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ABSTRACT A (k — 1)-fold Eulenan series expansion is
given for II(1 — g*)~!, where the product runs over all posi-
tive integers n that are not congruent to 0,i or —i modulo
2k 4+ 1. The Rogers-RamanuJan identities are the cases
k—t—2andk—z+l=2

1. lntroductlon

The Rogers-Ramanujan identities have a long and
interesting history. In 1894, L. J. Rogers proved the
following two identities which have subsequently be-
come known as the Rogers—Ramanu]an or Rogers-
Ramanujan-Schur identities (see ref. 1;.pp. 90-99, for
the early history of these 1dent1t1es)

n208n k0,2 2(mod 5)
and |
qﬂ’+ﬂ _ et — an)—1 1
priae IIl. a-qgmn [1.2]

n$0,3 1(mod 5)

where (a)o = 1, (@), = (¢;9)» = (1 — a)(1 — ag)---
(1 — ag*~¥),and lg| < 1.

The search for identities of a similar character has
gone on mﬁertmttently ever smce, however, no simple
general 1dent1(:1es of this nature have ever been dis-
covered.

V. N. Singh’s formula (ref. 2, Eq. 3.6) comes the
closest to this objective; however it contains a rather
complicated representation of the Alder polynomial.

L. J. Rogers (ref. 3, p. 331, Eq. 6) also discovered
further identities related to the modulus 7; for example,
he proved that

Ta+e 3 L7

(q2 7q2) n( q)2n
11

nhd 1
n%0,+3(mod 7)

In this same yein, W. N. Bailey (ref. 4, p. 421) proved
three identities related to the modulus 9; for example

= 4*™(q)m
J-Il Q+q+ ¢ EO (q‘;g!)m(q‘;q‘)zm
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n%0, :h4(mod 9)

=gy [13]
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A large amount of work was done on identities of this
type, and a collection of some 130 such identities was
published by L. J. Slater (5). In each of the identities
given by BSlater, the modulus arising in the infinite
product is always <64 and always has its prime factor
among {2,3,5,7}.

Recently (6) five double series identities were ob-
tained related to the modulus 11; thus
IHa+e+e"+e¢m 2 X
m=1l - n20 520

g+ (1)) anay

(04,99 0(0%0%)1(g%4")2nt2s

- n=]
n%0,=5(mod 11)
XQA—=g9

Unfortunately the methods used to prove [1.5] (as well
as those used by Rogers, Bailey, and Slater) seem
limited to special cases and do not provide general
theorems for an infinite family of moduli.

In attempting to generalize fully [1.1]and [1.2], H. L.
Alder (7) was able to show that there exist polynomm.ls
G, ,(n,q) such that

Gr.s(n;9) -
(@)

[1.5]

11

nw=1
n#0,i(mod 2k+1)

1 —-gm [16]

n20

however neither his work nor subsequent papers (refs.
7; 8, Sec. 6; 9; 10; 2; 11; 12) on the Alder polynomials
ylelded analytic 1dent1t1es of the elegance and simplicity
of [l 1]and [1.2].

The object of this paper is to prove the following
gehgrgliz’ation of the Rogers-Ramanujan identities:

TeEOBEM 1. Let 1 < ¢ < k be integers; then

g AN AN AN AN AN
(Q)n;(Q) ny' (Q) k-1
III (1 - q”) _1;
n#O,:l:i?l:od 2k+1)

where N; = ny + nypq + -+ + my.

We remark that this result reduces to [1.1] for k =
12 = 2,and to [1.2] for k = 2, ¢+ = 1; otherwise, to our
knowledge, no special case of this result has appeared in

the literature. We should point out that the work in
Section 3 here shows that V. N. Singh’s formula (ref. 2,

nLny, - ma-120

[1.7]
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Eq. 3.6) can be transformed into Theorem 1 in the case
k = 1 by suitable rearrangements of series. For example,
with k = 7 = 3, we obtain

L) qzn’+2m»+an’ [

- 1

- n=1
70, +3(mod 7)

— ") —1
wato @@ - 18]
instead of [1.3].

