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I. Introductien

Ix this paper we shall examine further the consequences of & theory of
ecertain basie hyperg trie series identities atudied in (1). We shall
apply the resuits of (1) to problema in additive number theory and in
the theory of g-series,

In § 2 we derive two more identities in general basie hypergeometric
series which will be useful to us in further developments. In §3 new
formulae for the family of third-order mock theta functions of (1) are
found; several of the results of this section have been proved in special
cases by N. J. ¥ine (3). In §4 we prove several partition theorems;
three of these theorema have been stated by N. J. Pine in (2) and proved
by him in (3). Our theory allows us to give new proofisof Fine's resultans
well an other partition theorems. In § 5 we obtain new g-series identities
for some of the false theta functions studied by L. J. Rogers [(7) 332-5).
Finally, in§ 6 we prove some resnlts analogous to the Rogers-Ramannjan
identities by combining our theory with some formulae due to L. J.
Blater (8},

At this point, I would Like ta thank N. J. Fine for allowing me to
inelade eeveral of his unpublished theorsms in this work. I was moti-
vated to find and prove 42-4f of § 3 only after sceing Fine's corresponding
identities for the criginal third-order mock thata funotions.

2, Further theorems of basic hypergeometric type

In (1} six theorems of basxio hypergeometric type were proved. In
this section we prove two more such theorerns.
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Quart. J. Math. Oxford (2}, 17 (1944}, 122-43.
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In the notation of basic hypergeometric series, the theorem becomes

o, [@8h bl tig] _ Mel—at ) Ma(—blg") o [a.b:tg:g?
TRty —(aep | T oL@ O (—athg))* | & |

Mul—a. ) 0, (—5,¢"
HEDE Z T g) Ty (—atb, 3
_ Ho(—at, g} a(—b.g®) z Uy (—at,g") Ny, (—tgq) .
Ne(—t g Na(—ath,¢) < 1, (—¢% ¢7) Ty, (—at.q)
(by Theorem A3 of {1}, interchange b with ¢, then replace a with at
and replace ¢ with at)

NMai—at,g) M. (~-b,4% z Mat~t. ¢4 N.(—#g.9%) o
(=t g) To(—~ath, %) £, T (—q% gt TI, (—alq, g%}
ﬂw(—ﬂ‘.q)nw(—bn?')ﬂn( =4, ¢") Do{—th, g*)
Ha(—t,q) T of —th, %) TV o{ —otq, ¢%) TLo(— b, 4)

Nl =8, 4% Mo{ —8, 4%
x Z (=gt g ot 9"
by Theorem A, of {1).
Bimplifying this last expression, we obtain the desired result.
The next result (which will be needed later) [(6); 171 equation (2)]
is proved: here only to show that it falls within the acope of our theory.
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In the notation of basic hypergeometric series the theorem beoomes
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by Theorem A, of (1)
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- Mo(—b, g*} u{—at, @) To(—efb, 9" Ta(— 86, 4%} %
Mo{—e, " T —t, g8 T o~ at, ") [1{ —5, ¢)
& Mai—b.g!) 0 —able,q®) 0
* 2 it
by Theorem A, of |}
Simplifying this lnst expression, we obtain the desired reault.

COROLLART 1. ?::a ﬁ:%fan!) = -.Z.n T (zgfa, ghe™ (o] = 1).

Proof. In Theorem 8 take
t=r1z, a=—qfr, b=4q", c=usg,
and Jet r - . This yields our reault.
Replacing each of =, 4 and ¢ by #* in Corollary 1, we obtain, upon
multiplication of both sidea by = and addition of 1 to both aides, that

2. et =
= ¥ it
I+ ...2.:.. s = 1t ,..z.. T (%, eyt
This identity was proved oombi ially by MacMahon [(5) 280-17.

3. The mock theta functions

In this section we shall further atudy the funetions f(x; ¢), $(u; g},
$la; g}, v{u; ), wla; g) defined in (1). We shall derive new expressions
for these funotions which we shall use in studying partitions,

o) Heig)=1+g 3 Mg ) —ogr®
{Bet # == ~qg, £ = g1 in Corollary 1 of Theorem 8),
() $l—ogi =) = (1) 3 Talatg.gf(—s
(set # = —a, # = —1 in Corcllary 1 of Theorem #),
($)  H—ags—g) = —g 3 (—1/emTlfaigti o)
{by da sinos Y(—og; —g) = ${+ai —g)-1),
U i) = 3 Ti—ghat g—atey
(ot 2 e= —o"g-! and x = ¢ in Corollary 1 of Theorem 8),

