ,2M1]. Consequently

k
* A+l
L g (kT kol (kg ) = S (0
r=0 e
= 5,(x)

is the generacing funcrion for partitions E fjj sacisfying
=1

(6.8), A IWE RS
(6.8), oo™ ey oy = k-1 forall ez 1,

(6.8), foboo o+, S k-l for all = £ [2,0], [t2,2041],

(6'8)& fm+"'+fm+k z k for some m in each of [2,A7], [Z+2,20+1],

(6.8)¢ £, >1 dimplies (A+1) |a.
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The recursive process utilized here is now clear. For each €22, we

gefine gl(ﬂ;k,K,r,i;x;q) to be the generating function for partitions of the

LML) -1

form £f.j where

j=1
(6.9) fe(k+1}-k+"‘+fa(\+1)-1 = k-t
(6.9}2 fl+"'+i\ -1
(6.9) fc(\+l)*"‘+f(c+1}(k+1) £ k-1 for 1sc¢cs -2
(6.9)& fﬁ+fm+1+"'+fm+k 2 k for some m 1in each of

[1,A), (42,2017, .00, [(=2) (1) 41, (6-1) (A1) -11,

(6:9)g £, »1 implies (A+l) |a.

Therefore

- + &-1) O\t
31(8;k,l,r.i;x;q)ﬁh'k'r(xq( 1) (1)

}

is the generating function for partitions of the type enumerated by 58—1(x)

that have exactly k-r parts in the interval [£(+1)-X,&{A+1)=1] but might
+, .. z

also be guch that fm?fm+l +fm+l k for some m now In

[20+1)-), 2(A+1)-1], Therefore



34 Andrews

k
L og (kA (xq 1O

=l

Yy -5, _(x)

Akt £-1

= S&(x)
is the generating function for partitions that satisfy

(6.10)1 A P 2 i-1,

1 A+l

(6.10), Eoownyt ¥ ey (y & ¥1s for all ez 1.

(6.10) , £+, S k-1, for all wm E[2,0], [w2,23+1],
(203, 30421, 0 ov, [E0M1)=X, £(041)-1],

(6.}.0)‘,4 J‘Em+-...+fm.‘,jL 2 k for some m in each of [2,\],
[A+2, 20411, [22#3,30+2], ..., [+ =1, £(M+1)-1],

(6.10), £, >1 implies (A41) |a.

Bafore proceeding we note that the recursive definition of Sa(x)

implies that

£-2 k
- 5 epd " . (-1-1 WD), .4
54 (%) 320 (-1) rzo g (=i N T, Lixs)Ey | (xg D, (0

i
- (_1)8 i xjcj(l)ﬂ

{x).
j"'O }‘skli-j
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or
i ; +
(6.11) T ™ = jEO SCHOLERCS
: i s - (-1 O 1)
- b oent T oe Gikoniigal, o (g )
§=2 r=0 s

-+

(~1>Es£(x).

There are now twe steps left to the completion of the proof of Theorem
6.1, First we must show that the functions glts;k,R,r,i;x;q) as defined
above are, in fact, just the polynomials given by equation (6.1}, and second

we must show that Sg(x} =0 for ¢ sufficiently large (actually for

£ = a2),

Consider the partitions satisfying (6.9)1—{6.9)5; thege are the parti-

tions generated by gl(a;k,l,r.i;x;q). We split these partitions into sub=-

classes where

(6.12)1 fl+f2+'°'+fk+l = AO £ i-1,
(6.12)2 fc(l+1)+l+"'+fc(X+l)+l = Ac’ 0scs é-1,
(6.1.2)3 fcl+c -k-Dc. l1scs ¢ -1.

(6.12)4 fm+"'+fu+l g2k for some m in each of

[L,M1], [M2,2082), ..., [{2=2) (01041, (-1 (WD) ],
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(6.12), £, > 1 implies (D) |a,

whare we must require ju;t those (2£-1)-tuples (AO'Al"'"Az-l'Dl""'DG—l)

satisfying the conditions (6'2)1_(6'2)6 (1 remark that Aj s Dj in {6.2)5
is vedundant as it is implied by (6.2)4 and (6.2)6)- But the partitions in
the above mentioned subclass are precisely those generated by

g({A}a;{D}g;k;k;q). Consequently

gl(a;k: A, 1;x;q)

k(~-1)+A +A +.. .44, =D ~D -...-D
1 £~ -
. g x 0 T iy i),

where C 1is the set of theose {2¢-1)-tuples satisfying (6.2)1-(6.2}6.

The fact that gl(&;k.X,r,i;xﬂq) is a polynomizl in x and q is
immediate from the definition since the partitions generated are among those
in which each part s £ £(34+l)-1, parts not divisible by {\+l) are not
repeated, and parts divisible by A+l are repeated at most k-l times. There~

fare in gl(g;k,k,r,i;x;q) the coefficient of xHqH is zero 1f eicher
Mos Wk (k=1) + A+ (k=1) + ... + (k-1) + X
a BN+ {(4=1){k-1)

or

N o> 24, . o4 (k=1) OF1IHO2) 4+, L o+ (k=1) (22420 4. . .+ £ (A+1)-1)

- (5‘1;1)) + (k—Z)(k+1)(g).
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Now we shall show (in preparacion for proving Sg(x) =0 for & = W2)

that
(6.13) g({a},; Dlyik,hiq) = 0
for ¢ > A2
In order that (6.13) be false we must have by Theorem 5.1
(6.14) (4 Dc £ A, 1s¢s=s é~-1
{6.15) 025 A+A +.., = A,

othy +A8_1-D1-DZ*...-D8_l

We now combine (6.15) and (6.2)6 and we assume ¢ > (42,

£-1

21
0s § A, - ) Dy (by (6.15))
j=0 =

&-2

-1
S+ 121 (Dj+Dj+1-k-1)+D8_1-r- jzl D, (by(6.2),, (6.2),, and (6.2.))

£-1
=X+ ] D, - (kHl)($-2)-r
2

£ A H(E-2D)A-(kt1)(€-2)  (by (6.14) and r z 0)

* A - (k-2+1) (6-2)

S A=E42 (since k =z A)
< 0 (since £ > X+2},
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which is impossible.

We immediately deduce from (6.13) and (6.1} that
gl(s;kll)r)i;x;q) = 0

far € » A+2.

Finally we observe that Sg(x) always has nonnegative coefficients
since the coefficient of xHqN in 5,{(x) 1s the number of partitions of W
into M parts satisfying certain conditions. Hence for £ > W+2,
k

S (x) = E g, (L:k, N, r,E;x39)H
¢ r=0 I

= -58_1(X)’

and the only way the functions hare can have nonnegative coefficients is if

each is identically zero. Therefore
Sg(x) =0 for &z W2,

Thus (3.9) now follows from (6.11) when we take £ 2 A2 1in (6.11). We

observe the infinite series I in (3.9} actually terminates and may ba
22
replaced by Z

258X 42



On the General Rogers-Ramanujan Theorem

This completes the proof of Theorem 6.1, 8
Theorem 6.2. Let |q| <1, |x| < ]q[’l, then
1 (x} = J+ {(x), for Asisk
Kk, 1 Ak, 1 ’
where J?\,k,i(x) is defined by (4.2) and J;,k,i(x) is defined by (3.6).
Proof. We defime for QO=isk
* T
(6.16) Hy g 10 @ Hk'k’i(x)
k
= 1) (At
DS P I N TR et e S TR VIR I
tz2 r=] 77
where
(6-17) Y(ﬂik-l'f:i;ﬂ‘l) 8_2
) (k=D +A)b (AF1) +(k=7) (£-1) (A1)
{(¢-L)k b=1
= x I op Moy (g
D(iy "L ¢-1

with D{{) the set of those (2¢-3)=tuples (Al.A yos ’AZ-z’Di’DZ’""Dz-I.)
that satisfy

(6.18)1 D.+...4D

X pg Ay Ay, § d-ker-d

(6.18), 1sDd, sk, 1sjsel,

39
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6.18 0 A 5D, ls=s 5 &-2
( )3 j j { h| )

+ k- s s £-2.
(6.18)4 0= At s Dc Dc+1 k-1, lses g2
(we remark that when £ = 2, 18 defined instead by —Dl < {-k-r-1.

