Partitions, q-Series and the Lusztig-Macdonald-Wall Conjectures

George E. Andrews*

The Pennsylvania State University, College of Science, Dept. of Mathematics, 230 McAllister Building, University Park, Pennsylvania 16802, USA

1. Introduction

Recently Michael Hirschhorn (University of New South Wales) and G.E. Wall (University of Sydney) communicated the following two conjectures to me:

Let $\chi_{n}=\chi_{n}(a, b, q)$ with $\chi_{-1}=a, \chi_{0}=b$ and for $n \geqq 0$
$\chi_{2 n+1}=\chi_{2 n}+q^{2 n+1} \chi_{2 n-1}$,
$\chi_{2 n+2}=\chi_{2 n+1}+q^{n+1}\left(1+q^{n+1}\right)\left(\chi_{2 n+1}+\left(1-q^{2 n+1}\right) \chi_{2 n-1}\right)$.
Let $\chi(a, b, q)=\lim _{n \rightarrow \infty} \chi_{n}(a, b, q)$.
Let $\chi(a, b, q)=\lim _{n \rightarrow \infty} \chi_{n}(a, b, q)$.
Conjecture 1 (Theorem 1 below): $\quad \chi(1,1, q)=\frac{\sum_{i=-\infty}^{\infty} q^{i^{2}}}{\prod_{j=1}^{\infty}\left(1-q^{j}\right)}$.
Conjecture 2 (Theorem 2 below): $\chi(0,1, q)=\frac{\sum_{i=0}^{\infty} q^{i(i+1)}}{\prod_{j=1}^{\infty}\left(1-q^{j}\right)}$.
Wall described the history of these conjectures thus: "[In [7] were] included generating functions for the numbers of conjugacy classes in the classical groups over finite fields. The power series $\chi(0,1 ; t)$ and $\chi(1,1 ; t)$ are what one needs to know in order to write down the generating functions for the symplectic and orthogonal groups over finite fields of characteristic 2 (see Theorem 3.7.3 on p. 59 [of [7]])"
"Early in 1976, Professor George Lusztig (of the Mathematics Institute, University of Warwick, in England) wrote to me saying, 'I have very strong

[^0]reasons (coming from representation theory) to believe that [Conjecture 2 holds]. I cannot prove this... . Independently, [Ian] Macdonald [Queen Mary College, London] has conjectured [Conjecture 2] by computing the first 30 terms of $\chi(0,1 ; T)$. I would also be interested in similar results for $\chi(1,1 ; T),{ }^{\prime} \ldots$ After receiving Lusztig's letter, I did some explicit calculations on $\chi(0,1 ; T)$ and $\chi(1,1 ; T)$; my calculations up to T^{25} confirmed Macdonald's for $\chi(0,1 ; T)$ and my calculations up to T^{16} on $\chi(1,1 ; T)$ strongly suggested [Conjecture 1]."

In the course of proving these conjectures it became necessary to prove an apparently new q-series identity:

Theorem 3.

$$
\begin{aligned}
\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{q^{n^{2}+m^{2}-n m}}{(q)_{n}(q)_{m}} & =\frac{1+2 q+2 q^{4}+2 q^{9}+\cdots}{1-q-q^{2}+q^{5}+q^{7}-q^{12}-q^{15}+q^{22}+q^{26}-\cdots} \\
& =\prod_{n=1}^{\infty}\left(1+q^{n}\right)\left(1+q^{2 n-1}\right)^{2},
\end{aligned}
$$

where $(q)_{n}=(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{n}\right),(q)_{0}=1$.
Furthermore the identities in the conjectures (Theorems 1 and 2) imply two theorems on partition identities.

Theorem 4. Let $H_{1}(n)$ denote the number of partitions of n into red, green or yellow parts each congruent to 2 modulo 4 and only yellow parts may be repeated. Let $W_{1}(n)$ denote the number of partitions of n into red or green parts with the restrictions that: (i) only even parts may be green (any part may be red); (ii) consecutive integers (i.e., j and $j+1$) may not both appear as parts; (iii) each odd number appears twice or not at all; (iv) the same even part cannot appear in two different colors; (v) if an even part is green the next truly smaller part (if it exists) is at least 3 units smaller. Then $H_{1}(n)=W_{1}(n)$ for all n.

