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APPLICATIONS OF BASIC HYPERGEOMETRIC FUNCTIONS*

GEORGE E. ANDREWS*t

Abstract. This paper surveys recent applications of basic hypergeometric functions to partitions,
number theory, finite vector spaces, combinatorial identities and physics.

1. Introduction. The theory of basic hypergeometric functions has until
recently existed very much in the shadow of ordinary hypergeometric functions.
The basic hypergeometric function is

Ay, 5 0,54,2 . (al)j(az)j o (am)jzj
(1.1) '”d)”l:bl_ b :| a jgo (bl)j(bZ)j Y (bn)j(q)j’

n

where (a),=(a;¢),=(1—a)(l —ag)--- (1 —aq"™"), and || <1, |l <1, b;#¢"
for any nonnegative integer n.
The applications of the ordinary

(1.2) F

m-n

[al,-~-,am;2]_ ity + s)(ay +5) - (a, + 9)
by, b, izoJts=o(by +5)(by, +5) - (b, + 3)
are so widespread that a survey of their applications would hardly be possible.

Indeed we might summarize their application with the following paragraph of
W. W. Sawyer [50, p. 63]:

Besides the functions that occur in school work, there are many functions used by engineers or
physicists—the Legendre polynomials and the Bessel functions, for example —which are particular
cases of the hypergeometric function. In fact there must be many universities today where 95 per cent,
if not 100 per cent, of the functions studied by physicists, engineering and even mathematics students

a,b;x
are covered by this single symbol F(a,b;c; x) [= 21-"1[ :”
c

Surprisingly then, basic hypergeometric functions have been for the most
part the province of a few specialists. In fact prior to 1960, most of the known
results on these functions had been obtained by E. Heine, C. R. Adams, F. H.
Jackson, W. N. Bailey, D. B. Sears, W. Hahn, L. J. Slater and R. P. Agarwal.
Perhaps the reason for this general neglect lay in the view that the theory of these
functions was merely a generalization of the theory of ordinary hypergeometric
functions; furthermore, since there were few applications of basic hypergeometric
functions known, there was not widespread interest in investigating basic hyper-
geometric functions.

This paper is devoted to an exposition of several areas of pure and applied
mathematics in which basic hypergeometric functions have assumed significant
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importance. We shall develop in detail only those properties of basic hyper-
geometric functions that are important to our applications. Extensive accounts
of the general theory of basic hypergeometric functions can be found in books
by L. J. Slater [52] and W. N. Bailey [15], and in the papers of W. Hahn [36], [37].

In § 2, we briefly discuss the application of basic hypergeometric functions to
partitions; since there are recent surveys of partition theory that delve deeply into
this application [4], [9], we shall restrict ourselves to only a few examples that
are related to Heine’s fundamental transformation of the ,¢,.

In §3, we shall show how bilateral basic hypergeometric series have ap-
plication in number theory (apart from partitions). In particular, we shall present
a reasonably elementary proof of W. N. Bailey’s summation of the well-poised
V. This summation formula has many interesting applications in number
theory; from it we shall derive Jacobi’s triple product identity, the quintuple
product identity, Ramanujan’s congruence p(5n + 4) = 0 (mod 5) and the Jacobi
formulas for r(n), s = 2,4 and 8, where r(n) denotes the number of representations
of n as a sum of s squares.

In § 4, we shall discuss the relationship between finite vector spaces and basic
hypergeometric functions. In this section, we shall briefly describe the theory of
Eulerian differential operators which arose from the combinatorial theory of finite
vector spaces and which has interesting applications to basic hypergeometric series.

In § 5. we shall discuss the usefulness of both ordinary and basic hyper-
geometric functions in the proof of and classification of combinatorial identities
such as those discussed in the books of J. Riordan [46] and H. W. Gould [35].

In §6, we shall describe some of the recent applications of basic hyper-
geometric functions in physics. We shall relate in detail W. Hahn’s application
of ,,¢, to mechanics.

Neither this survey nor the bibliography is exhaustive. Each section of the
paper provides only a sample of the work done in each area. It is my hope that
these samples will be adequate to indicate the breadth of application of basic
hypergeometric functions, and the bibliography should at least provide the basic
leads to the extensive literature of this area.

2. Application to the theory of partitions. The starting point of this application
lies in the following three simple theorems.

THEOREM 2.1. Let py(m, n) denote the number of partitions of n into m parts,
each of which does not exceed N. Then

Z Z py(m, n)z"q" =

2l <lgl™", lql < 1.

n=0m=0 (zq)y
Proof.
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Hence the term z™g" arises in the above series as many times as there are non-
negative solutions to the Diophantine equation n =m,-1 +m,-2 4+ -+ + my-N
subject to the restriction m; + m, + --- + my = m. But this Diophantine
equation may be viewed as a partition of n in which 1 appears m, times, 2 appears
m, times, and so on, and where the total number of parts in the partition is just
m. Thus the N-fold series given above equals

Y S palm,n)z"g".

n=0m=0
The conditions |q| < 1 and |z] < |q|~! guarantee absolute convergence of all N
series Y z™g™ '; consequently our rearrangements of series were admissible. [
THEOREM 2.2. Let Qp(m, n) denote the number of partitions of n into m distinct
parts, each of which does not exceed N. Then

o) o)

Z Z On(m,n)z"q" = (—zq)y.
n=0m=0
Sketch of proof.
(—zq)y = || (1 + zq)

i=1m=0
1 1 1
= Z Z z zm1+m2+"'+quml'1+mz'2+“'+mN~N
my=0m;=0 mny=0
o0 (oo}
=Y Y Qum,nz"q". O
n=0m=0

Several remarks are in order about extensions of these theorems. First we
note that they remain valid if we let N — co (for a justification of this, see [10,
Chap. 13]). Therefore, with p(m, n) = p_(m, n) and Q(m, n) = Q (m, n), we see that

w 1 ~

2.1 Yoy pmonztgt = —— d <lgl™", gl <1,
n=0m=0 (Zq)oo

(22) Y Y Qm,n)z"q" = (-zq),, |4l <1.
n=0m=0

Also the same arguments may be applied mutatis mutandis to p,(S;m, n) and
Qn(S; m, n), where S is some set of positive integers and p,(S ; m, n) (resp. Qn(S ; m, n))
is the number of partitions of the type enumerated by py(m,n) (resp. Qu(m. n))
with the added condition that all the parts of the partition are in S. In this way,
we see that

23 Y Y P(S;mn)=[10—-2z¢)"",  lzd<lg™", lgl <1,
n=0m=0 Jjes
J=N
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(24) i i QN(S;m7n) = I_I (1 + qu)’

n=0m=0 jeS
JEN
25 Y Y PS;mn) =Tl -zg)", lz2l <lgl™', gl <1,
n=0m= jes
(2.6) Y Y 0S;m,n) =TT + z¢)), lgl < 1.
n=0m=0 jeS

The next theorem allows the pasting together of different partition gener-
ating functions to produce more complex generating functions.

THEOREM 2.3. Let P{(B;, S;:m,n) (j = 1 or 2) denote the number of partitions
of n into m parts, where all the parts lie in S; and each partition is subject to the
condition B;. Let Py(B;,S;;m,n) denote the number of partitions © of n into m
parts, where S; = S, U S, and By is the condition that the two subpartitions of
made up of parts belonging to S| (resp. S,) satisfy condition B, (resp. B,). Finally
we let

fiz,a) =Y, Y P(B;,S;;m,n)z"q",

n=0m=0

where |z| < |q|" ', |ql < 1. Thenif S, NS, = &,
(2.7) f3(z,9) = fi(z, @) f>(z, 9).

Proof. Absolute convergence of the series to be considered follows by
comparison with the series in (2.1).

Suppose now that = is a partition of the type enumerated by P5(B;, S;;m, n).
Then since S; N S, = J, = may be written uniquely in the form

ay+ - +a, +b + - +b,,

where n; = a, + --- + a,, isa partition of the type enumerated by P,(B,, S;;m;,n,)
and n, = b, + --- + b, is a partition of the type enumerated by P,(B,,S,;
m,,n,). Consequently P,(B;, S5;m,n), the total number of such partitions, is
given by
) P((By,S;:my,n)Py(B,,S,;m;y,n,),
mi+my,=m

ni+ny=n
my,my.ni,ny; 20

and this establishes that the coefficients on either side of (2.7) are identical. [

We remark that Theorem 2.3 is an example of a large number of theorems of
this nature. The disjointness of S, and S, is the essential feature that makes the
theorem work.

We hope now to illustrate how partitions and basic hypergeometric functions
interact. Theorem 2.4 is a basic hypergeometric function identity with a partition-
theoretic proof. Theorems 2.5-2.8 are analytic identities that are corollaries of
Theorem 2.4. The final three theorems are partition-theoretic consequences of
Theorem 2.8.

THEOREM 2.4. For |z| < 1,|q| < 1,

wlaiq. 2] = 0 A==
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Proof. We shall prove the equivalent identity :

2 (—aq; 902" (—azq’; q°),
(28) Z 2. ,2 - 2. ,2 :

n=0 (q ,q )n (Zq ’q )oo
Let W,(r, m, n) denote the number of partitions of n into m parts, of which exactly
r are odd, subject to the condition that no odd parts are repeated and all odd
parts are larger than 1. By splitting such partitions into two subpartitions con-
taining odd parts (resp. even parts), we see that (2.5), (2.6) and Theorem 2.3

(slightly modified to account for the extra parameter r) imply

2oL 1 (—azq’;4°)
Wi(r,m,na'z"q" = (—azq*; ¢°),, - = =
,,go mz::o r:zo ' (z¢7:47), (247347,
Let W,(r, m,n) denote the number of partitions of n with largest part 2m, with
exactly r parts odd, and with the condition that no odd parts are repeated. Argu-
ments of the types used in Theorems 2.1-2.3 may be easily seen to establish that

0 0 2m 2 2m
q (—aq;97).9
Wy(r,m,n)a’q" = (—aq; q*),, - =
ngo r:ZO 2 (qz > qz)m (612 5 Clz)m

Therefore

© © o © —aq; 2mzm 2m
Y XY wrmomazg =y TR

n=0m=0r=0 m=0 (qZ;qZ)m
Thus we see that (2.8) is equivalent to the following partition function identity:
(2.9) W, (r,m, n) = Wy(r,m,n).