Next we define
* “k+i, * =1, % -i=1

(6.19) Jk,k,1CX) X (Hl,k,k—i+l(xq )'Hk,k,k—l(xq )).

The remainder of the proof is divided into two parts. First we shall show
* *
that the Hk,k,i(x) and Jk,k,i(x) fulfill all the conditions of Theorem
* *
- < -— -
4.2. Second we shall show that Hl,k,i(x) Hk,k,ifx) for 0515 k-3+1
Once these two facts are established, Theorem 6.2 follows directly as we shall

gee,

We first consider the analyticity conditions of Theorem 4.2. We begin

by showing that
i
(6.20) v(&:1k, A, t,i;x59) =0 for r > 0 whenever & ;E:x;i + 1.

To see (6.20), we combine the conditions (6.18)1 and (6.18)3 wich the
observation that for +y(i;k,:r,i;x;q) to be nonzers we must have

0s Dj =% for 15315 ¢é&+-1l. Hence for r > 0
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i-k=1 » i=k-r-1

3E2 ZEZ

z D~ (D.+D, ~k-1)
. +1

j ] j=1 9 ]

£-1
(-2} (ketl) - D,
j= 0

kY

{6-23 (k1) - (&1}

(k-A+1) (€=1)=k=1.

Therefore, we mugst have

i

et

in order that y(&;k,N\,r,1;%;q9) 4 0; thus, (6.20) is established.

Since 0 s isk and k= %, we see that v(&;k,\,r,i;x;q) = 0 for

& > k+l. Now H+ {(x) and

t .
ki Jh,k,i(X) are analytic im x around the origin

provided |q| < 1 by comparision with the function

n (l-l-an-hczqzn-i-. . .hck-lq(?’l) i)
n=}
which generates the partitions in which every part may be repated up to k-1
*
times. Thus since H’k K 1{1!:) is a finite linear combination af the

H{ K j(:-c) with coefficients that are polynomials in x, we see that

*
Hx’k 1(x) is analytic around the origin. Furthermore
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N RICY Ly g -l by (6.17
Jk,k,i(x) = X (Hk,k,k—i+l(xq )-Hk,k,k—i(xq 3y by 1)

“k+i T k-1
x0Ty g )

e
- - -
+7 (nTy B et T Oy, e ket g )

£22 gz Mot

+ A

K .

-A-1 &-1¢ * (£-2) (1) xa L

- - - s;k,?x,r,k*i,x » )}
ngk,k"i(xq ) 1 ( l) E Hkvk,r(xq )Y( q q

22 =1

Hence

) =

*
(6.21) J Ak,1

ALk, 1

. 4 k N
+ x-k+1 I (_1)5 1 E H’I’ (£-2) (W+1)

( 1
xq
22 rp Mkt

YLk, A, r k=itlix 3Q)

k
_x—k+l E (_1)8-1 E H*

=2 =l Mkt

(xq(spz)(l+l))Y(B;k.R.r,k-i;xq-x-l;Q) (by (3,8)),

- =1
and since 2 2, we see by (6.17) that x N iy(f;k,,r.Bixq  iq) 1s a
polynomial in x (the possible powers of q are i{mmatevtal here). Thus

* .'. 1.
Jk,k,i(X) is a finite linear combinarion of the Hk,k,j(‘) and Jl,k.j(x)
*

with coefficients that are polynomials in x; therefore J , i(x) is
| it}

analytic around the origin.

Equation (4.3) follows directly from (6.19) when x 1s replaced by

S

xq and 1 13 replaced by k-i+l,
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From (6.20), we see that

* +
(6.22) By 00 T Hy 0

for 035 1 5 k-3+1l, since in this case there are no integers £ that

i

sarisfy 2 = £ <« s + 1, Hence {4.4) follows from the fact that
HI k g(x) =0 (by (6.3)). As for (4.6), we see that +v(&;k,,r,i303q) =0
| R |

for all 2 2 2, hence {by (6.4))

»
Hk,k,i{o) = Hl,k,i(O} = 1 for 1s54i3sk,

and since xk divides ~(&:;k,N\,r,i;xiq) for £ 2 2, we see from (6.20) and

{6.4) that

* T
Jl,k.ico) = Jl’k‘i(o) =1 for 1§1is5k.

There remains the problem of the establishment of {4.5).

k+ *
1w

RO (g Yy-x ™Yy by (6.19)
Xk, 1 Aok, k=i+1 '3 Ak k109 , y (6.19))

o ek, t -1
L GO B

Aw1

k
+ 3 -n*? ) g TP Oy n k141557 )

22 eal R k,r
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xq(&—21(>\+1) A

-1
Yr(lk, A, r,k-15xq 39)) .

Now we recall from the remark following (6.13)3 that

A
kq r{3+1) Z o oy

Dl=k+r+1—i 1

v(2sk, A, r,i5x5q) = x
therefore splitting off the terms at £ = 2, we see that

* okt F -1
e WA T N TRRC . B

_ E H'I‘ r(x)xkq-r(?&l) E

S ) H{ « r(xq(z-Z)(l+l))Y(E;k,k,r,k—i+1;xq~k’l;q)

A-1-1 _ A
+ E H1' r(x)xkq T{Xt+l) X CJD o0

r=1 Dl" i+r+l 1

f= - -k
DT PGk xa L)



On the General Rogers-Ramanujan Theorem 45

Combining the second and fifth lines of the above equation, we see that

* e WL -1, F
Jl.k.i(X) = X (Hk,k,k'i+1(xq )_Hl'k'k_i{xq }

=1

+
- z Hl,k,r(x)x
=1

kO

i+r )

-1

k
I 5T ul . k&R0 39)

ka r.l le!r

+

Yy( L3k, A1, k-1+1;xq

k
- T en® a0 etz )

23 r=1

A1
+ + i ~r(h+l)
Jk,k,i(x) - rzl H,h’k’r(x)x q e

(A)

¥
x—kﬂ z (_1)8-1 EH+

£-2) (At A=
.k r(xq( ) 1))Y(8;k.l,r.k-i+1;xq » l;q)
23 rel

k
- =9 =
% k+1&£3(_l)8-1 ) Hl x r(xq( DOy, raketizd ha) oy (3.8)
r-l it |

L +

= jzﬁx AOLNIPINC)

+ Jntt E (Cskahyradixsl | (xqt DOy
El FR PRLTS PR S 1+ Ak, T xg

£z2 =0
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h-i
. i «p(A+l) 'y
El Hhk,p(x)x q U.’H‘p( )
p=
k
T T e I G € A A VU T RN TSP g P
ez3 r=1 "’
k
S Gt PP M e g oy 6o
833 =1 2ty

We now apply (6.16) to the H{ K j(x) in the first and third sums above.
Rk |

Therefore

i

L= § e 0K x)
)\’kji j"O j H).,k,i“‘j

i k
j;oxjcrj(l) 8Ez(-'l)&-l 21 1{ K r(xq((';-l) a+l))?‘(3;k,7-,r,i-j 1%39)
a r- L] ?

k
322 ('1)2"1 Zl 8, (¢3khir,1,5x5q) HI K r(xq(z"”(ul))
z r- L] L ]

+

-1 :
- i =p(h+l) *
pzl x'q O g My ()

A-i k

i -p(A+l) -1 +
T R S B¢
p=1 P e rgl MkyT

+

xg DO e, P x3q)
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e T R A NN R A M W R ST PPt )

G P D k1% )

823 el k*r
Hence
* -
(6.23) DA
1y ~p(M+1)_
zxo(k}n“i(>-zxq (MHMU
j=0 o=1
PR (£-1) (1) 5
+ 7 (=D LoHy o, (xq .+ j- 1 x o YLk, T, 1-§5%:9)
fz2 ™1 ' _ j=0

+ sltﬂ;k.K,r,i:x;q)

. z 1R RO CI RN R

- kel kil xa Y L)

=k+i

+x A=1

Y{8+L3k, N, e k=13xg  iqr Y .

