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ABSTRACT A (k - 1)-fold Eulerian series expansion is
given for 11(1-qn)l, where the product runs over all posi-
tive integers n that Rre not congruent to 0i or - i modulo
2k + 1. The Rogers-Rarnanujan identities are the cases
k =i 2andk 'i+1 =2.

1. Introduction
The Rogers-Ramanujan identities have a long and
interesting history. In 1894, L. J. Rogers proved the
following two identities which have subsequently be-
come known as the Rogers-Ramanujan or Rogers-
Ramanujan-Schur identities (see ref. 1 -pp. 90-99, for
the early history of these identities):
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where (a)o = 1, (a)n = (a;q)n = (1-a)(1 -aq)...
(-qq~) and Iq < 1.
The search for identities of a similar character has

gone on intermittently ever since; however, no simple
general identities of this nature have ever been dis-
covered.

V. N. Singh's formula (ref. 2, Eq. 3.6) comes the
closest to this objective; however it contains a rather
complicated representation of the Alder polynomial.

L. J. Rogers (ref. 3, p. 331, Eq. 6) also discovered
further identities related to the modulus 7; for example,
he-proved that
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In this same Yein, W. N. Bailey (ref. 4, p. 421) proved
three identities related to the modulus 9; for example
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A large amount of work was done on identities of this
type, and a collection of some 130 such identities was
published by L. J. Slater (5). In each of the identities
given by Slater, the modulus arising in the infinite
product is always <64 and always has its prime factor
among {2,3,5,7}.

Recently (6) five double series identities were ob-
tained related to the modulus 11; thus
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Unfortunately the methods used to prove [1.5] (as well
as those used by Rogers, Bailey, and Slater) seem
limited to special cases and do not provide general
theorems for an infinite family of moduli.

In attempting.to generalize fully [1.1 ] and [1.2], H. L.
Alder (7) was able to show that there exist polynomials
Gkj(n;q) such that

Gk(n;q) 0 (1 - qf)1; [1.6]
n(>0q) n n0,4i(mod 2k+ 1)

however neither his work nor subsequent papers (refs.
7; 8, Sec. 6; 9; 10; 2; 11; 12) on the Alder polynomials
yielded analytic identities of the elegance and simplicity
of [1.1] and [1.2].
The object of this paper is to prove the following

generalization of the Rogers-Ramanujan identities:
THEOREM 1. Let 1 _ i < k be integers; then

gNi2+N2'2+- * +N9JC1 +Ni+N;+. +Nk_1
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where N1 = nj + nj+l + * * * + nkl1.
We remark that this result reduces to [1.1] for k =

i = 2, and to [1.2] for k = 2, i = 1; otherwise, to our
knowledge, no special case of this result has appeared in
the- literature. We should point out that the work in
Section'3 here shows that V. N. Singh's formula (ref. 2,
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Eq. 3.6) can be transformed into Theorem 1 in the case
k = i by suitable rearrangements of series. For example,
with k = i = 3, we obtain

co q2%2+2*m+mi co

q = II (1 - q*)-1 [1.8]
n,mLO- (q)n(q)m n=1,+(od7

instead of [1.3].
It is important to note that the technique we shall

use to prove Theorem 1 is applicable to a number of
problems in the theory of partitions, and we hope in time
to apply it to some of the questions raised in (ref. 13;
Sec. 3) concerning partition identities.

After proving Theorem i in Section 2, we shall utilize
our results to obtain a new formula for the Alder poly-
nomials.
2. Proof of Theorem 1
We begin with a function that was originally introduced
by L. J. Rogers (14) and was considered independently
by A. Selberg (15).
QG,(x) = En20O

(- 1)nz>uq1/2(2t+D)5+1)*t-(1 - Xiq(20+l) ) [2.1]
where (a)..= (a;q). = lim(a;q),.
For completeness we include a proof of the following

functional equation that was independently discovered
by Rogers (14) and Selberg (15).