To illustrate Theorem 4, we consider partitions of 8 wherein plain integers are considered red, primed integers green, and double primed integers are yellow. The thirteen partitions enumerated by $H_{1}(8)$ are $6+2,6+2^{\prime}, 6+2^{\prime \prime}, 6^{\prime}$ $+2,6^{\prime}+2^{\prime}, 6^{\prime}+2^{\prime \prime}, 6^{\prime \prime}+2,6^{\prime \prime}+2^{\prime}, 6^{\prime \prime}+2^{\prime \prime}, 2^{\prime \prime}+2^{\prime \prime}+2^{\prime \prime}+2^{\prime \prime}, 2^{\prime}+2^{\prime \prime}+2^{\prime \prime}+2^{\prime \prime}, 2+2^{\prime \prime}$ $+2^{\prime \prime}+2^{\prime \prime}, 2+2^{\prime}+2^{\prime \prime}+2^{\prime \prime}$. The thirteen partitions enumerated by $W_{1}(8)$ are $8,8^{\prime}, 6$ $+2,6+2^{\prime}, 6^{\prime}+2,6^{\prime}+2^{\prime}, 6+1+1,6^{\prime}+1+1,4+4,4^{\prime}+4^{\prime}, 4+2+2,4+2^{\prime}+2^{\prime}, 3+3$ $+1+1$.

Theorem 5. Let $H_{2}(n)$ denote the number of partitions of n into red, green or yellow parts with each red or green congruent to 4 modulo 8 and each yellow congruent to 2 modulo 4. Let $W_{2}(n)$ denote the number of those partitions enumerated by $W_{1}(n)$ with the added restrictions that: (vi) each part is larger than 1 ; (vii) 2 may not be green. Then $H_{2}(n)=W_{2}(n)$ for all n.

From examination of the partitions enumerated by $W_{1}(8)$, we see that $W_{2}(8)$ $=7$. The seven partitions enumerated by $H_{2}(8)$ are $6^{\prime \prime}+2^{\prime \prime}, 4+4,4+4^{\prime}, 4^{\prime}+4^{\prime}, 4$ $+2^{\prime \prime}+2^{\prime \prime}, 4^{\prime}+2^{\prime \prime}+2^{\prime \prime}, 2^{\prime \prime}+2^{\prime \prime}+2^{\prime \prime}+2^{\prime \prime}$.

In Section 2 we shall prove the conjectures. Section 3 will be devoted to Theorems 3-5, and in the conclusion we shall mention open problems arising from this study.

2. Proof of the Conjectures

We start by considering a more general sequence than that considered by Wall. Namely, we let $\chi_{n}(z)=\chi_{n}(a, b, q ; z)$ with $\chi_{-1}(z)=a, \chi_{0}(z)=b$ and for $n \geqq 0$

$$
\begin{align*}
& \chi_{2 n+1}(z)=\chi_{2 n}(z)+z^{2} q^{2 n+1} \chi_{2 n-1}(z) \tag{2.1}\\
& \chi_{2 n+2}(z)=\chi_{2 n+1}(z)+z q^{n+1}\left(1+z q^{n+1}\right) \cdot\left(\chi_{2 n+1}(z)+\left(1-z^{2} q^{2 n+1}\right) \chi_{2 n-1}(z)\right) \tag{2.2}
\end{align*}
$$

and by applying (2.1) to the right side of (2.2) we see that

$$
\begin{equation*}
\chi_{2 n+2}(z)=\chi_{2 n+1}(z)+z q^{n+1}\left(1+z q^{n+1}\right)\left(\chi_{2 n}(z)+\chi_{2 n-1}(z)\right) . \tag{2.3}
\end{equation*}
$$

Note that the initial values $\chi_{-1}(z)=a, \chi_{0}(z)=b$, and the recurrences (2.1) and (2.3) uniquely define the $\chi_{n}(z)$. Furthermore we see that the coefficient of q^{N} in $\chi_{M}(z)$ is some polynomial in z that is unaltered for any $M>2 N$. Consequently we see that $\chi_{n}(z)$ converges in the ring of formal power series in q whose coefficients are polynomial functions of z. Furthermore we see immediately that the χ_{n} sequence is dominated by the sequence $\gamma_{-1}=\gamma_{0}=A=\max (a, b)$ (assumed positive):

$$
\begin{aligned}
& \gamma_{2 n+1}(z)=\left(1+z^{2} q^{2 n+1}\right) \gamma_{2 n}(z) \\
& \gamma_{2 n+2}(z)=\left(1+2 z q^{n+1}+2 z^{2} q^{2 n+1}\right) \gamma_{2 n+1}(z)
\end{aligned}
$$

Clearly

$$
\lim _{n \rightarrow \infty} \gamma_{n}(z)=A \prod_{n=0}^{\infty}\left(1+z^{2} q^{2 n+1}\right)\left(1+2 z q^{n+1}+2 z^{2} q^{2 n+1}\right)
$$

which is an absolutely convergent infinite product provided only that $|q|<1$ with uniform convergence inside $|q| \leqq 1-\varepsilon,|z| \leqq M$. Hence we see that $\chi(a, b, q ; z)$ is analytic is z and q for fixed nonnegative a and b provided $|q|<1$.