Let us denote the expression inside the curly brackets by E. Comparing
(6.23 with (4.5}, we see that to establish (4.5) it is sufficient te prove
that E = 0. We see that the assertion "E = 0" follows immediately from
the following two (somewhat troublesome) identities:

i

(6:28) g, (kAL LXQ = | o

j(l)vw;k,?\,r,i—i;x;m ’
j=0
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and

| -1
(6.25) vii4lk, A, 0, k=i+13xq Q)

(LR N k-1 59)

A1
= xk I qu(l+1)c i(\)T(ﬂ;k,l,r,p;x;q).
o1 pr

We begin by proving (6.24), the simplier identicy. TIf in the conditions for

C (i.e. equaricns (6.2)1-(6.2)6) we replace AU by

j+D1+D2+,..+DE_1-A1-A2-...-A5_1, then (6.2)1 and (6.2)2 produce

6. . A - ..~ -~ = 1-
(6.26) Dyteee#D, o=A=..o~4y 5 21 k~j-1-t.

Note also by (6.2)6 that

+... ~A -A.- -
D1+D2 +D£_1 Al Az Ag_l

E—El &-iz

z - (D 4D, ,~k-1) = D, .+

h=1 % L el
-2

= (£-2)(k+1) + T - hzl D, 41

z (L=)(k+l) +r - (&~Dk =L -2 +r2 0.



On the General Rogers-Ramanujan Theorem

Consequently the condition A0+k—Dl % i-1, implies

-1 2 4D 4. 4D, A -...h, HeD)

2 j+k-D

1 z i.
Therefore we may restrict our considerations to those j's for which

0sj=1, and we see that by (6.1)
gl(ﬂ;k.l.r.i;x;q)

i
= 1 o I F P, 500
b
j=0 D#
where 9# is the set of those (2I-3)-tuples (Al'Az""'AG-Z’Dl""’Da-l)
that satisfy (6'26)'(6'2)ﬁ' (6.2)5 and (6'2)6; condition (6.2)2 has been

eliminated by replacing A&—l by Ds_l-r: condition (6.2)3 is also syper-

flucus since

AO a j+D1+n-o+D&_l-&l‘-lo—A&_l 2 j 2 0’
and (by (6.26)))

Ay = JHD D, (oA memAL

3 4D Hk--1-7

a D1+1-k-1-t

& Mik-k-l-r £ 1 5 %,
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Hence we see that U# = D(i~j} and consequently

g(éik, A\, r,isx5q)

b
= x0T Amgixw),
=0

which is (6.24) as desired.

We must now prove (6.25), First we consider the left~hand side of

{6.25); we are summing over (2 (&+1}-3)-tuples (Al""’A&-l’Dl"“’Ds)

lying in O(k-i+l) - D(k-1). Making the substitutions Ay = T A3 ELTERRY

A&-l = “z-z' Dl- [T 02 = 61, D3 = 52""’D8 = 58—1’ I claim that the ad-

missable (2£-1)-tuples (Al,al,...,ns_z,u, 51,....5&_1) are exactly those

that satisfy

(6 .27)1 52+--.+6£_2'G1-...-Gz_2 2 “—i-r-k-l
(6.27)2 0s T, = 5c + 5c+1 “k-1, 1lscs £-2.
(6.28) Al = 51+...+63_2-a1-...-a&_2+i+r.

This assertion is not immediately obviocus for there are several definiag

conditions for U(k-it+l) - P(k-i)} that appear to have been ignored. First of

all (6.28) is the condirion that guarantees that

+-..+ - o™ -1
D2 Dg_1 Al A, - 5 ~-i-r

but also
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the conditions implied by (6.18)1.

Condition (6.18]2 i3 completely superfluous because first k 2 A and
if Dj > A, then 9y (M) = 0; therefore the summands vanish whenever
]
D, ¢ [0,A] ¢ [0,k]. Secondly if D, = 0 then (6.18), cannot be fulfilled

i

in 2 nontrivial way since 0 <4 = 0+ D 41 ~k~1 £ h=k-1 5 -1
would be necessary to produce a nonzerc summand and this string of inequali-

ties cannot hold.

Az for (6,18)3, we see that by (6.18)

0= A D3 +D -k=-1=2D +A-k-15D -1< 0D
¢ c ct+l c c ¢

therefore (6.18)3 is superfluous.

Fipally we remark that {6.2?)2 is the translation of (6.18)4 except in
the case when Al appears. I claim now that (6.27)1 is the only nonsuper-

fluous condition implied by (6.14)4 when ¢ = 1, because

A, = Dl + D2 -k-1

is equivalent to

-G ==, HAr S p+5

51+...+6&_2 1 -2 -k-1

1

which is equivalent to (6.27)1, and the condition Al 2 0 is suyperflous since

Al - 51+"'+58—2 R PP +1i+r
= +..0 - s ™ i
02 +D8—1 AZ A8—1+1+r
£~1 $-1
- + -k -
g [ 0= [ (o 4D -k-1 4+t

j=2 ] c=2
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é-1
z (=2)(k+i) - Doy vi+r
e=2

= (8=2)(k+l) - {(&-2)N + 1 + 1

a (R-3+1)(€-2) + 1L +r 2 0,

Hence if we substitute the right-hand side of (6.28) for Al in (6.24) we

see that

-_— _)\-
(6.29) Y1k, A, v, k=1+15xq * L) - v, T ke ixg Ha)
. x&kq-(1+l)3k o (Mo, ().eoag (%)
o~ ® i t-1 i=1
| q(x+1)(k—pﬁ61+---+53_2‘“1""'°£—2+i+r) + bEz(k—ab_lmb_l)b(k+1)+(k-r)8(x+1)

&~2
-] @ o ) 20 O g (D O+ I (k-8 +a )b (A+1)
2l

1 -1 b=l
q(E-l)(k-r)(X+l)

where D" 1is the sat of (28=2)~tuples (al,...,ag_z.p,sl?...,53_1) that

satisfy {6.27), and (6.27)2-
On the ocher hand, if we replace pti by pu on the right-hand side of
{(£.25), we see that
A—1i

(6.30) & q_p(k+1)dp+i(l) v(&ik,\, T, pi%iq)

q cp+i(l) y(&k, M\, oxqQ)

¢=2
I (k=D +A )b (ML) - (urid O

£k b=l
=x ] o (Mo, Weveo, (Mg
po R Po-1

q(ﬂ-l)(k-r)(k+l)



On the General Rogers-Ramanujan Theorem 53
where U 1is the set of (2£-2)-tuples defined by

D2+|-|+D£_2—A1"--1-A$_2 - H.-i"k"l-r

y
D2A = Dc+Dc+

. k-1, 1% cs &2;

i

note that we have eliminated the superfluocus condition (6.18)2 and (6.18)3.
A=i -

The replacement of | by |  in the second line above {s valid since if
=1 =

p> A1, then op+i(l) =0, and Af p 5 0, then the region DP(o} contains
no (2£-3)-tuples that produce nonzero summands im y(Z3k,)\,T,0x3q) since

we must have

-k-r-1 2 pk-r-1

£=2

37 b OppaeD

£-2

z 7D
i=2

= (8=2) (k+1)-(&-2)2

= (k-)+1)(¢-2) z 0,

which is impossible. Therefore +v(Z;k,\,r,pixi;q) =0 for p s 0.

Comparing (6.30) with (6.29) we see that the right-hand sides are

identical {just equate D, with 5, and A, and aj); thus the left-hand

] k| h|
sides are identical and therefore (6.25) is established.

The establishment of (6.24) and (6.25) proves (via (6.23)) that the
E ]

Ak, 1
Theorem 4.2 are fulfilled. This theorem tell us then that

J: k.4(¥) end H (x) satisfy (4,5). Therefore all the conditions of
Lot |

{6.31) ] (x) = Jl.k,i(x)’ isisk,

*
Nk, i
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and

% o
(6-32) Hk’k,i(x} = Hl'k'i(x]‘, 0 = 1= k.

Finally for A =1 3.k (and so 13 k-1+1 = k- A+1),

t -k+1 -X— * Al
Jk’k’i(x) = (H)L Kk, eeiep (X9 ) “Hy ke ki {xq H
(by (3.8))
~kt+i -?x- * —?\-1
== (“xkk-iﬂ H- pe VR AL DD
{(by (6.22))
-k+1 “h=1 =hel
(Hy k,k-i+1(xq )-Hx,k,k—i(xq )
(by (6.32))
Jk’k’i(x) {(by (3.1)).
We therefore have proved Thecrem 6.2, Q

Theorem 6.3, For A 3 ask,

Al,k.a(n) = Ek,k,a(n)

for each nz 1.