8 ferig =+ >
n=g M
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This identity is elightly more difficult. In Theorem I of (1}, we set
¢ =1,b=g,/t = —c. This yields
S Vi el gt el 1 g2 —
el Z Tnfgat, g)(—a)™ 4 .,.z.o T (g%, ¢*H—ag)
= (14-a) ¢l —og: —g)—id(—ng; —g) (hy (44) and (4c)).
Therefore,

(1o} z e = #i—ag —g—(1-halfi—ogi ~)

=Slegiq) (by (30) of (1)).
atg-1)m
0f)  wiethgh = Z s ey
In Theorem 2 of (1), we replace g throughout by g%, then we pet
P == atg-1, b= g% ¢ = 0. This yields

S Ruigiat, it

LT
Mogd) $ (o | S
H.,,(—E'.Q‘) M (—g4a% My (—h )

ma=d

Thus
u{—u; —g) = §q703(0, )M o(—atg ™, g)]14-

sy 3 el

P T
by (4d) and identity (€} of {1).
But
vi—a; —g) = 80, g Dl —alqt, ¢} +algPaa?; g}
by (3¢) of {1).
Hence we deduce (4f).

The formulne (4a) through (4f) kave all been found for the original
mock theta functions by Fine {3) using a diffsrent method.

4. Partition theorems

We start our study of partitions with a generalization: of the rank of
8 partition [(4) 200].

Derimimion. The (¢,b)-rank of o pariition s defined to be o times the
largest summand minus b imes the number of summands.
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For example, if we consider the partition 1+1+44+7+8 of 21, the
{4, 3)-Tank of this partition isx 48—3x5 =17, The (1, I)-venk of 2
partition is just the original rank. In an unpublished monograph (3),
N. J. Fine proves two generelizationa of Buler’s famous theorer that
the number of partitions of » into distinct parta equals the number of

partitions of » into odd parts. Since Fine’s results follow naturally from
our theory we include them.

Tweonen F, (Fine (3)). The number of partilions of N inte distinct
wparts with maximal pert M eguals the number of pertitions of N inio
odd parts with (1, ~—2)-ronk equal to 2M 1.

I give two proofs of this theorem,

First Proof. In Thecrem 7, we take! = rj, @ = 0, and b = g*. This
yielde, vpon multiplication by g,

& = mtlgtmil
Mygqearmt =S L
2, Tala.0r" 2 T
Expanding Both sides and comparing oceflicients of +¥g¥ yields the
desired result. Thie g-series identity wes originally proved by Fine
using a different method.

Jecond Proof. One of Sylvester's graph theoretic proofs of Enler's
theorem can be modified to prove Fine's theores [(5) 13]. Sylvester
sets up a one-to-one eorrespondence between the 1wo claases of partitions
in thefollowing way. The partitionsinto odd parts (e.g. 22 = 84615+ 3)

he writes graphically as
i

He then reads the partition as

{i.e 22 = 8+7+4-4+2+41). This procedurs is easily shown to establish
the deaired correspendence. Upon inspection, we see that sach partition
into digtinct parta with imal part M corresponds to a partition into
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odd parts with maximal part M* and number of parts v guch that
M =HM —1)+v or 2M+1 = M +2;since M'+2vis the (1, —2)-rank
of the partition into odd parts, we see that Fine's theorem is again
established.

‘We now prove a second refinement of Euler’s theorem stated by Fine
in {2) and proved in (3). This result is seen to be closely related to the
mock theta function identity (3c) of (1).

Txeoreu F, (Fine (3)). If U,in) denoles the number of partitions of n
inlo odd parts with mazimal part equal io m and D, (n) denotes the number
of parlitions of n into disting parlts with (1, 1}-rank equal to m, then

Upa(n) = Dy y(n)+Dyin).
Proof. From (3¢} of (1) we deduce
v{—abgl; —gi}—valyl; gh) = agwlagt; q).
Thas, by (4d) and {4f},
2 M getgn— 3 (- 1n—at, glengm
— (Gq’!llfl
?;Z,, Houl—~2.69"

Adter expanding both sides, we see that the coefficient of at+ig* on the
right-hand side of the equation is Uy (n}, and the coefficient of o¥r+igs
on the left-hand side of the equation ia Dy,,,{n)}+Dyln).

After gtating this laet th in (2) Fine d the following
double identity and deduced peveral results on partitions from it.

Trrorzx F, (Fine (3}).