To establish (2.9), we must utilize a modification of the Ferrars graph of a
partition [39, p. 273]. Let m be a typical partition of the type enumerated by
W,(r, m, n). Each even part 2v of 7 is to be represented in the graph by two rows
of v nodes each, and each odd part 2v — 1 of 7 is to be represented by one row
of v nodes and one row of v — 1 nodes. Thus 8 + 8 + 5 is represented graphically
by

We note that the graph of = contains n nodes, has m columns, has exactly r columns
with an odd number of nodes. Furthermore, no two columns which each have an
odd number of nodes can have the same number of nodes. Finally, every column
must contain at least two nodes since the largest part of = was even. Let n':b,
+ --- + b,, denote the partition of n in which b; is the number of nodes in the
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ith column of the graphical representation of #. From the above comments we
see that 7! is a partition of the type enumerated by W,(r, m, n), and indeed since
the above procedure is reversible it establishes a bijection between the partitions
enumerated by W,(r,m,n) and those enumerated by W,(r,m,n). Hence (2.9) is
established, and so therefore are (2.8) and the theorem. []

THEOREM 2.5 (Heine [40, (5a), p. 106]). Subject to obvious convergence con-

ditions,
Zd)l[a,b;q,z] _ (b),(a2),, d)l[c/b,z;q,b]

¢ (©),(2), * az

Remark. The phrase “subject to obvious convergence conditions” means
here |2/ < 1, |l <1, |ql <1, c#q " z+#q " az # q ", for any nonnegative
integer n. In general, conditions like ¢ # g~ " are needed to keep zeros out of
denominators, while the conditions |z| < 1, |b| < 1, |q| < 1 guarantee absolute
convergence of all the series and products appearing. For the most part, such
conditions as these will be tacitly assumed; only in Theorem 3.3 will convergence
problems be difficult enough to require mention.

Proof.

(c
_ Oy 5 (@ 5 Phpam (by Theorem 2.4)

o n=0 (q)n m=0 (q)m

== . (by Theorem 2.4)

_ (D) (az)y - (c/D)(2)u"
(C)co(z)co m=0 (q)m(az)m
_ (b)OO(aZ)oo d) [c/b,Z;‘Lb] 0

T (042, 2! az

Our next result is the g-analogue of Gauss’s summation formula [15, p. 2]

a,b;1
for ,F, .
c

THEOREM 2.6 (Heine [40, (6), p. 107]).

5 [a,b;q,c/ab] _ (c/a)(c/b),,
2r1 "~ (0),(c/ab),



BASIC HYPERGEOMETRIC FUNCTIONS 447

Proof. By Theorem 2.5, we see that

,b;q,c/ab b b
¢[ qc/a]:um(cmw

(0)..(c/ab).. 1Polc/ab; q, b]

(b)(¢/b)(c/a)
=% _x - (by Theorem 2.4)
©.(c/ab) (b,
_ (c/a)(c/b),
(0),(c/ab),,
The following result is less well known than Theorem 2.6 and was found
independently in the 1940’s by W. N. Bailey [16] and J. A. Daum [29]; this theorem

O

a,b; —1
is the g-analogue of Kummer’s summation [52, IIL. 5, p. 243] of 2F} |:a 1 b]'

THEOREM 2.7.
p [a, bi4, —q/b} _ (445 4))(— 9 (a?a/b?; 47,
L qap (qa/b).(—q/b), '

Proof.

a,b;q, —q/b b,a;q, —q/b
2¢1[ qa/b :|— 2¢1[ qa/b :|

@, & @b
= @ab)—ab L @i—a), 0y Theorem2s)
_ @y, ¢ (4*/b*:q%),a"

(qa/b)oo(_q/b)oo n=0 (qZ’ qz)n

_ (@) (—9ylag®/b?; 7).,

- by Th 2.4
(qa/b) (—a/b) (a;q7), (by Theorem 2.4)
_ (1434~ )olag’/b?: 4,
(qa/b)oo(—a/b).,
COROLLARY 2.7.1.
ngo (q)n B (aq’ 4 )°°( q)oo‘

Proof. The identity in question follows directly from letting b — co in
Theorem 2.7. To justify the limit we need only observe that if we replace b by
1/B in Theorem 2.7, each side of the identity holds for f in a deleted neighborhood
of zero. Since both sides are continuous functions of f at zero, both sides must be
equal at § = 0. Alternatively one may justify this process by an appeal to Tannery’s
theorem [43, p. 371]. O

Our first application to partitions will be to J. J. Sylvester’s generalization of
Euler’s partition theorem [53, p. 293]. Our proof is based on one recently given
by V. Ramamani and K. Venkatachaliengar [45].
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THEOREM 2.8. Let A,(n) denote the number of partitions of n into odd parts
(repetitions allowed) with exactly k different parts in each partition. Let B,(n) denote
the number of partitions of n into distinct parts such that exactly k sequences of
consecutive integers appear in each partition. Then for each k and n, A (n) = B,(n).

Remark. Euler’s theorem merely asserts ) . A, (n) = Y.° | By(n).

Proof. First we note that

o)

> Y Adndq =

k=0n=0

—1s

(1 + aqu_l + aqz(zj_l) + aq3(2j_1) + )

2j—1
aq
o175
(1 +(a—Dg*™ "
L (L—g7)

[
I
—

|
—1s

J

I
—1s

.
It

The reasoning here exactly parallels that used in Theorem 2.1. Now since

S %€ 1 — 2m 0 1
o+ar=115%0=1I;

m=1 me1 (1—4q") =11 —4q

2j-1°

we see that

(2.10) S Y A = (—a), (1 — a)g:q),.

k=0n=0

On the other hand, let us consider the graphical representation of a partition of
the type enumerated by B,(n). For example, 10 + 9 + 5 + 4 + 3 + 1 isa partition
of the type enumerated by B,(32), and it has the following graphical representation :

If we examine the conjugate partition (i.e., the partition obtained by reading the
graph vertically), we see that the conjugate partition (namely, 6 + 5+ 5 + 4
+3+2+ 2+ 2+ 2+ 1) has exactly two parts that are repeated. Indeed if =
is any partition of the type enumerated by B,(n) in which 1 is a summand, then
7', the conjugate of =, is a partition of n in which the largest part appears only
once, all positive integers not exceeding the largest part appear and exactly
k — 1 of these appear with repetition.

If the condition that 1 appears in 7 is removed, then 7’ is a partition of n in
which the largest part appears more than once, all positive integers not exceeding
the largest part appear and exactly k parts appear with repetition.
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Since the union of the two classes of partitions described above is in one-to-
one correspondence with the partitions enumerated by B,(n), we see that

©  © o N-1
Y Y Bmdq" =1+ Y ag* [] (¢ + ag¥ + ag¥ + -
k=0n=0 N=1 j=1
e N-1 ) ) .
+ Z { l—[ (qJ +aq21+aq3j+ "')}(aq2N+aq3N+ )
N=10(j=1

=1+ i{N 1qf(1+ ci]jj)} a_qNN
(2.11) N;l aqj;(;+ " 1 a);]) 1 —g¢q
gy 7 —
© —(1 — NN+ 1)/20(1 _
=1+ Ngl (L — (1 —a) o (1 — a)q)y—,
© _ N(N+1)/2
=5 . ai?)i

Comparing (2.10) and (2.11), we see that Sylvester’s theorem follows immediately
from the identity

5 ((
N=0

1 _ a))NqN(I\i+ 1)/2

(@n

=(—q),(1 — a)q:49%),,

which is merely Corollary 2.7.1 with a replaced by i — a. [

Next we consider a result due to H. Gollnitz [31, Satz 2.3, p. 166] that may
also be deduced from Corollary 2.7.1.

THEOREM 2.9. Let G (n) denote the number of partitions of n into parts, where
each part is congruent to one of 1, 5, or 6 (mod 8). Let H (n) denote the number of
partitions of n of the form b, + b, + --- + b;, where b, 2 b;, | + 2 and strict
inequality holds if b; is odd. Then for each n, G ,(n) = H(n).

Proof. Let h(m,n) (a = 1 or 2) denote the number of partitions of the type
enumerated by H,(n) with the added restrictions that there be exactly m parts
and that each part is =a.

We shall now prove two elementary partition identities for the h,(m, n).
First,

(2.12) hym,n) = hy(m,n) + hy(m — 1,n — 2m + 1).

To see this identity, we split the partitions enumerated by h,(m, n) into two classes :
(i) those partitions that contain 1 as a summand, (ii) those that do not. Clearly
there are h,(m, n) elements of class (ii). We now transform the partitions in class
(i) by deleting the summand 1 and subtracting 2 from all the remaining parts.
This produces a partition of n — 2(m — 1) — 1 = n — 2m + 1 into m — 1 parts,
each of which is >2 (since originally the second smallest part was >4); further-
more, since the inequalities between the parts are not disturbed, we see that the
transformed partition is of the type enumerated by h,(m — 1, n — 2m + 1). The
above transformation clearly establishes a bijection between the partitions in
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class (i) and those enumerated by h,(m — 1, n — 2m + 1). Thus identity (2.12) is
established.

By considering those partitions of the type enumerated by h,(m, n) that con-
tain a 2 and those that do not, we may in exactly the same way prove that

(2.13) hy(m,n) = hy(m,n — 2m) + hy(m — 1,n — 2m).
Let
ndz.q) = Y, Y hfm,n)z"q"
n=0m=0

Then identity (2.12) implies that

@ oo}

nz,g =Y Y hym,nz"q"

n=0m=0

oo} oo}

Y Y (hym,n) + hy(m — 1,0 — 2m + 1))z"q"

n=0m=0

(2.14) o
Nz, q) + 29 Y Y hym— 1,n—2m+ 1)(z¢*)" " 'q"~ "

n=0m=0

= n,(z,9) + zqn,(24>, q).

Similarly, identity (2.13) implies that
(2.15) N2z, 9) = n,(24%, @) + 2a*n(2q°, q).
We now substitute the formula for #,(z, ¢) from (2.14) into (2.15). Hence
216 ny(z.q) = n:(24°, 9) + za°na(24*, 9) + 2g°n(29%, 9)
= (1 + z¢*n5(2q°, 9) + 2¢°n,(z4*, q).

Therefore, if 1,(z, q) = Z:’: o 42" then by comparing coefficients of z" on each
side of (2.16), we see that A, = A,¢*" + A,_,q*" + 4,_,q*"" '. Therefore

_ an(l + an—l)lln_1
" (1 —q*)

Iterating (2.17) n times and observing that A, = 1, we see that

(2.17) A

(2.18) _ 4" =a:4)),
" (@;q»,
Therefore
0 [*9) n nn+1) . 2
(2.19) =Y A=Yy 4 2( 434 b,
n=0 n=0 (q%;9°),

and by (2.14), we see that

ann(n+l)(_q;q2)n(1 + Zq2n+1)
o @*:9°), ’

M8

(2.20) ny(z;q) =

n
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From (2.20) we may easily deduce our theorem by utilizing Corollary (2.7.1):

e e}

Z H(n)q"
n=0
=2 ( > hl(m,n))q" = (1,9
n=0 \m=0
] nn+1) .2
q (—4:9°),
= Z 2.2 =
n=0 (q ,q )n
g q 54°),

=+ q(—q*q),(—4°:q%,  (by Corollary 2.7.1)

1 (1= g™ 90 = ¢*M)(1 = ¢°""°)
Ak (=01 = @ (1 = 21— ¢®)(1 — ¢* ) (1 — ¢* )
«© 1
- =i oa =y

= Z G,(n)q".
=0

Consequently H,(n) = G,(n) for all n. [J

It is now a very simple matter to prove a companion theorem for Theorem
2.9 that is also due to Géllnitz [31, Satz 2.4, p. 167].