Proof.

I
H nzl Bl-kra(n)q = ,a(l)

= Jl,k,a(l) {by Theorem 6.2)
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(-q) E " %(X+l)((2k-\+l)n2+(2k~21+l)n)( %(K+1)(2n+1)(21-*)
- e ~1)'q 1-q }
(qza+z;q2x+z}wn=0
{by (4.2))
(-q},

q(lk—l+l)(l+l}.q(2k-k+l)(R+1%

202 2aF2
(g o Yo

A b
(q(a— E)(xil};q(2k-1+1)(x+1) q(Zk-a— 3 +1)(1+1);q(2kwk+1)(k+1)

{

Ya
(b;uJacobi's identity [12;eq. (19.9.1),
p. 2831

=1+ E A a(n)qn {by Proposition 2.1).
n=l

Compating coefficients of qn in the extremes of this string of equations, we

derive Theorem 6.3. o

7. Further auxiliary partition functions. In this section, we shall be
greatly extending the work of [4; Sectiom 4]. Just as Section 5 of this paper
was much more complex than Section 2 of [4), so also are ocur problems much
more difficult here than in Section &4 of [4].

We begin by remarking that Lemma 4.1 of [4], a result required in our
present considerations, was gilven a proof that is somewhat difficult to
follow. Since this is the case, we shall present a new and (hopefully)

simpler proof.

Definition 6. For O S v S i, %x < {5\ we denote by (L,virin)

the number of partitions of n inte v disrinct parts of the form

A
n= E fe ' ¢ (here fe = or 1), where at least one of the following
e=xl

[%X]+1 inequalities holds.

. | )
(7-1)b ‘ fb+"‘+f1+1-b »i=b, 1=b s il +1,
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(we note that when b = %X + 1 the assertion is 0 > i- %k—l which is true

only for { = %)-

Definition 7. For 0 g v =i, %1 £1is X we define

[
o

i, viriq) oli,virsn)q".

Theorem 7.1. For 0 s vsish, shsish
W(i,vidiq) =

Remark. This 1s just Lemma 4.1 of {4} where now j is replaced by
24-v. Also the proof of Lemma 4.1 is [4] should be reworded so that it
becomes a descending induction on 1§ starting at i=j and descending to

gmaller values of 1.

Proof., We begin with four special cases:
Case 1. wv=i. In this case (7.1)1 is automatic., Therefore
p(l,i:%;n) is werely the aumber of partitions of n inte i distinect parts

each £ A. Hence
Pli,i5x;q) = oi(X),

gince ai(k) is well-known [12;Th. 348, p. 280) to be generating function for

partitions into 1 distinct parts each = \,

Case 2, =0, WNow the only partition with zerc parts is the empty
partition of zerc, and for this partition we see that the inequalities (7.].}b
can only be fulfilled when { = % gince the left—-hand side iz always zero

X
while 1i-b 2 3" (% + 1} = =1, Thus in this case
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[\

Wi,05q) =3 1 1E 1 ®

0 otherwise

On the other hand for v = 0

1
lifii)\

QDR gy

1w 0 otherwise

" gince 2i-v 2 A in this case with equality only for i = % Thus the theorem
is valid in this case also.

Case 3. v=l. Since we observed in Case 2 that i-b & -1, we see that
now the only way to fulfill any of the (?.1)b is with b = l—?—- (which implies

or with b = } +1, i= } Hence

.
\ 1is odd) and f.., =1, i =%

A+l 2 2
2
A+l
[qi if X is odd and 1=}-}1—
A

v(i,1,25q) = ¢ UI(X) if A is even and i =3

k 0 otherwise

On the other hand, for %‘s is \, we see that
A+l
[q (I =) O )y g g = ML
] A 2
(1-1) (L) < (- %)(1+1) A

q SPPIRE L A . o, (M if 1 =3
'LO otherwise
( 20w1) A+l
:q" if % is odd and 1 = T_

|
| X
J cl(l) if % is even and {1 = 3

.0 otherwise
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Thus the theorem Is valid in this third case.

Case 4. i= . Examining (7.1)b we see that when =i, we have for some

Mj=b~(b-1) 2 £ +

b "'+fk+l-b > i=h = A=b:

hence 2>b. This implies that (7.1)b can be possibly true only for b=l, i.e.

vaf +"'+fk > =1,

i

which means v=h ., Therefore

%x(m-l)
q L€ y=n

PGvy \q) =

0 otherwise

But 0 £ vs1= ) implies 2i-y=2%-v 3 A with equality only for vy=3,

There fore ¢ %X(M-l)

| if v=h
(v=2) (A1) L
q czk_u(l) |

0 othexrwise

Hence the theorem is true in Case 4,

We now proceed to show that each side of the equation in Theorem 7.1

satisfies the following recurrence for 2 = v < it

(7.2) WL, vinig) = ¢ {W(i-1,v;M2;q)

F Yol v-150-250) + " TP(i-1,v-13)-2;q)

Aol
+q Tpli-1,v=-230-2;9)0) .
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Equation (7.2) may be wricten in terms of the coefficients of the fune-

tions involved as follows:
(7.3) ©(1,viAm) = o(i=1,v; A=2jn-v)
+ p{i-1,v=1;h=230~v)} + p{i=-1,v=1;1-2;0-v=-A+1)

+ @(i~1,v-2;=2;n-v=A+1).

X
We prove (7.3) as follows: 1lec us transform each partition E fe ‘e

e=1
enumerated by ¢(1,v;iin} by deleting 1 1if it appears as a summand, deleting
A if it appears and subtracting 1 from each summand in rhe open interval
A=2
{1,%). 1If we denote the transformed partition by 2 fe'o e, then the con-

e=1
ditions (7.1)b have now become

, ’ _ i
B ttiip > 40, 235b 53 ()

or

» » —T =l ” ‘]_' -
ELobee HEDy o3 ey > 1717D7, 15 B8 5 (241D,

Thus the transformed inequalities are just the original inequalities with £

replaced by i-1 and A by *-2.

We now distinguish four classes 1) El - f)L =, ii) fl =1, fk

1ii) fl =0, f, =1, iv) f1 = fk = 1. The psrtitiong of class 1) trans-

.D,

formed are just those enumberated by ¢(i-1,v;A-2;n-v); those of class ii)
transformed are enumerated by o(i-l,v-1;3~2;n-v); those of class 1ii)
transformed are enumerated by ¢{i-l,v-1;A=2:p=v=i+l), and those of class
iv) transformed are enumerated by ¢(i-1,v-2;)=2;n-v-h+l). Since our trans-

formacion is clearly reversible, we see that (7.3) is established.
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To prove that (7.2) holds for q(u-i}(k+1)021_v(k), we observe that

33GH) :
(7.4} oj(k) = gq [j] {see statement of Theorem 4.2)
1
5303+ i ae
=T W sy (e 8D

3 j-1

A
= 0,01 90, D).