- S (__])-nﬂ¢:= —_ 3 110 1
! P Myala. g L ;( L Tdg. g™+

=14 3 (—1pgnonii_gv,

FProof. The first part of the identity is cbtained by putting r = —1in
the q-series identity of Theorem F,.

Tn the Corollary of Theorem 8, we replace ¢ by g%, then set 8 = —gq,
z = —qt and obtain

Z ( ])-vl-(um

= — 1) Tlufg, .,
=0 [} ) nE—D( (g, 9lg™
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= (—1pmgimimsn) _ = _
e Z.w_l“gn(“‘) I.(g. g+

Now L. J. Rogers has proved [(7) 333, equation (6)] that

o (= 1gimimin 2, ~
=TTt g {—1)nginin-1] gy
,Z, .{e.9) + _z_:, ! B=7)
From, this the second part of the double identity follows,
For our next theorem, we need the following definitions.

Derrarrion, By P (N, M) we shall denole the number of partitions of N
¥nto paris of which the largest is ot most M and such that the number of
poris ia congruent lo o (mod 2}, For F(N, N), we write P{N).

Dernarios. By Q(N, M), e sholl denote the number of partitions of N
indo distine? odd poria such thal the (1, 2)-rank of the partition is less than
or equal fo 2M—1. Partitions of this type will be referred 1o 8 Qury-
pertitions. For QUN, N}, we wrile Q(N); Q(N) thus denotes the numbar of
partitions of N inlo distinet odd parts.

DErrrion. By B{N, M), we shall denote the number of partitionsof N
wiith unique largest port such that every other part ecours exaclly hwice and
such thal the (2, L)-rank of the partilion i3 equal to 2M +1. Partitions of
this type will be referred to az Ry -partitions.

If we consider Enler’s idantity written aa

Mo{—g.9" = {lalq, g}
we obtain "iu(-l)"Q(n)g" =_§n(a(n)—g(n))q".
Henee (—1)"Q() = B{n)—~Fn).

We shall prove & refinement of this resuli. Since our theorem is com-

pietely new, we include most of the details in the proof.

TuzoreM. R(N, M)—P(N, M) = (—L¥(QIN, M)—(—1)MR(N, 3)).
Procf. Just aa the second theorem of this seetion hinged on one of the
generalized mock theta funotion identities of (1) 50 also does this theorem.
From identity (3a) of (1) we have
S log; g) = ${—ag; —@)— (1 +ad(—ag; —¢).
Henoce by (4b), (4¢), and (4,8, we have

0 (_l)nan_ o " o 3 T B -
2, g gy = o2 T 0 ) F (=)l fa-tgt gtiamge.
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Now
c?.. (_ [ o] @x 0
-— — — 1 r+krt +k, ky 1+ kpn
DR i PR Ry
=Nzo 3 (—1MB®,3-R, ety
Also

o0 1

a 1 '
]'] -1 , 2V VT —]1ym m—k,-...-.kmx
mz=0 ,,,(Dt q.q )( a) mzo Iclgo kmz=0( ) o
% qk1.1 +oetEn(2m—1)

i X
NHOBEO 2m 1 Zk—— —Bkm=2M
+km{2m 1)==N

( —1] )k; B +k,,.)ql\"aﬂf( _— 1 )ﬂf.

The finite sum in this last expression gives the excess of Q,, y-partitions
with an even number of parts over @,,y-partitions with an odd number of
parts. Since the number of parts of a @,,y-partition must be even if N
is even and odd if N is odd, we see that the finite sum we are considering
is (—1)¥Q(M, N}.

Finally,

3 (— 1) I, (aige, gtjamgnst

m=0
© 1

— Z z z (—"l)mam—kl_ “kmqm+1+2k Mdas +2k1.1

m=0 k=0 k =0

w o0
= z (—l)m aMgN'
N=0M=0 2(m+1) —2k1—...~2km— 1"23!-{-1
+2km'm+ A2k =N

The finite sum considered here gives the excess of Ry,y-partitions with
maximal part odd over R, y-partitions with maximal part even. Since
the maximal part of an R,,y-partition must be even if ¥ is even and
odd if NV is odd, we see that the finite sum we are considering is

(=1)VHR(N, M).

Whence comparing coefficients of (—1)#ag¥ in our original identity
we obtain

BN, M)—B(N, M) = (—1)NQ(N, M)+ (—1)M+N+1R(N, M)
= (=D)MQWN, M)—(—1)"R(N, M)).