It is important to note that the technique we shall
use to prove Theorem 1 is applicable to a number of
problems in the theory of partitions, and we hope in time
to apply it to some of the questions raised in (ref. 13;
Sec. 3) concerning partition identities.

After proving Theorem 1 in Section 2, we shall utilize
our results to obtain a new formula for the Alder poly-
nomials.

2. Proof of Theorem 1

We begin with a function that was originally introduced
by L. J. Rogers (14) and was considered independently
by A. Selberg (15).

Qr.e(z) = ”{.:0
% (_I_)ux).qn/:(u+1)u(n+1)-tu(l - x‘q(”""”‘) [2.11

@) n(zg" ™)
where (a)..= (a;9). = lim(a;q)a.
For completeness we include a proof of the following

functional equation that was independently discovered
by Rogers (14) and Selberg (15).

Qr.i(®) — Qr.i1(7) = (@) 'Qre—111(zg). [2.2]
This follows from the fact that

nxksq‘/i(2k+l)l(n+l)

. _ (-1)
Qi) — Qi) = é:o @)@+

(- 1)nxk-q'/z(zk+1)-(-+1)

_ (=1 — g% + zt-1g+DG-D(] — ggr+1)) = 3

n20 (Q)n(zq‘-'-l)a
s (= 1)%gkng/2ak+DR(+D +n(i-D
e T e

= —grgtti—t y (=1
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define @ (z) = MIZv;zo Ci.«(M,N)z*g", then by [2.1]

and [2.2]: () Cro(M,N) = O for all M and N, ()
Ci.«(M,N) = 0 if either M or N is nonpositive and
M2 4+ N2 =0, (213) C4(0,0) = 1forl < ¢ < k, (i)
G, M ,N) — Cpsa(M,N) = Copsn(M — 2+ 1, N —
M) for 1 < ¢ = k. Now these four conditions uniquely
determine the C,(M,N); this is easily established by
a double induction first on N and then on 7. Hence we
see that the @, («(z) (0 = 7 < k) are the only functions
analytic in z and ¢ around (0,0) that satisfy the func-
tional equation [2.2] for 1 < ¢ < k and the boundary
conditions @, o(z) =0, @;,;(0) = 1,1 < 7 < k. To prove
[2.4] then, we need only show that the right hand side
of this identity also fulfills these defining conditions.
Wedefinefork = 2,0 <7 =<k,

A uq(n—nu'+(k— iHn

Ry () = E Qr-1,4(zg*").

n20 (Q) n

Immediately we see that R, (z) = 0 and R, ;(0) = 1
forl < 7 < k. Furthermoreforl1 <7<k

TE-DRgE—DI+E—O)n

Ry i(x) — By ia(z) = E
n20 (q)u

X (Qi-1,i(xg*) — ¢"Qp1,41(29*™))

x(k—l)-‘sq(k-1>s’+(t—n-
(@Qt—1,01 (xq")

) @

+ (@) Q1 p—s (2™ ) — ¢*Q1,4-1(2g"))
z(k—l)n'q(k—l)u'-{-(k—{)n

= Z 1 — ¢")Qe-1,11(xg®")
n20 (q)n

(q“" — xiq(u+l)t — q(—t+1)~ + zi—lq(nﬂ)(t—l))

(— l)uxl:uq‘/i(zk+l)n(n+1) —in

=1 (@) a1(2zg* )
nkn /2 n(n —i)n
ok q (2k+1)n(n+1) +(2k+1—1) + (xq —

n20 (Q)n(xq“ﬂ)w

(_l)n(xq)knq’/l(zk+l)n(n+l)—(k—-i+1)ll(1 — (xq k—(+1q(zn+l)(’-’—¢+l))

(_l)sxknql/l(gk+l)l(l+l)+l(l—l) _ i
X @alag™). =@

Since Qi 0(xr) = 0 by [2.1], we see that by [2.2]

Q11(@) = Qua(zg) = Qua(zg?) = ---
= lim Qua(z¢") = @ui(0) = 1. [23]

n—ro

The next formula is new and is the key to the proof of
Theorem 1.