Hence
q(u~1)(x+1)czi_v(l)
- qfv‘i)(k+1)(021_v(x41) + qKGZi_v-l(l-l)) ( by (7.4))
- q(v~i)(K+1)+21-V(02i_v(x_2) AT ey )
N q(u—i)(l+l)+v+21—v-l(021—”_1(k_2) + crZi_v_z(x.z)) {(by (5.7))
- q”{q(“*i+l)(knl)czti-l)-v(R'Z) * q(v-i)(X-l)GZ(i-l)-(v—l)(k-Z)
T O e e 02+ RO O

92¢1-1)-(r-2) ¥ b

- X
and so we sae that the recurrence (7.2) is fulfilled by q(v (¢ +nczi_v(?\).
We may now essily prove Theorem 7.1 by mathematical induction on X
We assume the theorem is true for each nonnegative integer < A. Since we

have treated i = 0,1 (Cases 2 and 3) and since 1 $ \, we may assume

Lz 2. Since vE£1 s\ wemay assume v £ A-2 since v=\ implies i = X

(Case 1), v = X-1 implies either 1 = X1 (Case 1), or { = %
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{Case 4.,) Furthermore we may assume 0 < i < v since L =v 1is Cage L.
These conditions Q0 < L < v £ A=2 imply that the arguments of the four
functions on the righthand side of (7.2) all satisfy the conditions of the

theorem. Hence sine (7.2) is valid for both §(i,v;Xiq) and

q(“'l)(K+l)52i_v(k), the induction hypothesis implies the two righthand sides

are identical. Hence the lefthand sides are identical. Thus Theorem 7.1 is

proved. Q
* .
Definition B. Eet  (Ag,Aj....sB, 15 Disoen,Dy  skihidsn)
* .
= ({A}F; {D}g;k;l;i;n) denote the number of partitions of n of the form

fl . 1+f2 . 3*"'*fsx+x-1‘ek**‘1) (here £, is the number of times the

]

summand j apears) where

(7.5) fd+c+1+...+fcl+c+k =A, 0secsg -l
{7.6) k2 fck+c = k-Dc. 1scs i-1;
(7.7) fm+"'+fm+k Z k for some m in each ¢f the ¢-1

intervals [1,A+1], [A+2,28+2],..., [(8=2) (A+1)+1, (E=1)(N+1);

(7.8) ﬁa » 1 implies (K+1)[a;

. 1
(?.B)b fb+"'+fk+1-b > i=b for some b with 1 s b g 3\ + 1,

2

Definicion 9.

Al (DR khtiq) = T ((A},5(0) kA g

n>0
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Theorem 7.2, Let £ be an integer 2 I, and let AD,Al,...,

.. i - +D, . -\ f
Ae-l’Dl'Dz’ ,Da_1 denote integers that satisfy Aj Dj 41 or
1s3js4¢-2, and if £ > 1, A&—l p-3 D\E-1 and AD < Dl + i=}=1, while if
£ =1 we only require A, s i. Then for =z 13z %\ =0
(7.10) W({A},s (D) ikshii50) = ¥({a},; (D} 5k, M 15q),
where
(7.12) ¥({a},; (D} ikiriisq) =

c
A ~A ... cee e X
2i-Agmhme s oA, (4D AD, (Mo (Mo (WDeeea, - ()
-1 1 2 e-1
- (LA A e o oo H A
bzl (k=D +4, Yo (1)~ (1-A -4, 4, ¥ D, 1) (A1)

Proof. We may throughout this proof assume that O = Dj g & for each
j for otherwise cbviously ¥ s 0 and also ¢ = 0 since if Dj > A rhen

condition (7.8) implies that for m in [(j-1)(A+D1)+1,3(A+1)]

£ 4.4 D, + A< k,
n i

Y = k-

which contradicts {(7.7); and 1if Dj < 0, then either j = /-1 and
Aﬁfl s D&_1 < 0 would make (7.5) impossible or Aj = Dj + Dj+l - k< Dj+1 =k

and so either Aj < 0 which makes (7.5) impossible or Dj+

the case treated above. When =1, we note that the thevrem asserts that

1> A which is

WAy Heh 5 = g TR Moy,
D

which is just Theorem 7.1.

We begin by rewriting (7.11) in terms of the functions appearing in

Theorem 5.1.
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Since

%i(j+1) \ %j(j+1) X (A1) (5 - -%_) ,
{71.12) cj(k) = q [j] = q L-gd = a SVRLEY

we dee that

1({a},i (D} ikirsisq)

(7.13) = g n L
A-2LHA A+ A, <D - Da_l(l)o’Dl(l)cDZ(l)...cns—l(k)
-1
A
bzl(k-Db+Ab)b(k+1) + O+ (4 - 3)
-q

We shall attack Theorem 7.2 in much the same marner that we attacked Theorem
S5.1. We again have a double mathematical induction on ¢ and A,

The case ¢=1 is completely treatad in Theorem 7.1 as we remarked in the
first sentence of the proof,

If A= 0, then 1 must be 0. In order that Y{{A}s;{D}a;k,O,i;q)

be nonzero we must alsc have D, =D =...=Dz_l = 0, An+...+A = (, However,

1 2 &1
by the conditiouns imposed upon the Aj and Dj in the scatement of the
theorem we see that AO 5 -1, Aj £0, 15]s=¢é1 if ¢ > 1. Consequently

1 4f i=1, = {
| Ag
!({5}3;{0}8*.0-0;@ = Y

0 otherwise.
N

As for Y({A}G:{D}z;k;ogi;q) we see that (7.5) 1s false for c =1 if

AU = ~1: hence in this case also we must have §&=1 and thus by Theorem 7.1
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L oif =1, A
¢({A}5; {D}g;k;D;O;q) =!

l 0 otherwise.
L

Hence the theorem is true for X = Q.
If A=1, then i must be 1 also. 1In order that
Y({A}s;{D}c; k;1:1;q) be nouzero we must have each Dj =0 or l. Since

AD s D1 + i-3-1 = ]+1-1~1 = 0, we must have AD =0, D1 =] if £ > 1, and

A

A, s D+D, -1 1implies A =D
i i+l v J

for each j with 1
i i J

j & £-1. Hence

A-244A Fo o HA, (D) =el oD

o -1

S 1-2404D +.. 4Dy =D p=...=D, o = -1

Thus again if & > 1 then !({A]ang}g;k,l,l;q) =g, If £=1, we want
0s Zi--AD EW=1, or AD = 1 or 2; however AO # 2 since AO mist be
%1 wvhen £ = 1. Hence by Theorem 7.1,

-q 1if Ao = §=1]
Y({A}z: {D}8 thil;liq) =

;0 1in all ocher admissible cases.

~

As for -w({A}z;{D}E;k;l;l;q) we know that we may assume that 0 s I)j s A=1
for each j ({see the first paragraph of this prcof). Hence if & < 1,
AO = Dl+i—1-1 £ 1+1-1~«1 » 0, and so for (7.3) to hold with ¢ = 0 we must

have Ac = (. Thus AO = fl =0 when ¢ >1 and so (7.9)b cannot obtain

because b must be 1 and
0 = f1 #i-b = 1-1 = 0.

Hence for w({A}a;{D}s;k;l;l;q) to be nonzero wa must have £ = 1, Whence

by Theorem 7.1,
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q 1f §0 = 4 a ],

lb({A}e ;{D}G;kzl;lzq) =
0 in all other admissable
cases

Hence the theorem is true when X = 1.

We have one more special case to treat before proceeding to the recur-

rences that will establish the induction. The case to be congidered is

i=X,
then for

each j.

¢ =1, this is merely a special case of Theorem 7.1. 1f ¢ > 1,

Y({A}&;{D}e;k;l;K;q) to be nonzero we wust have O = Dj = % for

Hence AO £ D,+\-A-1 = i=1. Thus

1
A-2LHA HA bR, Doy
£-2
A=2h4r-1 + j{ (Dy#D, 1=A) + Dy y=Dy=eeemDy )
&1
-1 - (DNt ] D,
j=2

-1 - (-2)N 4+ (E-2)N = -1,

Hence Y({A}e;{n}z;k;k;k;q) = 0 in all admissible cases when & > l. Aas for

¢({A}8;{D}E;k;l;l;q), we know that 0 = D, 5 A must hold for each j 1in

i

order that P({A},;{D},k;M523q) # 0. Thus again

AO s D1+lrkrl £ A1,

and this makes (7.9)b untenable since by {7.8)

M2-2b 2 E ke, > M

implies that b wmust be 1 (since b 2 1); but

is false,

]

1l 2 AO = fl

Hence the thecorem is true if 1 = A

+.. '+f)\. > A1
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We now prove a recurrence satisfied by both w({A}g;{D}a;k;k;i;q) and

?({A}e;{D}&;k,l;i;q) thac will provide the passage from A~2 to L\, namely

under conditions of the theorem assuming additionally ¢ » 1, % = 1g,
Apm1 = Ppmy
(7.14) T({a},; (D} ikiriisq)
) qA0+2(k-Dl)+3A1+£|(k-D2)+. #2182} (k=D }+(2¢-1)A,
E 1 1 1
€0=0 63_180 51=0 5£=0
5z(x-1)z
q ‘!(AO-GD-Gl, Al"El-Sz,.. ..Ag_l-ea_l-ﬁg;{D—E-G}z;k;R-Z,i-l;q).