THEOREM 2.10. Let G,(n) denote the number of partitions of n into parts, where
each part is congruent to one of 2, 3, or 7 (mod 8). Let H,(n) denote the number of
partitions of n of the form b, + b, + -+ + b;, where b; = b, ., + 2 and strict
inequality holds if b; is odd ; in addition, b; = 2. Then for each n, G,(n) = H,(n).

Proof. From (2.19), we see that

Z Hy(n)q" = Z ( Z hz(m’”)) "= n,y(1,9)
n=0

n=0 \m=0
© qn(n+ 1)(_q;q2)
“ L@,
= (—4q*:9%).(—q%:q",  (by Corollary 2.7.1)

x |
= ml:[] (1 _ q8m46)(1 _ q8m‘5)(1 _ q8m71)
)
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Consequently G,(n) = H,(n) for all n. (0

This concludes our sample of the relationship between partition identities
and basic hypergeometric functions. The reader is referred to [4], [9] and [10,
Chaps. 12-14] for a more extensive account of this subject.

3. Application to number theory. In this section we shall present an account
of bilateral basic hypergeometric functions, i.e.,

l//,, |:a1’a2’ s G5 4, t:| - i (al)j(az)j U (am)jtj

bl*bZ*”"’bn _jz—co (bl)j(bZ)j“'(bn)j ’

where

(@); = (a;9); = (@) (aq’),",
or

-1 -1

(@), = ( - —i’) (1 - g) = (—a@) """ V(gja);
q q

Thus

(ﬁ_) (1)
_op @)@t by b
_,go (by); -+ (by); +j§1 1 .4

asf; Al j

Hence we see that to insure convergence we must require n < m. Also b, # g~ %,
a, # q"*! for any nonnegative integer N. Finally if n < m, we need only in
addition require |t] < 1; however, if n = m, we need also

b, - b
al PEEEE a

( by - bn)j(_l)j(m_n)qj(j+l)(m-'l)/2.

al...amt

n

<lt] < 1.

m

Our first object is to provide a proof of the following identity due to W. N. Bailey
[14,(4.7), p. 113]:

A

q a,—q\/a,b,c,d,e ,
aq

Vo _ /- 4a gqa ga ga Dy
\/—, a’b’c’d’e

3.1) -
aq aq aq aq aq aq g’
,E,E,E,E,C_E,E, $;
q44q4q4qaqaqaq aq a’q |
bede b ¢ d e bede ]
where

Ay ooms &, _(al)w"'(ar)w
] - et
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The identity (3.1) is probably the most general summation identity known for
bilateral basic hypergeometric series. As we shall see, we shall be able to deduce
many important and diverse results in number theory from (3.1).

There are three known proofs of (3.1). Bailey’s original proof [14, § 4] relies
on ingenious combinations of various transformation formulas he had developed
for ordinary and basic hypergeometric series. L. J. Slater [51] uses an analogue
of the Barnes-type integral, and A. Lakin [51] combines a g-difference equation
technique with Carlson’s theorem on entire functions.

We shall provide a more elementary proof; in fact we shall utilize g-difference
equations together with the uniqueness of a Laurent series expansion about the
origin. For the most part, our proof will rely on simple manipulations of series.
In our proof, we shall need the following function:

K;wilag,ay, -, a;52,q9) = K;il@;z;q)

<o)

(32) — Z (_1)n(2+ I)Z(k+1)nq(2k—l+1)n2/2*in+(1+1)n/2.

(apay -+ ay)
(aO)n(al)n e (ai)n(l - Ziq2ni)
(zq/ap)(zq/ay), - - - (zq/ay), (1 — z)

-n

I remark that K;, (b, c,d, e;z, q) is the left-hand side of identity (3.1). In
the following theorem we shall utilize a series rearrangement technique originally
due to Cayley [27] that has also been effectively utilized in the study of the Rogers—
Ramanujan identities [10] and more general basic hypergeometric functions [5].

THEOREM 3.1. The following identities are valid :

(33) K, iolag,ay, -, a;5259) =0;
(B4) K, _ilag,a;, - ,a;;2:9) = _Z_iK;‘,k,i(ao,ap T, a;5254)8

z
K;yiag,ay, -, a;52:q) — a_K).,k,i—l(aO’al’ T, a;5254)
J

(1 —apa; 'z(1 - zq)(l — Z—q)
(3.5) - 4

(1_2)(1_ﬂ) (l_ﬂ)
o a,

: Z (— 1)rqurO'r(j)K)\,k,k—i—r+ (ag,ay, s ag, -, a;;2q:4q);

=0

K;xilag.ay, - a;:2:9)

(=D Yagay - a) T = 2g?)(1 = ao)(1 —ay) (1 = ay)

EEEEE
do a, a,

‘K pilaoq.a1q, -, az‘I;Z‘IZZQ)l

(3.6)







BASIC HYPERGEOMETRIC FUNCTIONS 455

above, and the second series contains the second curly braced expression. There-
fore

z
K;xi@g,ay, -+, 0a;52;q) — a_KA,k,i(aO’al’ T, 8;5259)
o

©
— Z (_1)n(l+1)Z(k+ l)nq(Zk—).+ 1)n2/2 —in+(A+ l)n/Z(aoa1 . al)_"

(@g)(ay), - - - (az),

EMERIEE
Aofn-1\%/n Ay ln

©
i — — 2 i— —
+ Zlao 1 Z (_ 1)n(i+ I)Z(k+ l)nq(Zk A+ 1)n?/2 +n(i 1)+(A.+1)n/2(aoa1 .. a,{) n

) (ao),+1(ay) (@), ]
EIERE
Aol n\ 1] n a, n

We now replace n by n + 1 in the first sum and then combine the two series term
by term. Thus

zZ
K, i@;z;9) — a—Kl,k,.-- 1(@);z;q)

0

©
—1. - 2 i— _
— aO IZz Z (_ 1)n(l+ l)Z(k+1)nq(2k A+ 1)n%/2+n(i 1)+(/1+1)n/2(a0a1 . a)‘) n

n=—ao

(@g)p+1(ay), - - (ay),
(zq/ag)zq/a,), - - - (zq/a,),(1 — 2) |1+

(_1)}.+ lzk—i+ lq(Zk—A—2i+2)n+k—i+1(1 _ alqn)(l _ azq") (1 _ alqn)
n+ 1 n+1 n+1
A AR
a, a; a,

We now combine fractions inside the curly brackets, and we make the observation
that

X
1 ==
a.

1

Consequently, we see that

A
) =) (—1)o,(0)X".
J r=0
Ko@) 2:0) = — K, 1((@3759)
0

ag 'z'(1 — zg)(1 = a)

(1 —z)(l _ﬁ) (1 _ﬂ)
a, a, (cont.)
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. i (_1)n();+1)(zq)(k+l)nq(Zk—}.+1)r12/2—(k—1'+1)n+(/1+I)n/Z((aoq)a1 ai)—n

. (an)n(al)n e (a}.)n
(zq°/ao@)(zq°[ay), - - (zq°/a;),(1 — zq)
y A
{Z Zq)r (Zq)k—i+1q2(k—i+1)n Z (—l)rO',,(O)q_m}
= r=0
= _ _ A
A qu) C a")z Y (=1)Zqa,0)
1 - )(1__4 “(1__61),:0
a; a;

(_ l)n(}\+1)(zq)(k+1)n (2k— 2+ 1)n2/2—(k—i—r+ n+t(A+1)n/2

q

|IM8

((aoq) ceay) "
( )( ) . (al)n(l _ (Zq)k—i—r+ qu(k—i—r+1)n)
2
B[
aoq|n\ 41 |n a;

. ) (
ag '#(1 — za)(1 — ay) i

(=1
zq 29\ /o
a3

A

rqurO, (O)

’K}.,k,k—i—r+1(aoq,a1, S, d,5245q).

Thus we have established (3.5) for j = 0, and as we remarked earlier, the general
case now follows from the symmetry of the ¢;. [

Before we establish (3.1), we must first establish a special case of (3.1) known
as the limiting form of Jackson’s theorem [52, p. 96, (3.3.1.3)]. Our proof is
essentially the one given in [5, Thm. 5].

THEOREM 3.2.

zq zq zq zq
12 1/2 }
z,qz'?, —qz"*,a,,a,,45:4, z M —"

b 9 b
a,a,as apa, a,das a,ds
o®s = n
1/2 12 249 29 24 zq zq zq zq
z , —Z ) B — T,y
a; a, dj a, a, as a,a,a;
Proof. We let
(3.7) g:(ag,a;,a,,a332) = K3_1‘i(a0,a1,a2,a3;z;q),
and we let
(3.8) f2) = g(z,a,,a,,a3;2).

From Theorem 3.1, we directly deduce the following relationships:
(3.9) go(ag,a;,a;,a352) =0,

(310) g—i(ao, ag, az,a:&;z) = _Z_igi(ao,al’az’a3;z)’
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z
gilag, a,,a,,a5;2) — a_gi—l(aO’ a,d,,ds;7z)
J

1 Z
(1 —apa; '2(1 — zg)|1 — a—q

3

- J _lrrr .
o [ e e

do a, as

(3.11)

"82-i-Adg. dy.ay. a3 zq),
where a, = a,if h # jand a) = ayq.
Setting i = 1 and j = 0 in (3.11) and utilizing (3.9) and (3.8), we see that

(1 —a as lz(1 — z
gl(aO’al,az,ag‘;Z): 0) 0 ( q)

s
(3.12) 4y a4z s

(I — zq0,(0)g,(aoq, ay, a,, ay: zq)
+ 2q905(0)g,(a0q, a;, a,, as; zq)).
Setting i = 0 and j = 0 in (3.11) and utilizing (3.9) and (3.8), we see that

(I — ag)(l — zq)
gilag,ay,ay,a5;z2) = .