Qk,.t(x) Qk.t -(x) = (xq)t-Qk,..k-{+1(xq). [2.2]
This follows from the fact that

define Qti(x) = E C(J,j(MN)xMq, then by [2.11M,N2O
and [2.2]: (i) Cto(MN) = 0 for all M and N, (ii)
CQi(MN) = 0 if either M or N is nonpositive and
M2 + N2 # 0, (iii) Ck,t(0,0) = 1 for 1 < i < k, (iy)
CU-.j(MN) -Ct,- (M N) = Ck.-l+l(M - i + 1, N -
M) for 1 . i < k. Now these four conditions uniqiely
determine the Ct,,(M,N); this is easily established by
a double induction first on N and then on i. Hence we
see that the Qkt(x) (O < i . k) are the only functions
analytic in x and q around (0,0) that satisfy the func-
tional equation [2.2] for 1 < i < k and the boundary
conditions Qt.o(x) - 0, Qkf(O) = 1, 1 < i < k. To prove
[2.41 then, we need only show that the right hand side
of this identity also fulfills these defining conditions.
We define for k 2,0 < i <

XR(=(1)*q(k`1)U"'+(Ac-i)n
Rs,tj(x) = -Qk-lit(xq2*).n20 (q)n

Immediately we see that Rko(x) = 0 and Rk,(0) =1
for 1 < i < k. Furthermore for 1 < i < k
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6X_~1)St/2(2A:+l)X(X+I)-in(q-t1(l - qM) + xz-lq(s+l)(l-1)(1 - xqn+l)) n +l
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- = ~~~~~~~~~~~(xq)f lQt,k-i+,(xq)-

Since Qk,o(x) = 0 by [2.1], we see that by [2.2]
Ql,(x) = Q1,i(xq) = Ql,1(xq2) =

= lim Ql,(xq*) = Ql,(O) = 1. [2.3]

The next formula is new and is the key to the proof of
Theorem 1.

Qkt i(X) = E )-- Qk-l,t(xq2*), [2.4]
n2k:0 (q)n

for 1 < i- < k, k > 2.
To establish [2.4] we begin by observing that if we

+ (xq) i-I En>O (q)X
x (QJC-lk--+l(x*- (xq2 +2) IQJ_, ,t-(xq2*+2))

nO (q)n
X Q1-,.1-,(xq2M+2) + (xq) I- RtAt+L(xq)

x( -1) #+k-lq(,t-1) 1" +(3- -2^) +(2k- i-1)

nO (q)3
X Qt-_,t-l(Xeq2"2) = (xq) '-R*,,lt~kf+,(xq).
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Thus, since the Rkj(x) fulfill all the defining conditions,
we see that Rt, (x) = Q,j(x) for 0 _ i . k, k _ 2.
Hence [2.4] is established
Next we wish to show that for 1 _ i . k, k > 2,

defined by

Qk, ( =)- Gki(n;q)x
nZO (q)n

XNI+N2+. . . +N- qN'12+N22+... +N2^_1+N,+..-*+N. _

QA;t(X) = IE '[2.5J.nlni2,"...,n-12tO (q)Sl(q)X2. . (q)" l-

where Nj = nj + n1+l + - - + n"-i.
When k = 2, we see by [2.4] and [2.3] that

Q2. (X) = E
nO (q)n

which is just [2.5] for k = 2, i = 1. Furthermore by
[2.2]

x~qS2
Q2,2(X) = Q2,1(xq-1) =

n0o (q) n

which is [2.5] for k = i = 2. Hence [2.5] is valid when
k = 2.
We now assume [2.5] is valid for k- 1. Then for

1 _ i <k-, weseeby [2.4]that

x(Q-())lq(-=
Qt,iW = E

nk-I 20- (q)sn*_

THEOREM 2. For 1 < i < k,

Gk,i(n;q) =

nt+2n2+ * - - + (k-1)nt-1 = n Ll-2J
ni, **.,nk-.20

gk]. .. 1](q"l+')N2+ -+NV^_l

.qN 2+--* * +2k_1+N +-- * +Nk_ [3.21]

where Nj = nj + n1+l + *-- + nt-1, and

(q)(q) n-'(q) .,-, the Gaussian polynomial.