ZE-DRgER—Dw+E—On

Qe-1.4(z¢™), [24]

Qi) = 2, @

forl =+=k k=2
To establish [2.4] we begin by observing that if we

(9)(zg" )
= (2¢)''Qr.x—1+1(2q)-

zE—DRgE-D HE+Hi—)»

+ (xq - ﬂzg:o (Q)s

X (Qe1p—111(2g** ) — (2g**2)* Q) 1,11 (22" *?))

(X—1)n+(k—1) o (k—1)n?+(8k—i—2)n +(2k—i—1)
T q

n=0 (Q)ﬁ
X Qr-1,6-1(2g***2) + (29)*'Ry.x—e11(zg)

x(k—l)u+k—-lq(l:—1)s'+(n—l—z)l+(3l—i-—l)

n20 . ()8
X Qr1,11(2g***?) = (2q)* 'Ry 1—111(2q).
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Thus, since the R, ,(z) fulfill all the defining conditions,
we see that B, () = Qu(z) for0 = 71 Sk, k = 2.
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defined by

Hence [2.4] is established Qual) = 2 Gr.iniga”, [3.1]
Next we wish to show that forl S < k, k = 2, "z @~
V1Nt AN g NP AN e AN AN Ny
Q@) = - : 23],
nuny,- - - m-120 @Dm @D D
where N; = n; + njpq + -+ + mar.
When k£ = 2, we see by [2.4] and [2.3] that TaEOREM 2. For 1 £ 7 S k,
anu’+u
Qa@) = 2 —— Gra(n;q) = Nt_z]
n20 (q)n k't(n,q) ﬂl+2ﬂi+"'+(k—>l)ﬂt-l=n Ng—2
which is just [2.5] for k = 2, ¢ = 1. Furthermore by o120
22 N, N.
B o r—3 1
Q22(7) = Qea(xg™) = Eo (q),.’ gV AN N N [3.2]

which is [2.5] for k = 7 = 2. Hence [2.5] is valid when
k=2

We now assume [2.5] is valid for k — 1. Then for
1 <7=k—1,weseeby [2.4] that

x&—Dm. lq(k—l)“’n—l +HEk—)n_,

Qri(z) = 2
o120 (q)lt-l
where v; = n; + nyp + -+ + ms. If we write N; =
vs + M1, Npy = my, then
N1+
Qr.(2) = >

ny, .- me-220

where N’ = n; + Njh1 + - + Ng—1, and [:L]
(@)m(@) »~2(g) »—n"", the Gaussian polynomial.

(xqz-,,_,)’n+n+ oo +n=—zqn‘+n’+ ceodoiog bt tm-a

() 1N(') IERY (') I

b

Proof. Comparing [3.1] with [2.5], we see that

) +N.—qul'+N”+' AN N AN N

ny, -, ma-120
which is [2.5]for 1 < 7 < k. When <t = k, by [2.2]
Qe () = Qralzg™
N1t NN N e Ny

(Q) m(Q) ny " (q) nE-1

n, - ma-120

which is [2.5] for 7 = k.
We now easily deduce Theorem 1 from [2.1] and [2.5].

Il

ﬂ#O,d:o"('r:od 2k+1)

aQa—-g

i (_l)ﬂq‘/i(2k+l)n(n+l)—tn(1 — gen+ni)

= n=0
(@-
(by Jacobi’s identity (ref. 16, pp. 169-170)
= Q.(1) (by [2.1])
AN AV NNy ANy
B ny,e - me-120 @Dn@ns - (@D mis

(by [2.5]).