T [ [
(3.13) ay ) as

(82(a0q. ay, a,, as; 2q) — (2q0,(0)
- 224263(0))31(‘10‘1’ ay,dy,dz;zq)).
Eliminating g,(aoq, a,, a,, a5 ; zq) from (3.11) and (3.12), we find that
(1 = ap)(l — zq)

zq zq zq
( ‘Z)(“ai)(l ‘)( ‘)

(1 = 2q0,(0) + 240'3(0)(2510'1(0) - 22420'3(0)))&(‘104, a;,a,,as;zq).
Simplifying (3.14), we obtain that
gi(ag,a,,a,,4a;;2)

aglz(l—ao)(l—zq)(l— “ )(1—ﬂ)( _

aa; a,as a,d;

T e e
a, a, as dod a,d;

-81(aoq. ay.a,,a3;2q).
We now set a, = z and utilize (3.8) to deduce that

(1—zq>(1— = )(1— Zq)(l— = )f(zq)
a,a, a,a, a

do
——20(0)) g, d;,d,,d4.2) =
(3.14)(2 q030)|g(ag, a,,a,,a;;2)

(3.15)

1a

(16 )= (l_ﬂ)( 1_5‘!)(1—@)(1‘ . )

a, a, as a,a,as
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Repeated iteration of (3.16) then implies that

zq zq zq
(zq)N(alaz) N(a1a3) N(a2a3) Nf(qu)

el )
ai|n\dzf N\d3 N\ 14205 N

Identity (3.7) now follows if we let N — co and observe that limy_,  f(z¢") = f(0)
=l and

(3.17) f@) =

zq

1/2 1/2 .
z,qzV%, —qz'?,a,,a,,4a;5;4,
a,a,as
f(Z) = 6¢5 Zq 2q 7q
Zl/z, —Z T, Ty T

a,’ay’ ay

The following result is a lemma that will be necessary in the proof of Theorem
33.

LemMa 3.1, gi(ag,a,.a,,a5;q9") =0 form=1,2,3,---.

Proof. First we see that

llm (1 - Z)gl(aOa alyaz’a3;2)

z—1
- (aohai(a)(a >(—q)
=lim Y (1 - z¢* 8123

(ao)n( A2
(@)@, (ax)as), (——)

o (aO)n(al)n(aZ)n(a3) (W) ana a,a;

CTEEED T

:0’

since the second sum may be transformed into the first by replacing n by —n.
Consequently if in (3.15) we replace a, by a,q ', multiply by (1 — z) and let
z — 1, we see that g,(ay, a,,a,,a5;q) = 0. In general, in (3.15) we replace a, by
a,q ',z by g* ' and from the truth of the theorem for m = k — 1, we deduce that
gi(ag,a;,a,,a3;4™=0. 0

As we shall see, the theorems on two squares and four squares are implied
by Theorem 3.2; its main usefulness to us, however, lies in its application in the
following proof of (3.1).

THEOREM 3.3. Identity (3.1) holds.

Proof. In order to avoid convergence problems, we shall initially assume that
lgh <1, la) =1 for 0 <h<3,0< |zl <|g” "% These conditions will simplify
our work and at the conclusion of the proof we shall show how to weaken them
to the obvious minimal conditions required.

We note that g,(b, ¢, d, e;z) is the left-hand side of (3.1). We have already
translated most of the identities of Theorem 3.1 into identities for g;(a,,a,,a,,
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as;z), namely (3.18), (3.19) and (3.20). There remains identity (3.6), and when
4 =3,k = 1, we see that (3.6) yields the following result:

gi(ag,a;,a,,a5;z2)

(3.18) 2*(aga,a,a3) " 'q* i1 — zgH)(1 — ao)(l —a)(1 — a,)(1 — ay)

R R [

-8i(anq,a,q,a,q, asq; zq?).

If we let

y7 1 = y)(1 —zq)(l —g)( —%) 1 _g

I [ I

then we may write (3.15) in the following simple form:

(319) Z(y;b,c,d;z) =

(320) gl(ao’al’az’a3;2) = 9(‘10;‘11,‘12, a3;Z)gl(aoq’al’aZ’a:s;ZQ)'

We note that the left-hand side of (3.20) is symmetric in a,, a,,a,,as, and there-
fore (3.20) is valid under any permutation of the a;. Consequently by (3.20), we
see that

81(a,ay,a,,a5;2)
= Q’(ao;al,az,a3;z)ﬂ(al;aoq,az,a3,zq)g1(a0q,alq,az,a3;zq2)
= Pag;ay,ay,a3;2)P(a,; a0q, a,, ay; 2q)
6.21) " Pay5a0q, a1q,a332q°)g,(aoq, ayq, ayq, as ; 2q>)
= Q’(ao;al,az,%;z)@(al;aoq,az,a3;zq)
-W(az;aoq,alq,%;zqz)g’(a3;a0q,alq,azq;ch)
*81(404 414, 429, a4 2q").

To simplify the final result in (3.21), we write it in the following form:

g(ag,a,,a,,as;z)
= A(aO’al’aZ’a3;z)g1(a0q7alq’a2q7a3q;zq4)
3 3 3 3
322 —zqz)(l —ﬂ)(1 —ﬂ)(1 —ﬂ)( — ) Aag, a,, a,,a3: 2)
Ao a, a, as
22q(aoa,a5a3) " (1 — zg™)(1 — ag)(1 — ay)(1 — ay)(1 — as)

L2
-81(ag, ay, a,, as; 2q%),

where the last line follows from (3.18) with z replaced by zg®. Thus when (3.22)
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is completely written out, we have

z Z 4 z( ZG
qu (a Z ) (a Z ) (a ((11 ) (a ([1 ) (a 1 ) (1 ZC[Z)
a
gl(analwa29a3;Z) o1 /2\%o%2 /2 \%0"3 /2 \"1"%3 /2 \"2™3 /2

. el LG e
21 === 0 =2)
Ao [2\a1[2\dz [2\d5 [2 0014203 |4

~g1(a0,a1,a2,a3zzqz).

Hence if

i I o M o e

h(Z)Z aO 0 al 0 aZ 0 a3 0 a0a1a2a3 0

(3.24) zq zq zq zq zq zq (zq) q
Apd ] o \Aod2] ©\ 03] o\ 0142 0 \3193] 4293 “\z/ s

-g4(ag,ay,a,,a3:2)

then we deduce directly from (3.23) that

(3.25) h(z) = h(zq*).

It is clear from our initial conditions (namely, |g| < 1,]a} = 1, |z] <lq|” 1/2) that
h(z) is analytic in any annulus centered on the origin which lies inside the circle

|z| = ||~ /> except possibly at z = ¢" for m = 1,2, 3, - - -; however, by Lemma 3.1
these are removable singularities. Thus

(3.26) W= Y A 0<ld<lgd '

Substituting (3.26) into (3.25) and comparing coefficients of z", we see that
(3.27) A, = q*"A,.

Thus A4, = 0 for all n # 0, and h(z) = 4,. Since h(z) is a constant function, we
need only know one value of it. We thus obtain from (3.24) that

o) [aod) [a0d| [_dod
— (q)oo(al )oo(aZ)oo(a3)ao(ala2a3)oo
4qay 14y |4 aoq doq doq (a9) q
(3.28) 1] o\ 2] £\ 3] 6w\ A182] o\ 193] ©\9293] oo Ao| o«
on) ]2
A143] x\ 193] 9293

agd| [a0d) [aod) [ dod |
aloanwa3 ooalaza3ao

h(z) = h(a,)
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where we have evaluated g,(a,,a,,a,,a;3;a,) = f(a,) from Theorem 3.2. Hence
(3.29) h(z) = (@), .

qa) (4) [4) (4

do ) a, s} a; s} as s}
Comparing the expression in (3.29) for h(z) with that in (3.24) we see that

24 zq4 zq z4 29 g
b b b b b b b b
Aody Agd, Agdy Ayd, didsy A,dy 2

-
4

(3.30) g.(ag,a,,a,5,a5;52) = ﬂ R ,
4.4 94 97942429
ay a,’ ay, ay a, a,’ ay’ ay aga,a,ds
and this identity is easily seen to be (3.1). By analytic continuation, we see that
(3.1) is valid in any region containing the one we have treated in which both sides
of the identity converge; however the conditions |g| < 1, |z] < g™ "% |a| = 1
will be adequate for most of our purposes. [

We shall now utilize (3.1) and Theorem 3.2 (which may be deduced from
(3.1) by setting b = z) to prove various results important in number theory. We
start with Jacobi’s triple product identity [10, Thm. 13-8, pp. 169-170].

THEOREM 3.4. For|q| < 1,z # 0,
Y 4 =@ (—24: 47 (— 27 gD

Proof. Let b, ¢, d, e all - o0 in (3.1) (such limit-taking may be justified by an
appeal to Tannery’s theorem: see [43, p. 371] for details). Then

0 2n2—na2n(

q 1 —ag®™ q
z (1 _ (1) - (aQ)x(q)x(a)

n= —x

x

Replacing ¢ by g2 and then a by —zq in this result, we see that

oo}

(B31) Y ¢z + zg* ) = (=245 0D (@2 14D (— 27 g5 7).

n=-o

Now
0 ) © , o0 ,
Z q4n ZZn(l + Zq4n+1) — Z a(Zn) ZZn + Z q(2n+1) ZZn+l
n=—o n=-—ow n=—o0
(3.32) .
— Z qn N
n=-—o

We may now combine (3.31) and (3.32) to obtain the desired result. [
COROLLARY 3.4.1. For |¢| < 1,

oo}

2 (Q)oo
—1)g" = )
..:Z-w( )q oo

Proof. Setting z = —1 in Theorem 3.4 and recalling from the proof of
Theorem 2.8 that (—q),, = 1/(q;q?),,, we see that

e

2 1 = 07509003 47)2095 0 = (@095 8 = o
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THEOREM 3.5. For n = 1, ry(n) = 4(d,(n) — ds(n)), where r,(n) is the number
of representations of n as a sum of two squares and d(n) is the number of divisors
of n congruent to a (mod 4).