We first prove the ¥ satisfies (7.14). From (5.7) and (7.4), we see that

L
)

M =q" ] o
£=( J

aj _e(x~l)

1
(7.15) =37 T S(A-1)

(x-2)

0 =0 -8 "9

Applying (7.15) to each o-functiom in (7.13), we deduce that
T({A},; D} 5ki% 15q)

1 1 1 1

)
=0 6,50 65,70 5,0

0 1 €01 2

-1 £-1

¢
A2ttad T oA+ T 5 (1) + T (k=D 4ADBORLHOL) (1~ D (a-2).
q 0 o1 B 5 b bep D 2

-1
¥ e - oy =o)L, (x~2)
Am21bh o= €0-5 ,+ hzl (A -D,) D= €,-5

a — -
0 1 Dp17€178,y
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Now
£-1 -1
bgl (k=D +4 ) b(W+1) = bzl (k= (D, =€, =B} + (A -€ -6 1})b(A-1)
-1 g-1
+ 2 bgl (k=D, +4 )b - bzl 8, (A1) + 8,(-1)(¢-1).
Hence

Y({A},; {D}z;kal;i;q)

Bil Bil
(k-1,_)2b+ (2b+1)
_ bl BTk
1 1 i 1 1 1
€,*0 €,=0 €, 0 6,0 8,=0 8,0
- = -€ - . - -5 8} ckid=2riml:q).
q T(agm€a8 1A =€ =0ysie oAy =€, 6,5 (D-€-8} 5kih-2i1-150)

Hence ¥ sarisfies (7.14).

To gee that Y({A}g;{n}a;k;l;i;q) satisfies (7.14) we transform the
partitions enumerated by ﬂ*({A}E;{D}sgk;X;i;q) as follows: we delete 1 if
it appears as a summand; we subtract 1 from the remaining summanda in [1,X];
we subtract 2 from each part »+l, and in general we subtract 2b+l from
each part in the interval [b(A+1)+1, b(A+1)+\] and 2b from each part
b(A+1}, and finally weedile:e £(M1)~1 if it appears initially. We now
splic such particions (z+1)‘l fJ * j into 43 classes according to the

i=1
equations:
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Feownyer = S Osc

HA
TtA

-1,

and

] | B

i
o
L
=

o -1 = S

The above transformation replaces

Eosn+t*oana = A
by

o ool T A T T %
and

fr:(k-lv-l) =k~ Dc
by

£ W) =k - Dc+€c+ﬁc =k - (Dc - Gc - Gc).

The question now iz whether the transformed particions are of the type
*
enumerated by = (AD—EG—GL....,A£_1~Es_l—68;{D-G—&}B;k;l-Z;i-l;q). We see
that (7.7) still holds since if
L *
fm+"'+fb

ee ot K,

oant w2

we have In the transformed partition

fm—Zb“‘l-h . .+Eb (1‘1)4-. . '+fm+7\-2b-l zk;

{7.8) is wvalid by conatruction, and (?.Q)b followa with X replaced by



On the General Rogers-Ramanujan Thecrem 6%

W2 and i replaced by 1-1 exactly as in the procf of Theorem 7.1, The
above transformation is clearly reversible and so establishes a bijection

*
between the partitions enumerated by ({A}e;{D}c;k;X;i;q) and the disjoiat

union of the sers of partitions enumerated by the 48 partition functions
b-1

*
o (AO‘GO_ﬁl’Al-él_BZ'""Aa—l—E&-]._aE;{D—E_a}t;kﬁ-z;i-l;n_ bZO Ab(2b+l)
&'il
- {k-D, )2b-5,(W1}¢).
oLy By g

This is equivalent to (7.14) for the y~funcrien.

Finally we must establish the following recurrence for the passage from

g-1 to &: Lf &‘,‘_l=06_1

(7.16) T{{a},; {D},3k;05450q)

- qk(&-l) (#lyo,  (ME(AY, i {DY, ;skiksiiq).

=1

Equation {7.1%6) is immediately obvious for the ¥-function if we set

A&-], = DZ—-l in (7.11). Turning to the |~function we see that A =D

£-1 -1
implies {7.7) 1is valid for @ = (&~1)(A+l) since

feenornt o T BT Dyt A, t ke

Thus the partitions under zonsiderarion need only be reguired to fulfill (7.7)
in the first (&#-2) 1intervals listed since fulfillment is automatic in the

(¢-1)-st. Thus the parts in ((&-1)(£+1), {(£-1)(M+1)¥\} are subject only to



70 Andrews

Fre-vyoeny et ey gy = Aeere

k-0

ey = L

f >1 implies (i+1)]a.

a

Thus this portion of the partition is penerated by

qk(&-l)(5+1)c

g )

-1

and it is independent of the remaining portion of the partition, which is

generated by
W({A}, 45D}, yikirsdsql,

Hence the product of these two generating functions ylelds

w({A}s;{D}g;k;K;i;Q), which establishes (7.16).

We now proceed to prove our theorem. We note that we have proved the

theorem when £ =1, orwhen A =0, 1, or when i = A. We now assuyme the

theoren is true for any (£°,%’} such that efther X" <« X or %’ =% and

£’ « !. We may also assume A 22 and £ z 2, % = 1< X,

If A, ; <D, ;» then we appeal to (7.14) for both ¥ and ¢. To have
such an appeal justified we must verify that the arguments of the functions

on the right side of (7.14) fulfill the conditions of the theorem. Since

-1, D, 4D, ., -\ -€,- -¢,- —€, =6, ~(\-
> Aj s D, Dj+l implies Aj ej 51+1 s Dj ej 5j+Dj+1 ejﬂ 5:‘+l (\-2)
because 2—5j-€j+1 2 0. Also AO s Dl-k+i-1, implies

AO-EO—SI s (Dlﬁel-ﬁl)-(\—2)+(i-1)—1 because -EO £ 03 1—61. Also since
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1<l A2 5 i-1 s A~2, Fipnally since A . <D

> -1 p1’ we see that

rL
A

Apy ~ €pp T8, 8D, - € -8,

for -8, =20 s 1-58*

g 1’

1f, however, A&-l ] Dg_l, then we instead appeal to (7.16) for V¥
and ¥ . Here the condition on the right hand side are unaltered except
that originally Ay o S D&_2+D&_1*X % D, , vhich is as desired since we may
albways agssume 0 =3 Dj = A Thus in any case the truth of the theorem for

{ and X follows frowm the induction hypothesis. Hence Theorem 7.2 ia

established. o

8. The general theorem. We begin by considering Pl " a(m.n), the

number of partitions of the type enumerated by B {n) that have exactly

A.k,a
o parts. The discussion following Definition 2 implies that

P -
l,k,q(m’n) Pk.k,a(m’n) whenever a 2 A\, Qur interest in this section

by
centers on 3 < 8 < A

We also define

(8.1) ] x)= 1 1 P (m,n)x"q".
Nk,a 020 020 Ak,a

Theorem 8.1. Llet |q] < 1, Ix] < ]q]-l, then

+ a~-1 +
(8.2) O IL IR NN CY -rgo Wk maigad, o &0

) k
) (“l)e T w(Ek,\r,asx;qOH xq($-1)<k+l)

+
( )
sgz r=1 R,k,r
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(8.3) P23k, N, r,a;%:9)

4,00 A

1 D

k(&wl)+A0+A 8_1—01-02'...— P

L “oC1aY 3 (0} ki N i)

where E 1is the set of these (2&-1)-tuples (AO‘Al"'"Aﬁ—l’Dl'DZ""'DB—l)

that satisfy

(8.5)1 AU + k—Dl s a~-l

{8.&)2 k-D!-l + A&-l 3 k-r (when £€=1, this is replaced by
4 =T)
0

(8.6)3 0 s ACI s A,

(8'4)4 ls Dj gk, {(lsjs &1,

. 0sA sD,, (1Ls3s &2),
(8 Q)S 5 s ( 3 )]
(8.1’.)6 k—Dj+Aj+k-Dj+1 = k-1, (13535 ¢£2).