(Xq2s-l),Vl+ + - -. +k-2qn2+p2+ - *. +w^-2+vi+ . . . +p-k2

n, * ** ,fI-22o (q)xl(q)x2... (q)xh-1
where = n, + n,+l + - - * + n,_2. If we write N, =

Vf + nk-1, Nk-, = n*_-, then
Proof. Comparing [3.1 ] with [2.5], we see that

Q~cs:N)= +N29+ **+N2_'l+N,+Nj,++.--+N..

ni, *-* *,nl-k O (q) 3l(q) 32. .() h-,

which is [2.5] for 1 _ i < k. When i = k, by [2.2]

Qk.k(x) = Qc,,(xq-1)
NAI+.-* *+NtlqNi2+N22+ . * +N2'-1

= E
ni, * * * ,nm-12o (q)nl(q)n2 ... (q) nA-I

which is [2.5] for i = k.
We now easily deduce Theorem 1 from [2.1 ] and [2.5].
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(by Jacobi's identity (ref. 16, pp. 169-170)

= Qx,(l) (by [2.1])
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ni, * * * ,nk-iO

(q)nj;_s+njt_2+nj;_l (q)n**l-+ni;-
(q) nk 2+nk-l(q) n_. (q) n+-- *+nA (q)n,
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Nli2+. +10k-,+N;+ +Nt-,

rNk-2lFNki31 [Nl
ni+2nt+ - - - +(k -1)n-i n Ln42 JLnk3J Ln. J

ni, * *,nt...0
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3. The Alder polynomials

Equation [2.5] allows us to deduce easily tb
representation for the Alder polynomials

vs4.1+"~+Nhf l as desired.
Of all the previous representations of the Alder poly-

nomials, [3.2] most closely resembles that of V. N.
(by [2.5]). Singh (ref. 12, Eq. 3.7). This is probably due to the

fact that both approaches use an iterative process. In
fact, we may, by the following series of algebraic

le following manipulations, transform Singh's representation into
Gki(n;q), ours:

[3.1]

AnQAJLF%-T--JL Mathematics: Andrews
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Gkk(n;q) qn2 E (q"2 )21+(qS1 52+1)2** (q -32£..+1)21k 2 q22(n-t)-2(1-5)--2 k-2(tk3-3k-2)
Stl ,-z**(q2-2'i+l)(qk1 -2t2+1) * *. (q'-4-2 Sk-3+1)gk2

=2 ) (q~ ..-)( q____ . ______ -3q-2_1__(__-__1)_-2__q ( g1-1)( -2) 13(2 -3) -2t5k2(tk-- t-2)

-q2l,.**-2_o (q) n-2t, (q)51-22 (q) tk3-24-2(q) I(q) t.. (q) Ik-. (ql-2 5i+1) 12(q t,-2 t2 +1) 3 . . . (qik-4-2tk3+1)52
52 (q) n-2 i (n-'1) -2 12( t-12) * -2 tk-2( tk-3 '2)_ qn E -qnqJ [3.4]

t1, ** ,t-20o (q) n-251+g,(q) 51-2j2-+-S* (9) tk4-25k.3+5gk2(q) tk3-2512(q) Sk-2
Now we let tV-2 = nk1, tk nk-2 + 2nk1, "What finite linear q-difference equations with poly-

tk-j-l = nk-j + 2nk-j+l + *-- + jnk- for 1 < j <7c - 2. Thus t~2 = n~1, t~ - 2tA~..2 = ~ - nomial coefficients ... have solutions that can beIC-2. Thus tk-2 = nk,atnd 3 2tk2 = nk-2,t+ -1+ represented by 'higher dimentional' q-series?"
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