5. False theta functions

The false theta functions were originally defined and studied by L. dJ.
Rogers [(7) 328]. We shall show that for every integer 7 > 0 there
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exiots & polynomial @,(¢) of degree at most 2r such that

(82)  flg g = (=1 Dig.q%) niu (—1prginea -1 —g) 4 Q,{q).

‘T'he sum on the right-hand side of this equation is & false thets function.

From (3a) and (8b) of (1} it is easy, in virtue of {5a), to deduce false theta

identitiea for $(—g¥+1; —g%) and p(—g¥”+; —q?). Our proof of (6a)

involves the false theta identity of Rogers nsed to establish Theorem F,.
We firat treat r = 0.

ghan-1 1 = (|+|.._1)u)qln(--:)
=3 o~ e

S15 gl S e

N9 24 g
Now
= gll(--li nin-+1) (14 grgh=n-n
,Z,ii,(q. ZH.(M) 2 ,{g,9)
- qmn—u 441}
. E N Z Mg
u-lJ
H
o _Z,n,.:q.q)
Also
(=Lngine-t | S (o L)tghien o (— Lingininif) 4 gn)
_Z, (g.q} _Z; g, 9} __2_; ]
[ PN Y O | i
’+Z Toed ~ 4 Hag
Therefore
_ ( [)lqi'(l‘ﬂ.l
ALt E Z Taen

=1— 3 (~1pgen-i1—g) [(7) 833, equation (6)).

Thus (Sa) holds for + = 0 with Qy(g} = 1.



ON BASIC HYPERGEOMETRIC SERIES 141
Awmsume now that (5a) is true for a given r > 0. Then

Si® g%

(14-g¥+1)(2—f(g¥*1; ¢")) (by Lemma 3.2 of (1)}

= (12— (1P (0, 3 (~1%r-001 - "}~ @)
=T Ty ) 3 (17— +Q,nlg)

where Qrald) = (1 +*+1)(2—Quig))
Thun (fie) is completely established,

6. Further identities of the Rogers-Ramanujan-Slater type

I (8), L. J. Slater proved 130 formulae similar to the Rogers-
Ramanujan identities. All of her results relate expressions involving
infinite: products to g-series. The results that we have derived for basio
hypergrometric serics allow us to prove farther identities related to
twwe of Slater, We prove the following three identities although prob.
ubly utilk others may be obtained,

S (=1 I (g
RS =

= [Ma(—q P Tal— g%, ) i)~ g ok, ') K~ ),
e Jig) = Bt el ) Mal — g8

M= e
o Mal—gt®, g Mof—g* ¢™) Ma(—g", g%
Kig) = R
@ M.~2.9
(64) i ']‘“I l'l,..(l.q‘) - L(Q‘)+L(—9)
L M =PI TL i AN OO

o S g Log)— Lo
£ Tl ) gt = ALl

whige Lig) = O {—a.¢" nw(?‘.n_r—)gn-_;‘qu 7} Mafg® *qi),
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To obtain {6a) we replace ¢ by ¢ in Theorem 1 of (1), then we set
b= —¢q, ¢ = ¢*and let t - 0. This yields

n=0 Hn(_q‘l’ gi) Hn(_qa’qz)

(Mg g1 z (—1)"‘92""II (=¢% ") _
T (T @) Mo(—¢% ¢ a(—1, ¢ —¢, 1% ¢")

_ 9 1l(¢%, ) lg", ) Z (—lqu”"“"‘"‘ﬂ (—a%¢")
(¢ ¢%) Ho(—¢% ¢*) oo(—9, ¢°) —4¢*¢°) (g% 4%

Slater has proved [(8) 154, equation (27)] that the sum on the left-hand
side of this identity is {1—g¢)J(g) and that the second sum on the right-
hand side is K{—q?) [(8) 157, equation (50)]. Simplifying we obtain (6a).

" We obtain (6b) and (6¢) together. In Theorem 2 of (1), we replace ¢
by ¢* throughout and then set b = —1, ¢ = ¢q. This yields

i IT,(1, g%)gnen+v
13 En( —q, q)

(g% ¢) gt I,,(1, ¢%)
=TI (g2, ¢ -
Lol [ q,q”)] Z Mym(—¢% ¢*) Mm(e% 4°)

_ y[ Molet, ) S )
2q Hm(quq )I:Hw(___q,qg)] z H2m+1( q2 ) (qﬁ g4)

Slater has proved [(8) 156, equation (48)] that the sum on the left—ha.nd
side of this identity is

uo(q q) L
(Mo(—g, 7 ¢

Utilizing this formula to simplify our result, we obtain (65) and (6¢).
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