Proof. The argument here is exactly parallel the proof of equation (3.9)
given in Theorem 6,1. For this reason our presentation will be slightly
terser,

We start with

a=l

.'.
(8.5) 8, (%) r-);l WLk, roasx00) By Lo

(x)
-Jf (x) = J )]
( Ak,a x K,k,a(x) -

Now (l;k,\,r,a;x;q)} is the gemerating function for partitions with r

distinct parts each S % for which at least one of the inequalities
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(8.6) Eyteetfyyyy > 20, l5bs

Ko =

{A+l)

holds {we note that the case b = %X + 1 1is now not relevant since (8.6)h

1
for b = %X + 1 is true only for a = El and we have under consideration

+

1
only those a for which 35k < a < A). Hence w(l,k;lnr!a’“’q)nk,k,q—r

(x) 1is
the generating function for partitions of the type enumerated by Pl,k.a(m’n)
(m and n arbitrary) with che conditions that (i) there are exactly «
parts 3 A, (i1) the inequaliry (8.6)b occurs for some b, and (iii) the

inequalicy fm+...+f

o) 2 k might occur for some n with 1 = ms )\

Therefore Sl(x) (defined by (8.5)) generates the partitions which satisfy

£m+£m+1+"'+fm+K 2k forsome m with 1 = ms %, but otherwise fulfill

the conditions on the partitions generated by Jl X a(x).
ey
For each & z 2, we define ¢{&:k,\,r,a;%;q) to be the generating
E(A+1)~-1
function for partitions of the form Z fj * 3 vwvhere
j=1
8.7 Brownn Fooppunyag T 0T
(8.?)2 £1+"'+fk+1 3 a-1
(8.7)3 fc(l+1)+"'+f(c+l)(l+l) s k-1, for 1 s ¢35 8-2
(8.7)4 fm+"’+fm+k 2 k for some m in each of

[l,h], [}‘~+2|2k+1]|“'1[(&-2)(7\‘*1)"'1, (8"1)()‘*1)“1]'

(8.7)4 £, > 1 implies (A+1) |h,

1
(3-?)6 fb+"'+fx+1-b > a~h for some b with 1 3 b 3 5 {A+1) .
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We thus may easily establish (by mathematical induction} thar if

k
(8.8) Z @{ 21k, \,r,a3x;3q) HI K r(xq(&*l)()&l}) - Se_l(x) = SE(X),
r=0 v

then Sz(x} is the generating function for partitions that satisfy

(8.9), £ he by, 8 a1,
(8.9), Eoe) ™ Mery oy = koL forall ez 1,
(8.9), £ Feotf k-1, for all = ¢ 12,)],

[2,2)1],..., [2(D)-%, 2(M1)-11,
(8.9)& fm+"'+fm+?\ zk for some m in each of

[2,0), [A+2, 22411, [2043, 3042, o o, [£ (1) =N, (ALY 1],

(8.9, £ >1 inplies (A+1)|h,

1
(8.9)6 £b+"'+fl+1-b > a-b for some b ¢ [1,3(7&1)].

Before proceeding we note that (8.8) and (8.5) imply that

-2 k
(8.10) S, = [ 1Y T wenihraman] | (e FIH O,
i=0 r=0 I
+ E ot s +
GGy 4, a7 a0 = GO T ek rass o, o (k)
LR y ey r‘O s K,

or

-1
+ a
k'k’a(x) Jl,k,a(x) - rzo W1k, A, T 83%;q)H

.f.
A, k,a~r

(8.11) J (x)
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k
- 1 et ] s namai) | gD,
§=2 =0 T

- 1t $,(x).

As in the case of Theorem 6.1, we have two tasks left to complete our
proof. First we must show that the functions y(&;k,A,r,a5%x;q)} as defined
above are precisely the polynomials given by (8.3), and second we must show
that Sa(x) = 0 for ¢ sgufficiently large (actually for £ 2 M+l).

We consider the partitions that are gemerated by W(Z;k,x,v,a;x;q) {(i.e,
£(A+1)~1
those partitiouns Z fj » j that satisfy {8.?)1-(8.7)6. We split these
i=1

partitions into subclasses where

(8.12)1 f1+"'+fk+l = Ao £ a1,

(8.12)2 fc(X+l}+1+"'+fc(K+1)+K = Ac, for 05 ¢ £ &1,
(8.12)3 Ec1+c = k—Dc, for 15 ¢s £-1,

(8.12}4 fm*"'+fm+l 2 k, for some m in each of

(1,0#1], [42,2242], ..., {(£-2) (+1)+1, (-1 (A+1) 1,
(8.12), £, > 1 implies (A+1) |h,
(8.12)6 fb+...+E.M_1_b > a=h for some b ¢ {1,%(k+1].

where we must consider exactly those (2£-1)-tuples (AO'AI""’Azol’Dl""’

D&ml) that satisfy (B.&}l-(B.&)s (the condition Aj E-3 Dj in (8.4)5 is

redundant as it is implies by (a.ayﬁ and (8.4)6). Since k g %, we see that
(3,4)6 implies
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A, £ D, 4D,
J i+

P ~k-1 £ D.+D

1 3 417

and (8.4)l implies

- - +a=-h=~1.
AD = D1 kta-1 5 Dl a~h~1

Consequently we may invoke Theorem 7.2, and we see that since the partitions

of the above subclass are generated by W({A}E;{D}z;k;l;a;q), we have

W{fsk,h,r,a;x%;q)

k(&-1)+A +A +...#A, =D -D,-...-D
- I x O R a0 s ase)
E

K(f~1)+A +A +...+A, =D -D ~...-~D
(8.13) -7 x 01 et ¢

“Ly({a),; (0}, k5% 5a5q)
L g3 {0l

where E 1is the set of those (2¢-1)-tuples (AU’Al""’Az- D, Doyeen,D, o)

171’2 -1

that satisfy (8.&)1—(8.A)6.

The fact that $(&;k,\,r,a;x;q) 1s a polynomial in x and q is
igmediate since the partitions generated are among those {n which each part
is s {(A+1)-1, parts not divisible by 2+l are not repeated, and parts

divisible by A+l are repeated at most k-1 times. Henca for
b(Eik, A r,a5x59)  (Jusc as for g, (&k,X,r,1;%;q) 1n Theorem 6.2) the

coefficient of xyﬁu is zero If either

M> &+ (&-1)(k-1),

or

N> (5(§+1’) + (k—2)(l+l)(g).
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To show that Sg(x) =0 for ¢ > X+2, we begin by provimng that
(8.14) b({a},; (D} y3kirsa5q) = 0

for £ = A+2,

In order that (&.14) be false we must have (by Theorem 7.2)
(8.15) 05D =X, 158¢s i1,

(8.16) 0 5 24-AgmA ~e..=A, +D D 4. . 4D

0”8y PP Dyt 4D,y S A

A
We now apply (8.4), to {8.16) and we assume 1 >3, kz i, &2 2 + 2,
6

2
-1 ¢-1
Az 2~ § A+ ! D
=0 3 gm 3
22 -1
z 24~k jzl (Dj+Dj+1-k-1) - D,  tr+ jzl B,
g1
m 25-0H(8-2){k+1) - | D4r
=2 4

w

2i=3+(0=2) (ktl)~ (-2} +r

v

Z2i=AtE=24r
X
>2 - 3" AT = AT 2 A,
which 1s impossible. Consequently (8.14) holds for & = M2, and therefore

W&k, N, T,a3%;5q)

- |o+ = Taee™
K(E-L)+AGHA +.o#h, (=D =...D,

=] x wC{a},: (D} 5k, a5q)
E

=0, for 2z A+2,
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Finally we observe that Sztx} always has nonnegative coefficients since
the coefficient of quN in SE(K) is the number of partitions of N into

M parts that sacisfy certain conditions. MNow for £ z A+2

k
T -1 (A1
$,00 = 1 wtikaname 1 ea T s
= =Sp®

and the only way the functions here can each have nonnegative coefficients is

if each is identically zerc. Therefore
Sg(x) =0 for & z M1

Thus (8.2) now follows from (8,11) when we take ¢ 2 *+1 i1n (8.11), This

completes the proof of theorem 8.1.

Theorem 8.2. For |q! < 1, % < a< )\,

J ,a(l) =J , (L.