Remark. We say that n = a? + b? = ¢* + d? are two different representations
of n as a sum of two squares if a # ¢ or b # d. Thus 1 has the four representations
12405 (=12 +0,0% +1%0% + (=1~

Proof. First we note

£s) 2 Y
(3.33) _Z (—1)”61"2) =) rm(—q

44 3 (=17, — dy()g”

n=1

)r(q(4m+1)r _ q(4m+3)r)

Il
+
o~

™
g
T

m=0r=1
=1 + 4 Z Z (_1)m+rq(2m+l)r
m=0r=1
(3.34) =14+4 Z Z (— )m+r @m+1yr Z z 1ymtr (2m+1)r)
m=0r=m+1 m=0r=1
0 q(2m+l)(m+1)
=1—4 + 4 m+r (2m+1)r
mz=:O 1 + q2m+1 rzl mzr
o] (2m+l)(m+l) oe) q(2r+l)r
=1-4 +4
Z 1 2m+1 rzzl 1 + qzr
_1 nn+1)/2
—1+4 Z (—1rg™" 7
n=1 1 + qn

Comparing (3.33) with (3.34) and using Corollary 3.4.1, we see that our theorem is
equivalent to the following analytic identity :

0 (_l)nqn(n+1)/2 (q) 2
(3.39) 1+4 - = =1 .
In Theorem 3.2 set a, = a, = —1, let a; —» o0, and z — 1 (equivalently, in (3.1)
set b = a, then c =d = —1, and let ¢ > 00, a — 1). This yields
XL 1 _ 42n 1 2 n_nn+1)/2 2
(3:36) Z (@n-1(1 = g*)(=Da(=1)q _ ( (4)- ) _
= (@a(—a); (=),

Now we may simplify the terms of the series as follows:
(@,-1(1 = ¢*) (= Da(=1)g"™" D2 4(=1yg"et 72

(@—9) 1+q

Therefore (3.36) reduces to (3.35), and our theorem is established. []
THEOREM 3.6. For n = 1, r4(n) equals 8 times the sum of the divisors of n not
divisible by 4.
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Proof. As in the previous theorem,

(337) ‘ (i (—U"q"’) = 3 =y,

— n=0

Next we note that if N = 2°m, where m is odd, then

Z(—l)’HNd_ld = Z Z (= 1)2d+N2 0 g

d|n dlm j=0
= -2 (=DM Y Y (-1
dlm dlm j=1
a—1
=hﬁH—mW+zy—r
d|m j=1
Yd  ifa=0(e, N odd),
_ dlm
—3Yd ifaz1.
dlm

Recalling that the o function a(n) =Z aIN d is multiplicative and that ¢(2) = 3,
we see that

(3.38) —Z(—l)‘””""d=(—1)"’2d.
d|N d|N
4fd
Therefore by (3.38)
1+8i(zﬂ(qw—1-sz T (—1ytm
(339) N=1 \d|N roolm ll)m N

(here we used z/(1 + 2)*> = =Y m(—1)"z"). Comparmg (3.37) with (3.39) and
using Corollary 3.4.1, we see that our theorem is equivalent to the following
analytic identity :

© _1 m m
(3.40) 1 +8 Z a +)q'")2 = (((_qi;;

In Theorem 3.2 set a, = a, = a; = —1 and let z — 1 (equivalently, in (3.1) set
b=a,¢c=d,e= —1,and let a — 1). This yields

[+ Z (@,-1(1 = ¢*)(=D(=1)"q" _ ( @)e

(341 Dl o).

Now we may simplify the terms of this series as follows:
@-s(1 — g*) (= D= 1\q" _ 8(=1)'q"
@) 1+ g
Therefore (3.41) reduces to (3.40) and our theorem is established. [
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To simplify our work on eight squares, we require a minor lemma.
LEMMA 3.2. For N = 1,

~1\N( _ N
i ¢ —gN(=1)Y — 24—z "W (—zq))
z—1 (1 - Z)

Proof. Let Q(z) = z"(—z~ "W(—zq)". Then the above limit is just Q'(1).
Hence by the product rule for derivatives,

L nolgiz? n—1 qj+1
,1 = —IN— N ‘—N _—“'N P
Q1) =( )a( Q)n{z ,;ol +z—lqj 1201 —}—zq“l .

N  Ng'
N N
= (=M= L - = + 1
( 1)"( (1)“ ( 2 1 (1” )

N N N Ng" \ .
= (—l)n(—Q),.(L 5t qn),
the simplification in the last equation occurs because the two sums cancel at
z = 1 except for first and last terms. []
THEOREM 3.7. For n = 1, rg(n) = 16(—1)" Zdi"(— 1)%d3.
Proof. As before,

(3.42) (f( ) f ry(n)(—q)".

— =

Utilizing the elementary summation

Z m3m_—z—i-4zz—z3
= o (L42* 7
we see that
1+ 16 Z (Z(—l)‘%ﬁ)q": L+ 16 Z Z (= )"m3q™
(343) n=1 \d|n r=1m=1

© (_qr + 4q2r _ qu)
=1+ 16 : .
r; (1 +q)r
Comparing (3.42) with (3.43) and using Corollary 3.4.1, we see that our theorem
is equivalent to the following analytic identity:

2 (—=q"+ 497" — ¢’ ( (@)oo )8
3.44 1+ 16 = .
(344 FI6 2 T g (—a).
In(31)setb=c=d=e= —1,and let z - 1. This yields
@, \® . &= zg™g"(— 1)}
o0 — l n
k@J Gl Y T
o0 ZZ"q"(—l): B 0 Z—an—3n( 7~ )4Z4nq2n}
{—zo:o(l - 2)(—zq); z,.=z—w (1 = 2)(—q)

(where —n has replaced n in the second sum)

z=1 _

= lim

z=1
] n _1 40 N4 D AV YO 4
Z q . llm( )n( q)n Z( z )n( Zq)n
__m(_q)"z—'l (1 —Z)
(where lim )’ = Y lim by Tannery’s theorem [43, p. 371])
(cont.)
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(3.45) £ ¢t . . 4q"
- _ — - L 32
T gt =1+ ] (by Lemma 32
& q'Gq" — 1)
=1+16 e
e 2 S0y
nx0
. "(3q" q "Gq"" — 1)
=1+16 4+ 16
n; (I +¢ Zl 1+ q7°
6 i (_qn + 3q2n + 3q3n_q4n)
n=1 (1 + qn)s
i —q" + 49> = ¢°")
o 1+ g* '

Thus (3.45) is identical with (3.44), and so our theorem is proved. []

A similar treatment may be given to rg(n), where in (3.1) we set b =c¢ = d
= —1 and let e > o0, z — 1. Algebraic manipulations of the resulting series are
somewhat messy however.

There are a number of other applications of (3.1) to number theory. Our
next theorem is originally due to S. Ramanujan. We shall give a proof due to
W. N. Bailey [17].

THEOREM 3.8. For n = 0, p(5n + 4) = 0(mod 5), where p(n) is the number of
partitions of n.

Remark. Tt might seem that this result belongs in §2; however, since it is
deducible from (3.1) and since it is a congruence, we have included it here.

Proof.
i { q5n+1 B q5n+2 B q5n+3 N q5n+4 }
- _ 5n+1)2 (1 _ q5n+2)2 (1 _ q5n+3)2 (1 _ q5n+4)2
20 5n+1 Sn+3
q q
= _Z_ {(1 _ q5n+1)2 - (1 _ q5n+3)2}
_ @ q5n+1(1 _ q2)(1 + q5n+2)(1 _ q5n+2)
o (1 _ q5n+1)(1 _ q5n+3)2
(340) 4l — g1 — ¢¥ 1 =-4.4.9.4. 4% ¢, ¢
S (-9 - “l//(’ 7 —4*,4% 4% 4. ¢°
_ql —g)(1 - q“) (qg'qs) @3 9),, (qs‘qs)“ (@1 97)o(q: 4)es
O ) B () RO (/A B A (/I A /A I B /A B
CTM
(@)

Now from (2.1) we see that Zn o P(Mq" = 1/(q),,. Using this fact and comparing
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terms in the extreme members of (3.46) that involve powers of ¢°, we see that

(@°;4%). Y. p5n + 4)g°"+?

n=0

= terms involving ¢° in )’ (n/3)a

n=1 (1 - qn)Z
(where (n/5) = 0,1, —1,1forn = 0,1,2,3,4 (mod 5), respectively)

= terms involving ¢ in ) ) (%) mq™

n=1m=1

Il
M8
M8

———
WS
s
wn

3
K

W
3
=

Therefore
& (n/ 5)q

. S La—g7
(347) g Sn + 4 nrl = T)go'

Hence comparing coefficients of ¢"** on each side of (3.47), we see that p(5n + 4)
=0(mod 5) foreachn =2 0. 0O

To conclude this section we shall derive the quintuple product identity from
(3.1). This identity has been rediscovered many times (see [25] for a brief history),
and has been of use in several problems in number theory (see Bailey [18], Gordon
[32], Andrews [7]).

THEOREM 3.9. For |q| < 1,]|z| # 0,

Yo (=1)grCrTREY + 2q") = (=427 ) (= 2)(@2 725 4704271 47) (@) o -
Proof. In (3.1) let b, ¢,d — co and set e = q'/?a'/?; then

0

Z (1 _ Zan)aS/Zn n(3n— 2)/2( )

el

(a9) (@) (qa™ ")
(qIIZa— 1/2) (al/Z 1/2)OO

= (—a'?;q"?) (@ 9) (@) (—q'Pa™ V54" @™ Pq: 9)
= (—a'?) (—a'?q"?) (@) (@) (— q'2a™ ) o (—qa™ '?) o (a” 2q),,
= (a;9%)(—a'?q") (@) (—q'?a™ ) y(a™ a7 47) .

=(1-a
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Replacing a by z ™~ 2g, we see that

[e o]

(3 48) Z (1 _ Z—2q2n+1)qn(3n+1)/22—3n(__l)n

Therefore

Z (_l)nqn(3n—1)/223n(1 +an)

n e8]

o0 °s)
— Z (_l)nqn(3n+1)/22—3n + Z (_l)nqn(3n+ 1)/223n+1
n=—o n=-w
(n replaced by —n in first sum)
e e
— Z (_l)nqn(3n+l)/22—3n _ Z (_l)nqn(3n+1)/2+2n+lz—3n—2
n=-—o n=-oo

(n replaced by —n — 1 in second sum)

i (1 _ 2—242n+l)qn(3n+1)/22—3n(_l)n

n= —oo

= (=927 (=292 71 4% (a2% 5 4P n(q),,  (by (3.48)),

and this is precisely the desired result. [

It has been our object in this section merely to scratch the surface of appli-
cations of basic hypergeometric series to number theory. Apart from Theorems
3.2 and 3.8, none of the proofs given in this section have appeared before. There-
fore the techniques introduced here appear to hold promise for many further
number-theoretic investigations. We remark that M. Jackson has found sig-
nificant number-theoretic application of formulas involving a well-poised gi/q
(e, K5, 5(ag,ay,a,,a;3,a4,as;2;q)), and it should be possible to extend our
g-difference equation techniques to prove the following identity of W. N. Bailey
(19, (3.2), p. 197]:

V2 aq aq =11 q aq aq
(3.49) o el ef
§ _laal=e/a)d o) (a%)sqsg
el G 7.

This identity may be used to prove the Rogers-Ramanujan identities (as Bailey
remarks), and it should be applicable to various fifth order mock theta function
identities [6].

It is quite conceivable that a more extensive study of K , .(ay, -+, a;52;9)
could lead to new proofs of Mordell’s formulas [44] for r,(n), to new proofs of
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more of the Ramanujan congruences [13], and to other number-theoretic results
related to elliptic functions.

Finally, it should be mentioned that Theorem 2.7 is a special case of Theorem
3.2 (which is in turn the special case of (3.1) when b = a); to see this, set a, = z!/2,
a, = —z'? in Theorem 3.2. Thus Theorems 2.8, 2.9 and 2.10 may be seen as
corollaries of (3.1) also.