3. The Alder polynomials

Equation [2.5] allows us to deduce easily the following
representation for the Alder polynomials, Gi,:(n;9),

(Q) n:(Q) ny' " (Q) n-1

Gr.i(n;g) = (@)
qN1’+..-+N’,_,+N,-+--~+N,,_1

(Q) m(q) n' "t (Q) nE-1

(9) me—gtre—1
mt2net -+ k= Dr-1=n (@) ny_o(@) ms_y
n, - - ,ne-120

Nit---+Ni-1=n
ny,- - - ,nk-120

(Q) s R . T

(q)nn-&ﬂt-—ﬁ"ll—l .
(Q)nﬁ---+n._|(4)m

(@ mert @ s

S (gmt et ek =DM
. qN1'+-~-+Mt-1+N.'+"'+Nt-1

- Nk_z][Nk—‘] o [Nl]
mt2nat -+ k—Dmer=n LT—2 JL -3 (e
ny, - - - ,me-120
N T R )

as desired.

Of all the previous representations of the Alder poly-
nomials, [3.2] most closely resembles that of V. N.
Singh (ref. 12, Eq. 3.7). This is probably due to the
fact that both approaches use an iterative process. In
fact, we may, by the following series of algebraic
manipulations, transform Singh’s representation into
ours:
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. (qn—2atD),, (gh—2htY),, - - - (gh-3—2h-2tl),, g 2h—t) 2h(h—t) = —2h_(h3— b2
Gri(nyq) = ¢* : ) = n—gt;+1 6 —2 8, +1 Gog—28_3+1
t,- - le-320 (q)h(Q)h e (q)‘k-z (q 1 )lg(q ' 2 )l; cct (q k-4 k-3 )lg_z
X (q)n (q)h (q)u_! q—z H(n—1) —284(h—1) —2843(l—1t3) — - =24 (G _3—4_5)
B th,- - o220 (@) n—2s, . (@ 12, - () PRIIRI (/) PR (/) PREERNN (') PRIR (g2 (@25 HY),, - - - (gh-25H)),, ,
g2 H(R—t) —28(h—8) — - 24 _o(fh3— 43
— (99 ) (34]
PRERuraie X () PPN (/) PRIPYAPPREE RN (1) PRIPEPYRIUIPRIN (1) PRI YRIN (1) RIS

Now we let tyo = Ng—1, tr3s = Mg + 2n,‘_1, ceey
ey =My +2m_ypu + - +F jmaforl <5 =
k— 2. Thus tr s = M, lis — 22 = Mpg, gy —
2yt g =M, and beyy — by = Mgy + -+ +
Ny—s = N,_;. Therefore,

nt— 2(n — ) — 2ty — ta) — - -
— 2 o(trs — trs)
=n —2(N;+ - + Np)(n — Ny — - -+ — Npy)
— 2(N; + -+ + Ney)N,
— 2Ny + -+ + Ny )N

— 2Ny - Ny

=n? —2(N2+ --- + Nya)n + 2N2 + - --
+2N%,+2 3 NN,
251<j<Sk—1

=@m—Ne— -+ —Nea)2+ N + --- + N2

Hence the above shifts in summation (i.e., ;1 =

j
> Iny_;_y14;) transform [3.4] into [3.3].
i=1

4. Conclusion

Apart from the fact that we now have a reasonable
analytic generalization of the Rogers-Ramanujan
identities, there is at least one other significant feature
related to the present work. Namely, we now have
good reason to hope that the iterative use of ¢-dif-
ference equations (such as was used to prove [2.4])
will be instrumental in providing at least a partial
answer to Question 2 of (ref. 13, Sec. 3):

“What finite linear ¢-difference equations with poly-
nomial coefficients- - -have solutions that can be
represented by ‘higher dimentional’ g-series?”’
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