Ak \k,a

Remark. This result is weaker than the correspending result in Theorem
6.2 for a2 = X, In fact, however, replacing the argument L by x would

maka the assertion false.

Proof. First we observe that for ¢ 2 2

(38.17 Y(23k, N, rya3159)

- % %dmhgm by 0+ 4, MO (D (D emeop OO

0 £-1 1 2 -1
£-1 :
bzl (k=D +A VDMLY= (1-A=A =0 oo =A, 4D +o. 4D, 1) O1)

q
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where £ is dafined by (8.6}—(8.4)6. Now many of the conditions in (8.4)-
(8.4)6 are redundant. In partizular (S'A)A may be dropped since in order

for a term to be nonzero we must have

0D, s X5k,
3

and if 'Dj = 0, we see by (8.&)5 and (8.&)6, that

04, SD+D, .~k-15Ar-k-13-1
3717

which is impossible. The condition Aj ES Dj in (8.d)5 is alseo redundant

since in order to produce & nonzerc term we wust have D A and hence

=
j*l

+D, . ~k= + <k-1 < D..
Aj = Dj Dj+l k=1 § Dj 1 Dj

Furthermore (8.&)3 i redundant since (8.&)1 implies that (together with

<
Dl £ W)

Ay D ~k+a-1 3 M-k$h=1 5 A=1 < %,

and also to produce a nonzerc term we must have

2amhym. .=k, WD HLAD, S B

thus

AD z 2a—l—Al-...-Ax_l+Dl+...+D8_l

v

LA
2 (5]-X+(D1-Al)+...+(D£_1—Ag_l)

v

0.

Finally if we replace A&~1 by Dg_l—r we eliminate (8.&)2, and if we

replace AD by
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2a—u~A1-...-Az_ +D . +...+D

171 -1

+r+D, +.. 4D

= Za-u-Al-...-AE_Z 1 -2

then (8.4)1 becomes
D2+...+DE_2-A1*...-AE_2 £ u~a-r-k-1.

Hence we may rewrite (B.17) as

(8.18) PCEs kA, r,a5159)
=3} g (Mg, (Mo, (M ...o (W)
é' Wby D Ps-1
£-2
L (k=D *4 )b Ol - (ki) Oukl) + (ko) (8=1) (M)
b=1
9

where E” is the set of those (28-2)-tuples [&l"'"AE—Z’“’DI""’Dﬂ-l)

that satisfy

(8.19), DybesstDy gAy=eeomhy 5 5 pramr-k-1,
(8.19)2 0s Ac s Dc+Dc+l-k-1, for 15 c s £-1.

We now compare the vight hand side of (8.18) with the right hand side of

(6.29) and we see that the mapping of [’ onte 07 given by

(Al'""Az-z‘u’Dl""’Ds-l) - (“1""'“3-2’“'51'""53-1) shows that

(8.20) Wik, A, r,a;1:q)

i -
= ¢{f+lsk,2,r,kea+l;q 1;q)

- YL kaiq T Y 5q) -
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Equation (8.20) now makeés the establishmenc of Theorem 8.2 a straightforuaed

matter,

+ art t
In,a® = I - rED WLk, Nrhai il o

(1}

k
Z
+ 1 D E w(a;k,l,r,a;lsq)ﬂi K (q(z'l)(k+1))
=2 =0 1Ry

{(by Theorem 8.1)
a a-1
- Loyl e 10

.f_
420 =0 c2a-r(lml,k,a—r(l)

k

+ 1Dt weknnanon | @(EDO,
822 r={ P&t

k

+ i -npft ) al(ﬂ:k,K.r,a;l;q)H; . r(q(é—l)(k+1))
22 =0 >

{by (3.9) and Theorem 7.1}
*

l,k.a-j(l)

a
= Lo
j=0

k
£— - .
-f;z 1" XD O N R NS B I
™= LR ]

A-a
~p(A+1) t
p§1 1 oo™ By (1)

Kk
v 1 en’ T e (g{ED O,
522 =0 1By

k
+ E (-1)3-1 E gl(ﬂ;k,k,r,a;l;q)H:
¥

q(8-1)(k+l))
gz2 =0

k,r(
(by (6.16))
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- E a5 () “x gD
j=0 sKy,a=]
- T D E Folrbos, T o, (Vr(eskah e, a1 150)
) r=0 ™ j=o 3
A=a
- T 7 ooml
=1
k
t-1 -
- LT L i e @O e iy
2 r= pe

+ E <"1) E P{:k, X, r,a;:1:9) H (q(g"l)(l‘i'l})
22 k,r

=0
-1 2 (8-1) (W1
# LT T gknato oG )
el rad)
{by (6.16))
a * =2
- ™ _ -p{A+l) ®
jgo o () By ?);1 q cp-l-a(mﬂl,k,p(l)
k
-1 +
+ E (-1) Z k r{q(s-l)(\+1)).{ - I o {(My{&:k,\,r,a=j;1;9)
=2 =L 77 j=0

+ gl(‘g;kv?‘-srsa;I;Q)

A-a
+ 7 q'p(k-i'l)clr

p+a(h)Y(£;k.X.r.p;1;q)

— (LK, N £ kmatl;q Y L q)
_ -A-1
+ y(e+Lik, N, T, k=a3q T 3q) } (by (8.20))

*
= Ik,alP (by (6.23))
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= Jh,k,a(l) {by Theorem 4.2).
S A
Theorem 8.3, For k2 h, kz2ao> 3, We have that Al,k.a(“> Bk,k,a{n)

for all n.

Procf. We proceed exactly as in Theorem 6.3. We assume a < A since
the case a 2 » is covered by Theorem 6.3,

1+ [ By

n
k’a(n)q = Jk,k,a(l)
n=1

= Jl,k,a(l) (by Theorem 3.2)
e n
=1+ ] Ay e, a(e s
n=l
just as in Theorem 6.3. Hence if we compare coefficients in the extremes of

this equation we derive Theorem §.3. o

9, Conclusien., Several remarks should be made about the work just
completed. TFirst of all the technique ugilized in proving results like
equation (3.9) is quite general. It is a sieving process that should yleld
solutions to some of the unsolved problems described im [8].

It was conjectured in Section 5 of [4], that Thecrem 8.3 of this paper
'is the best possible result obtainable. That is, if we allow k < %, then
Theotrem 8.3 supposedly no longer holds. We have in this paper established
that k 2 A is sufficient for rhe truth of Theorem 8.3; in [4], cthe rasult

was proved only for k 3 2 A-1. Ewvidepnce from the computer strongly suggests

the following strengthened conjecture.

Conjecture 1. For % <as kel
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Bl,k.a(n} = Ak,k,a(n)

fer 0= n < (k+\;a+1) + (k=2+1) (A+1)

while

B?\,k,a(n) L A?t,k,a(n)+1’

vhen 1n = (k+k;a+l) + (k=M1) O0t1) .

Conjecture 1 has been verified for 3 = A= 7, = <« k § mnin{r=1,3),

=
[T -

i<a§k.
Also a guestion was raised ia (4] concerning the possibility of modifying

the conditions on the partitions enumerated by B {n) sv that values of

Ak,a
k < A would be admissible. It was pointed oul there that 1.J. Schur has

proved {16; p. 495) that

A (n) =

0
3.2,2 By 2,200

where Bg 5 2(n) denotes the number of partitions enumerated by B
L Bk

3,2,2¢™

with the added restriction that no parts are = 2 (mod 4).

Computer evidence suggests the truth of the following

Conjecture 2,

0
A,3,3¢® = B, 4 4(0)

wvhere B0 {n) denctes the number of partitions ) £, j=n
5,3,3 -

enumerated by 34 3 3(n) with the added restrictions:
»

fijez * Espa3 5 % for §20

f5j+a + fSj+6 =1, for j20
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£ + f

5i-1 53 + f5j+5 + ESj+6 53, far 12 1.

Conjecture 3 has been verified for n £ 5% (nace A4 3 3(59) =

]

)
2938 34,3’3(59)).

Unfortunately the assumption k 2 A so permeates the work in this paper

that Conjecture 2 seems well beyond the techniques hevein introduced.

1f Conjecture 2 is in fact correct, the methods of proof should have in-

reresting ramificatioms in the theory of partition identirjes,
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