Theorems on sums of squares are often treated as corollaries of identities
involving elliptic functions. Indeed, L. Carlitz (Nieuw Arch. Wisk., 3 (1955),
pp. 193-196, and Proc. Amer. Math. Soc., 8 (1957), pp. 120-124) has treated the
sums of four, six and eight squares in a very elegant manner utilizing certain
elliptic function identities. It is quite likely that these more general elliptic function
identities are also special cases of (3.1).

4. Application to finite vector spaces. The relationship between basic hyper-
geometric series and finite vector spaces arises from the following well-known
theorem (see, for example, [48, p. 240]).

THEOREM 4.1. Let V, be a finite-dimensional vector space of dimension n over
GF(q), the finite field of q elements. Then there are exactly

(") _ (@),
kl,  (@DdDu-r
subspaces of V, of dimension k.
n
Remark. ( ) is called a g-binomial coefficient or a Gaussian polynomial.

Proof. First we determine the number of k-tuples of linearly independent
vectors {v,,v,,---, v} that exist in V,. We may select any nonzero vector for
vy, and since there are g" vectors in V,, we may select v, in ¢" — 1 ways. The vector
v, must be selected to lie outside the subspace spanned by v,, and so v, may be
selected in ¢" — g ways. In general, v, must lie outside the subspace spanned by

{v{, -, v;_1},and so v; may be chosen in ¢" — ¢'~ ! ways. Hence the number of
k-tuples of linearly independent vectors is
(4.1) @ = D" —q (¢~ ¢,

Each such k-tuple spans a k-dimensional subspace; however, two different k-
tuples may span the same subspace. In fact the number of k-tuples spanning the
same subspace is just the number of linearly independent k-tuples that exist in a
k-dimensional space, and by (4.1) this number is

(42) (@ = D(¢" —q) - (¢ — g ").
Therefore the number of k-dimensional subspaces of V, is just
@ - D" —q - (¢"— ¢
@ = D" —q) (¢ — ¢
@R = ) =g Y) (L= gt
g TR DHL = g1 =g (1 = g)

_ (@, =(")
Wl W, "
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To illustrate how finite vector spaces may be used in the theory of basic
hypergeometric functions, we prove the following g-analogue of Vandermonde’s
theorem [52, (3.3.2.6), p. 97]; E. A. Bender [2i] has proved a more general result
of this nature using finite vector spaces.

THEOREM 4.2. For nonnegative integers m, n and h,

b [n m m+n
Z( )( )qum_m =( )
=0\ \h—=1], h |,

n
Remark. From the definition of (l) , we may rewrite the above result as
q

¢ [ ,q—n;q’qn+m+lj| _ (q)m—h(q)n+m
g Dok Dt
and if we assume |g| < 1, then this result follows directly from Theorem 2.6, the
g-analogue of Gauss’s theorem. In the proof below we assume that ¢ is a prime
power.
Proof. Let us consider V,,,, (a finite vector space of dimension m + n over
GF(q)), and let V,, be a chosen subspace of dimension m. We note from Theorem

m +
4.1 that there are " ) subspaces of V,, , , of dimension h.

We now ask for the number T, of h-dimensional subspaces of V, ., that
intersect V,, in an /-dimensional subspace. To count these spaces, we ask for linearly
independent h-tuples (x;, X,, -+, X;, V1, V2, " -+ » Vu—) such that the x’s lie in V,,
and the )’s outside V. Just as in Theorem 4.1, the x’s may be chosen in
(¢" — 1)(@™ — q) -+ (¢™ — ¢'~ ') ways, and the y’s may be chosen in (¢"*" — ¢™)
< (g™t — gD 1y ways. Thus the number of h-tuples of the desired type is

(@" = D" =) @q" =g

_(qm+n _ qm)(qm+n _ qm+1) . (qm+n _ qm+h—l—1).

As in Theorem 4.1, several h-tuples may span the same space; indeed exactly
those h-tuples lying in the same V, with the first / entries in ¥, and the rest outside
V, are the ones spanning the same space. Consequently to obtain T;, we must
divide 4.3)by (¢ = 1) - (¢' — 4" )" — ¢) -+ (¢" — ¢"" """~ ). Therefore

@ = D" =@ @ =4 g =G =g ) (g =g

@ -1 =a @ -¢ " -N"—a" ) (q"—q"")

( ) g ”(q D@ =g ¢ —q""""
i

I(h— l)( h—1 h—l—l)

=" =" =g

e

Hence

n+m . : ( ) ( ) (m—=UD(h=1) . ( m ) (n) (m—h+ Dl
= 4q = q ,
( h )q lzzo :Z h - 1 l:ZO h - 1 q 1 q

where we have replaced | by h — [ in the last sum. [

(4.3)

’Tl':
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G.-C. Rota and J. Goldman in [47] and [48] have shown how fruitful the
relationship between basic hypergeometric functions and finite vector spaces is;
at the conclusion of [48] they pose a number of problems that appear to be quite
important in this study. In a short note [42] D. Knuth presented canonical map-
pings between certain sets of partitions, the lattice of subspaces of V,, and the
lattice of subsets of {1,2, - -+, n}; Knuth in this way answered one of the central
problems posed by Rota and Goldman [48, p. 258].

A second problem posed by Rota and Goldman concerns the extension of
the theory of binomial enumeration [49] to finite vector spaces. This extension was
made in [8]. Below we present a brief introduction to this topic.

Our consideration will be devoted to certain linear operators acting on
P = R[X], the ring of polynomials with real coefficients. If f(X)e P, we define
1, the Eulerian shift operator, by

(4.4) n'f(X) = f(¢"X) = f(AX),

where 4 = ¢°.
An Eulerian differential operator t is a linear operator on P satisfying the
following two conditions:

4.5) qg “m*=mn%, and tX"#0 foreachn > 0.

An Eulerian family of polynomials is a sequence of polynomials {p(X)}2,
such that p,(X) = 1, p,(X) is of degree n, and

) pj(X)Yjpnvj(Y)'

q

n

(4.6) pAXY)= ) ( .

jzo \J

Given an Eulerian differential operator 7, a sequence of polynomials

{pX)}, is the sequence of Eulerian basic polynomials for © if py(X) =1,
p,(1) = 0forn > 0, and

(4.7) (X)) = (I = ¢")p,—(X).

We now present the central theorems related to these concepts. Since the
proofs are somewhat lengthy and are readily available in [8], we shall for the
most part omit them.

THEOREM 4.3. (a) If {p(X)}:-, is an Eulerian basic sequence for some Eulerian
differential operator, then it is an Eulerian family of polynomials.

(b) If {p(X)} ¢ is an Eulerian family of polynomials, then it is an Eulerian
basic sequence for some Eulerian differential operator.

Proof. See [8, pp. 351-352].

THEOREM 4.4. If {p(X)}:L, is an Eulerian family of polynomials and if C,
is the leading coefficient of p,(X), then

5 A0 _ (X0

4.8
(48) L @, 0
where

Ct"
49 = "
( ) f(t) n;O (q)n
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Proof. See [8, pp. 356-357].
THEOREM 4.5. Let {p(X)} 2, and f(t) be as in Theorem 4.4. Then

o
fio - exp{ 3 P,

nz20 (Q)nn
We choose a simple example to show how this theory is applied. Let
(4.10) D, = (1/X)(1 —n).

Then one trivially verifies (4.5) for D,; hence D, is an Eulerian differential operator
(called the g-derivative).
Next we define
@11) PX,Y)=(X - Y)(X - Yg - (X —Yq"™"), P(X,Y)=1.
Since
X-DX-q - X-¢"H-Xqg-1--(Xqg—¢q""

D,P(X,1) = <

X—q"'"—q(X - 1/g
X

=X -DX-q (X —4q"?

=1 -4q"P,_(X,1)
and Py(X, 1) =1, P(1,1) = 0, we see (by Theorem 4.3) that {P,(X, 1)},2, is the
Eulerian family of polynomials associated with D,.
Therefore, by Theorem 4.4,

P(X, )" e(X1)

(4.12) 0 T @
where e(t) = ) 1"/(q),.
Since B
X,1
Py, 1)—)1(ian( 1)=(q)n-1,

we see by Theorem 4.5 that

e(t) = exp{ ) ——(q();)_:lt"} { 2 ( _"q }
n21 n 21

{Z 5 g m"} = exp {— Y log(l — tq’")} =)'

nz21m20 mz20

(4.13)

Combining (4.13) with (4.12), we see that

P(X, " (1),
n§0 (q)n B (tX)oo’

or

(4.14) (XTXY (g

nz0 (q)n (IX)OO ’
a result equivalent to Theorem 2.4.
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If we define

1 (d-mn
X 1—byg™V

Y —
Y =

then 7 is also an Eulerian differential operator, and if {g,(X)},%, is the related
Eulerian family of polynomials, then it turns out that 8, (9.4), p. 365]

5 g X)" _ (bX1),(t),

w0 @, (X000,
If we expand g,(X) in terms of P,(X, 1) so that

g X" C.(P(X, 1)
4.16 1 = DECA N
( ) n§0 (Q)n ,é:o (q)n

(4.15)

then it is possible to deduce [38, first Eq. (9.9), p. 367] that

_t"(b),
(4.17) C,)= b0),
Combining (4.15), (4.16) and (4.17), we see that [8, second Eq. (9.9), p. 367]
(X0, eX)"  (bX1), (1)
(419 Lo @b, (X060,

a result equivalent to Theorem 2.6.

Other important results in basic hypergeometric functions are deducible
from this theory including the Rogers—Ramanujan identities, which are related
to the Eulerian differential operator (1/X)(n~% — n~1).

Finally, we note [48, p. 252] that when X = ¢*, Y = ¢ and x > y, then
P(X, Y) is the number of nonsingular linear transformations of V, into V, where
the image of V, has only 0 in common with V|, a fixed subspace of V.. This is easily
seen, for if v,, ---, v, form a basis for V,, we need only determine the action of a
linear transformation f on this basis. There are clearly X — Y choices for f(v,).
Now f(v,) must lie outside the space spanned by V| and f(v,); hence there are
X — Yq choices for f(v,). Continuing in this manner, we see that the total number
of such mappings is (X — Y)(X — Yq) -+ (X — Yg"~ ') = P(X, Y). Thus we see
the relationship between properties of finite vector spaces and Eulerian families
of polynomials.

Another more complicated type of nonsingular linear transformation of a
finite vector space is also studied in [8, § 11]; here the Eulerian family is

n .

h(X) = ) ( ) P(X, 1P, _ (X, HU",
jz0 \Jly

where U is a fixed parameter. The h,(X) are seen to be closely related to what are

called the g-Hermite polynomials [24], ZPO (n) U,
Y

q
We should add that recent work by M. Henle [41] suggests that both the
Rota—Mullin theory of binomial enumeration [49] and the theory of Eulerian
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differential operators [8] may be subsumed in a more general structure with
diverse combinatorial applications.

5. Application to combinatorial identities. With the rekindling of interest in
combinatorial analysis has come a large amount of work on binomial coefficient
summations such as

2n + 1 + k 2n —
(5.1) ¥ ( " )(P ) _ ( n p)zzn-zp
k=0 \2p + 2k + 1 k p

(see [30, p. 711, [34]), and
| e
a—ki\b—kl \ b
(see [33]).

( X+ y+k
k

The impression one gains from treatises on the subject (cf. Riordan’s book
[46] or Gould’s table [35]) is that, for the most part, such identities cannot be put
into a coherent setting. Riordan’s statement is, perhaps, the most pessimistic
[46, p. vii]: “The central fact developed is that identities are both inexhaustible
and unpredictable; the age-old dream of putting order in this chaos is doomed
to failure.”

This situation seems quite unfortunate. Indeed, binomial coefficient identities
arise in many different areas of mathematics, and it would be quite useful if it
were possible for mathematicians generally to be able to prove such identities in
short order rather than being diverted into a general study of binomial identities
just for the purpose of cracking one particular problem. H. W. Gould [35] has
made a significant contribution to mitigating this situation. He has tabulated 555
combinatorial identities, of which over 450 are purely binomial coefficient
identities. However, there still remains the difficulty of finding one’s own identity
among a vast number of others, and as Gould points out [35, p. viii], the situation
may be further complicated through changes of variable and introduction of
redundant factors.

The object of this section is to emphasize the close relationship between
binomial coefficient identities and ordinary hypergeometric series (and simul-
taneously that between g-binomial coefficient identities and basic hypergeometric
series). There are several important reasons for studying these relationships:
first, by translating binomial coefficient identities into hypergeometric series
identities, we then need only check the 4-page, 32-entry table of L. J. Slater [52,
Appendix III] rather than the 450 entries of Gould. Second, we not only avoid
the need to fashion ad hoc methods for summing our series, but we have our
result completely established since we are quoting a known theorem. Third, the
number of known g-binomial coefficient identities is much smaller than the
number of known ordinary binomial coefficient identities. The approach used
here allows the production of g-analogues of many known combinatorial identities
by merely replacing the hypergeometric series translation by its g-analogue.

Theorem 5.1 indicates the procedure for translating binomial coefficient
identities into hypergeometric series identities, and Theorem 5.2 illustrates why

(5.2) Y

k20

y+b)
a
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hypergeometric series identities are not easily disguised. The remaining theorems
of this section show how our technique applies to some of the more popular
binomial coefficient summations.

We define

(5.3) lal, =ala+1)---(a+n—1).

The standard notation for this product is (a),; however, this last symbol has al-
ready been utilized extensively in this paper with another meaning.
THEOREM 5.1. Let A, B,C,D be fixed nonnegative integers with A > C = 0.
Then
(An + DA + C)!

(5.4) C+1 C+2 C
= (DA + C)!A*"| D D I D+=+1];

(B — An)! = (- ™"B!

M? BI[ B-1 B-A+1]"
(5.5) il i

provided B — An = 0;

DA+C+1. DA+C+A.

(5.6) (Dan+pa+c = @Dpa+clq 14, (g 54"
q 9)p
(@ %aMq™ B s aM, - (@ BT g,
Proof. These results are all obtained by simple algebraic manipulation.
First,
(An+ DA+ C)! = (DA + C)![DA + C + 1],

C+1 C+2 C
=DA+CO)A"| D+ ——||D+——| | D+=+1].

—BAn+ An(An— 1)/2( _ I)An(

(5.7) (@)p-an =

Next,
B! (- 1)4"B!

B(B—l)-~-()§—An+1) [—Bl,,
(_I)AnB!A~An

[T

Since (5.6) and (5.7) are proved in an entirely analogous manner, we shall omit
the proofs. [

We now need some standard definitions from the theory of ordinary hyper-
geometric functions.

Consider

Ay, 0, 0,2 d [al]m"'[an]m
5.8 H - Dim 1 nm m
( ) " n|:b1’ ’bn ] m:Zoo [bl]m [bn]mz

where [a]_, = (—1)"[1 — a], . This series reduces to ,F,_; (see (1.2)) if b, = 1.

(B — 4n)! =
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We say that the series in (5.8) is Saalschutzian if a; + a, + --- + a, + 2 = b,

+ b, + -+ + b,. We say that the series in (5.8) is well-poised ifa, + b, = a, + b,

= ... =a, + b,, and we say nearly-poised if only n — 1 of these equalities hold.
Analogously we may consider (as in § 3)

Oy, ""an;q9t & (al)m"'(an)mtm
9 = e
(59) "‘”"[Bl, B, ] o B om

This series reduces to ,¢,_, (see (1.1)) if f;, = q. We say that the series in (5.9) is
Saalschutzian if a,a, --- a,q> = BB, -+ B,; well-poised if a;B, = a,B, = ---
= a,f,, and nearly-poised if only n — 1 of these equalities hold.

In Slater’s table of hypergeometric summations [52, Appendix III] only
three identities [52, (I11. 23), (I11. 24) and (IIL. 28), p. 245] do not involve either a
Saalschutzian, well-poised, or nearly-poised series; furthermore, all of the basic
hypergeometric summations in [52, Appendix IV] involve basic hypergeometric
series that are either Saalschutzian or well-poised.

THEOREM 5.2. The properties “‘Saalschutzian™, ‘‘well-poised” and ‘‘nearly-
poised” are invariant under shifting the index of summation or reversing the order
of summation.

Remark. This result provides evidence for why Gould’s table of binomial co-
efficient identities is so much longer than Slater’s; namely, altering the index of
summation now does not alter the most important properties of the series in
question, and redundant factors are easily spotted for they will appear identically
in both the numerators and denominators of the given series.

Proof. Replacing m by —m in (5.8), we find

- [I_bl]m"'[l_bn]mz_m,
(510) m=z—oo [1 - al]m U [1 - an]m
hence 2 + Y a; = Y. b, implies 2+ Y (1 —=b) =Y,(1 —a), and a, + b, = ---
=a, + b, implies (1 — b))+ (1 —a;)=---=(1 =05, + (1 — a,). Also if only
n — 1 of the latter equations hold for g; + b;, then the corresponding n — 1
equations hold for (1 — a;) + (1 — b;). Thus the three properties listed in the
theorem are preserved when m is replaced by —m.
If m is replaced by m + k in (5.8), we obtain

b

lad - (a2 & [ag + Kl oo [a, + K]w2"
[al]k [an]k m=—ow [bl + k]m e [bn + k]m ‘

In this case 2 + Y. a; = Y. b, implies 2 + Y (a; + k) = Y (b; + k), and a; + b,
= .- =a,+ b, implies (a;, + k) + (b; + k) = --- =(a, + k) + (b, + k). Simi-
larly the nearly-poised condition holds, and thus the theorem is established for
ordinary hypergeometric series.

The same approach applied to the basic series (5.9) produces first

(_q_ (4| (BB B
i ﬂlm ﬂnmalaZ'”ant

m=— o (q/al)m e (q/an)m

(5.11)

b}
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and next

(al)k e (an)klk (alqk)m e (anqk)mtm

(ﬁl) e (,Bn)k m=—x (quk)m e (:Bnqk)m .

The invariance of the three properties is again easily checked, and so our theorem
is established. [

We shall now illustrate the applicability of our method by proving some
identities of widespread combinatorial interest. In each instance, we easily pro-
duce the corresponding g-analogue.

THEOREM 5.3.
2n + 1 + k 2n —
(5.12) Y ( )(p ) - ( p)zZ"Z",
k=0 2[7 + 2]( + 1 k p
2n + k 2n —
(5.13) Y ( )(p ) =" ( p)zzﬂzv.
kso0 \2p + 2k k 2n—p\ p

Remark. H. T. Davis [30] attributes these identities to the fictional, arch-
criminal James Moriarty of the Sherlock Holmes short story, ““The Final Prob-
lem”. The reference is to Holmes’s description of Moriarty in which he says, ‘At
the age of twenty-one he wrote a treatise upon the binomial theorem, which has
had a European vogue.”” Apparently Moriarty had turned to crime even earlier
than had been thought previously (except by Gould [34, (15)]); for as we shall
see below, these two results are merely disguised forms of Gauss’s summation

ab;1
of ,F, .
¢

Proof. For (5.12), we see that

5 ( 2n + 1 )(p+k)
_ (2n+1) [p = nllp — n + 3y + 1],
2p+ 115 [+ 1hp + k!

¥(2n+1) F[p—n,p—n+%:li|
p+ 17! p+3

(2n + 1)[n +1],-,
2p+ 1/ p + 30—,

(by Theorem 5.1)

(by Gauss’s theorem [52, III. 3 (or III. 4), p. 243])

- 22"‘211[1]"[%]2(2,1 - p)'[%]p
(2n = 2p)![11, 131,011,030,

(vap
p

(by Theorem 5.1)

)22n—2p.
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For (5.13), we see that

b N [

:Fw [p — nllp — n+ 3hlp + 11
2pl ¥%o P + 3hlp + 1]:k!

2n p—np—n+3i:1
= oF, 1
2p p+3

2n [n] -,
= "= (by Gauss’s theorem [52, II1. 3 (or 1II. 4), p. 243
(zp)[p + %]n—p y I: ( r . ) p :I)

_ 23,020 — p — DI,
(2n = 2p)![11,[3], - +(n — D)3,
2n —p\ n
p )n -2p

(by Theorem 5.1)

— 22n—2p

If we consider the g-analogue of the above application of Gauss’s theorem,
we find the following g-analogues of the Moriarty identities.

THEOREM 5.3.
Z ( 2n+1 ) (p + k) qk(2p+2k+1)
(5 14) k20 2[) + 2k + 1 q k q2
' 2n —p
= p qz(_q)Zn—Zp"
Z ( 27’1 ) (p+k) qk(2p+2k—1)
(5.15) 0 2P+ 2 K e

_f”‘ﬂ (1 — ¢
=1, qz(—Q)zn-zp(l—_—q‘m-—z,,)-

Proof. For (5.14), we see that

Z ( 2n + 1 ) (p + k) GHEpr kD
k=0 2p+2k+1q k 92

(2n—2p)2k—k(2k— 1)/ ,2p—2 2p+2. 2 k(2p+2k+1
_ (2” +'1) g R Y Y :
g k20

2+ 1 (@7 ) 2ld? 47N

(by Theorem 5.1)
on + 1 (qZp—Zn;QZ)k(q2p72n+ l;qZ)k(qZerZ;qZ)kq4nk‘2kp+2k
(2p-+ l)quo R NV A ANV N
2” + 1 42[)72nq q2p*2n+ l;qZ’ q4n*2p+2
2]) +1 ‘ 2 l[ q2p+3 J

Il

(cont.)
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2n+ 1\ (> ?:4%,-,  (by the g-analogue of Gausss theorem [52,
2+ 1 q(q2p+3;q2)"7p IV. 2 or 1V. 3, p. 247], ie., our Theorem 2.6)

(59015804475 0720 45 4D pa s

C(@59D),5 1075 0 Dan 2075 AT 4P

2n —
= ( " p‘) (—q)anZp'
14 q?

For (5.14), we see that

2h p+k
2yl
k=0 2p+2kq k

2n—2p)2k—k(2k—-1 2p—2 2p+2. .2 k(2p+2k—1)
2n A (7 R e PYY (7 L B W

k(2p+2k—1)

qZ

2p q kgo (‘12p+1)2k(42 5 qz)k

2n (qZp—2n+1;qZ)k(q2p—2n.qZ)kq(4n—2p)k

b}

2p+1.,

2p g k20 (qz 5 qz)k(q s qz)k

on ¢ [qZp-Zn-Fl,qZpZn; qZ’q4n*2p]
= 2?1
zp . q2p+1

_[2n @ 4%)-, (by the g-analogue of Gauss’s theorem [52;
2, @ 4%, IV. 2 or IV. 3, p. 247], i.e., our Theorem 2.6)

_ (4:47)49%:4)4a: 974”1 4%)on-p-1
(a:4°)(a 147 @an-25(4: 4)d” 1 44

2n—p (1 —q*
- ( p )qz(‘q)z""“m' .

We next treat a slightly harder problem, namely the Reed Dawson identities
(46, p. 71]; these results show that sometimes it is necessary to reverse summation
when treatinga ,F, (or ,¢,). In this case (as we shall see), the results are corollaries
of Gauss’s second summation of a ,F, .

THEOREM 5.4

corfof)

k=0 k

o 2v)
-2y if n =2v,

v
0 if nisodd.
Proof. First we see that

U 2’<)_ [— (102024
kgo( I)(1<)2 k(k _,EOW (by Theorem 5.1)

1
—n,5:2
B zFl[ I }
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A check of Slater’s Appendix III shows no ,F, series with argument 2; however,
since a number have argument 3, we should clearly reverse the order of sum-
mation (i.e., replace k by n — k). Hence

(il

_1\yn—k h —n+k 2n — Zk)

k;( D (k)z ( n—k

_ we k(== 127" (= n) (= n)(2n)!
B Z (= kintn 1224 —n)(—n + 3

-t (,,) [_f;l"’%]

A2\ TG~ (by Gauss’s second theorem
( )2 [52, II1. 6, p. 243])

(by Theorem 5.1)

n

0 if nis odd (since I'(z) ! has zeros when z is a negative integer),
2—2v(4v [% - V]‘,
2v I:% - 2v:|v
0 ifnisodd,
=927 2@v)!(2v)1222v)12°[4),
(2v)!(2v)12%v!(4v)!
0 ifnisodd,

if n = 2v since [a], = ['(a + n)/I'(a)

ifn=2v

= o [2v)
272 ifn=2. 0

v

In passing to the g-analogue of the Reed Dawson identities, we encounter
the problem of finding the g-analogue of Gauss’s second theorem it is not listed
by Slater and has in fact only been discovered recently [11]. Namely,

(5.16) & (a)(b)g et _ (—Q)W(QQZQZ)w(bq:qz)w'

o (@)labg:q®), (qab: q?).,
THEOREM 5.5.
0 ifnisodd
(517) Z (_l)k(”) 1 (2k) q(n—k)(n—k—l)/?. — 2v2 2y
K20 kI (=ah\ k], q—;( ) ifn=2vy.
(_q)v v q

Proof. We begin by replacing k by n — k.
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Hence
- 1 2n — 2k Kk— 12
Y (=1 i q
k=0 q _q)n—k n—k q
kn—k(k— 1)/2(q)2 _ 2qu(k— 1)/2

(q_")kq
=(=1y
( )Eo [ O R o

(@™ "%q""(d3 4%
=(=1)"
(=D kgo (DD -k
(_ 1)"(q;q2)" (q—n)k(q—n)qukn—kZ/Z+k/2—k2n+k2

(by Theorem 5.1)

(@), k20 @da "5 q°),
_(=D'@:47) - (@g g
@ o (@da " 5a
(=)@ DlgT q°)> (by (5.16), the g-analogue of
@.a " "5 9%, Gauss’s second theorem)

0 ifnis odd, for then (¢~ "*'; 4%, = 0,

—2v+1 : q2)3

(q:9%)2a

—4v+1.

(q)Zv(q s q2)2v
0 ifnisodd,

= q2v3 (2V) " 5
oy if n v.

Theorems 5.3-5.5 illustrate well how our method works. As theorems, 5.4
and 5.5 are new; it should be clear that this technique is extremely useful in pro-
ducing g-analogues. As far as ordinary binomial coefficient identities go, we shall
have to wait and see how useful this approach is. There is a great deal of evidence
to support our belief that the use of hypergeometric series is useful in such prob-
lems. For example, of the first 50 entries in Table 3 of Gould’s book [35], over
40 may be proved by our method using only Gauss’s first and second theorems,
Kummer's theorem, Saalschutz’s theorem, and Dixon’s theorem [52, 111.3, I11.6,
I11.5, 111.2, 1IL.8, p. 243]. Another example is the Chinese identity

n+p\? (p)z(n+2p—k)
5.18 = ;
( ) ( p ) k§0 k 2p

Riordan points out [46, p. 16] that many proofs of (5.18) were given (at least 8).
As Carlitz pointed out in [23], this is merely a corollary of Saalschutz’s theorem
[52, II1.2, p. 243]. Similarly the binomial identity obtained by Cartier and Foata
in their study of graphs on three vertices [26, Chap. 6] and (5.2) above are both
a direct corollary of Saalschutz’s theorem.

Since the approach described in this section is like an algorithm for summing
series of binomial coefficients, we are preparing a computer program [12] that
should greatly simplify work on such problems.

ifn=2v
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6. Application to physics. There have been several applications of basic
hypergeometric series to physics in recent years. M. Baker and D. D. Coon [20]
have successfully utilized basic hypergeometric functions in a series of papers (in
the Physical Review D) on particle physics. Also N. G. van Kampen [54] has
applied basic hypergeometric functions to fluctuations in an electric circuit con-
sisting of a condenser and a diode.

We have chosen as an illustration W. Hahn’s solution to the equation of
motion of a weightless elastic cable that carries n point masses, where both the
weights and mutual distances of successive masses decrease in geometric pro-
gression with ratio g, 0 < g < 1. The solution is a g-analogue of the Laguerre
polynomials; in fact, if the weights and distances are constant (i.e., ¢ = 1) the
solution reduces to the ordinary Laguerre polynomials. The classical case ¢ = 1
is treated in detail by O. Bottema [22].

We consider n-point masses P, (1 <i < n) on a weightless elastic cable
acting only under the force of gravity. We let k; denote the distance from P, to
P, m; the mass of P,, and u(t) = u; the displacement of the point P, at time .
We denote the tension in the portion of cable from P, to P, by S,. The force
which acts on m; in the positive u-direction is then given by

Si_ S, .
_kl l(ui —u_y) + F‘(ui+l —u) I=sisnu=u,,, =0).
i—1 i
Consequently the equations of motion are
S._ S.
m(t) = = — upy) + 2y — uy).
ki—l ki

One now applies the method of Lagrange, making the substitution

u; =y cos(\/;t + @),

which leads to the following set of linear equations for the y,:

(6.1) pmyy, = _%(Y2 =)
(6.2) pmgy; = i:i() = Yi-1) = %(ym - ) 2=isn).
If we now assume
(6.3) my=q 'm;, k=4 'k, 0<qg<l,
and for simplicity
(6.4) my=g ',k =k[1—q),
then utilizing the substitution
i Sr

T4 = (= 1)'y;4 (1) [1

r=1

krm”’
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we deduce that
l-q¢ ' 1-¢ I—q")
qui—s - qui—z)Ti—l(ﬂ) - Wﬂ—z(ﬂy

T(w = | -

It is now a simple matter to check (by comparing coefficients of u") that

N q7,0;q,q'ku
Ti(n) = (= 1)q~ "~ "), z¢1[ q ]
(6.5) ) 12
S L kr‘urqr r— l
— _1)1 i(i 1)/2( )i _1 r—_( ) .
( 1 1 r=ZO( ) (Q)r Fly
We note that
) (_l)iqi(i—l)/Z i .kr‘ur i
m—————T(u(l —g) = ), (=1 = Li(kuw),
g1 () : V;O rt\r

the ith Laguerre polynomial [22, (3), p. 46].

If we now assume that our cable possesses infinitely many point masses
subject to (6.3) and (6.4), we shall see that a g-difference equation arises whose
solution is lim,_, , (—1)'¢"*~">T,(g)/(q);- The length of our cable is in this case
L = k(1 — g)~ 2. The rest point is taken to be P, and now S, = g(m; ., + m;,
+ --) = ¢'/(1 — q). Then instead of (6.2) we are led to
_— 1 1
(6.6) Kq' oy = E(yi = Vi) — ;(yi+1 = %)

If we write x = ¢'~ ' and V(x) = y,_,, we see that (6.6) becomes
6.7) V(g®x) + (kpx — 2)V(gx) + V(x) = 0.

The simplest solution of (6.7) analytic in x at 0 may easily be determined by
substituting V(x) = Z;’;O A;x’ into (6.7). As a result, we find

(6.8) Al — 1P = —kpg~' A4,y
or
oo 1y arr—1)/2 r
69) V= 4, 3 Sy
¥=0 (q);

a g-analogue of the Bessel function

© (1) (ukx)
o2/ k) = ;0(—(15;‘2—’1

By the above simple example, we hope to make clear that many problems
related to arithmetic differences have g-analogues in which geometric differences
replace arithmetic differences. Just as solutions in the arithmetic case many
times are hypergeometric series, so are solutions in the geometric case basic
hypergeometric series.
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7. Conclusion. As was stated in the Introduction, we have in this paper only
briefly sampled several areas of mathematics in which basic hypergeometric
functions play an important role. Not only are there many further applications
in each of the areas we have mentioned, but there are many unexplored possi-
bilities for applications still open. I would hope that the variety and novelty of the
results already found might provide inspiration for further research. The inter-
esting work of R. P. Agarwal and his students [2], [3] on bi-basic hypergeometric
series should also yield interesting applications in the future.

The following list of references is by no means exhaustive; in fact, we only
list those papers cited in the text. The reader is referred to [1], [2], [4], [9], [15],
(28], [35], [36] and [52] for much more extensive bibliographies.
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