Let us now represent $\chi_{2 n+1}(1,1, z ; q)$ by a $(2 n+2) \times(2 n+2)$ determinant:

$$
\begin{align*}
& \chi_{2 n+1}(1,1, q ; z) \\
& =\left|\begin{array}{cccccccc}
1 & z^{2} q & z q+z^{2} q^{2} & 0 & 0 & \cdots & \\
-1 & 1 & z q+z^{2} q^{2} & 0 & 0 & \cdots & & \\
0 & -1 & 1 & z^{2} q^{3} & z q^{2}+z^{2} q^{4} & \cdots & & \\
0 & 0 & -1 & 1 & z q^{2}+z^{2} q^{4} & \cdots & & \\
0 & 0 & 0 & -1 & 1 & \cdots & z q^{n}+z^{2} q^{2 n} & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & & z q^{2}+z^{2} q^{2 n} & 0 \\
0 & 0 & 0 & 0 & \cdots & \cdots & -1 & 1
\end{array}\right|, \tag{2.4}
\end{align*}
$$

and for $\chi_{2 n+2}(1,1, q ; z)$ we have the $(2 n+3) \times(2 n+3)$ determinant

$$
\begin{align*}
& \chi_{2 n+2}(1,1, q ; z) \\
& \quad=\left|\begin{array}{ccccclll}
1 & z^{2} q & z q+z^{2} q^{2} & 0 & 0 & \cdots & \\
-1 & 1 & z q+z^{2} q^{2} & 0 & 0 & \cdots & & \\
0 & -1 & 1 & z^{2} q^{3} & z q^{2}+z^{2} q^{4} & \cdots \\
0 & 0 & -1 & 1 & z q^{2}+z^{2} q^{4} & \cdots & & \\
0 & 0 & 0 & -1 & 1 & \cdots & & \\
\vdots & \vdots & \vdots & \vdots & \vdots & & 0 & 0 \\
& & & & & & 0 & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & & z^{2} q^{2 n+1} & z q^{n+1} z^{2} q^{2 n+2} \\
\cdots & \cdots & \cdots & \cdots & \cdots & & z q^{n+1}+z^{2} q^{2 n+2} \\
\cdots
\end{array}\right| \tag{2.5}
\end{align*}
$$

It is not difficult to see that these representations are valid. By expansion along the final column we see that these determinants satisfy the recurrences (2.1) and (2.3). Furthermore if we set $n=-1$ in (2.4) and (2.5) we obtain the appropriate initial values $\chi_{-1}=\chi_{0}=1$.

Next we represent $\chi_{2 n+2}(0,1, q ; z)$ by $(2 n+2) \times(2 n+2)$ determinant

$$
\begin{align*}
& \chi_{2 n+2}(0,1, q ; z) \\
& =\left|\begin{array}{rrrrlrrr}
1 & z q+z^{2} q^{2} & 0 & 0 & \cdots \\
-1 & 1 & z^{2} q^{3} & z q^{2}+z^{2} q^{4} & \cdots & \\
0 & -1 & 1 & z q^{2}+z^{2} q^{4} & \cdots & & \\
0 & 0 & -1 & 1 & \cdots & & & \\
\vdots & \vdots & \vdots & \vdots & & & \\
& & & & \cdots & -1 & 1 & z^{2} q^{2 n+1} \\
& & & & \cdots & -1 & 1 & z q^{n+1}+z^{2} q^{2 n+2}+z^{2} q^{2 n+2} \\
& & & & \cdots & & -1 & 1
\end{array}\right|,\left(\left.\begin{array}{lll}
\end{array} \right\rvert\,\right. \tag{2.6}
\end{align*}
$$

and for $\chi_{2 n+1}(0,1, q ; z)$ we have the $(2 n+1) \times(2 n+1)$ determinant

$$
\begin{align*}
& \chi_{2 n+1}(0,1, q ; z) \\
& \quad=\left|\begin{array}{rrrclllll}
1 & z q+z^{2} q^{2} & 0 & 0 & \cdots & & \\
-1 & 1 & z^{2} q^{3} & \dot{z} q^{2}+z^{2} q^{4} & \cdots & & & \\
0 & -1 & 1 & z q^{2}+z^{2} q^{4} & \cdots & & & \\
0 & 0 & -1 & 1 & \cdots & & & \\
\vdots & \vdots & \vdots & \vdots & & & & z q^{n}+z^{2} q^{2 n} \\
& & & & & \cdots & -1 & 1 & z q^{n}+z^{2} q^{2 n} \\
& & & & \cdots & & -1 & 1 & z^{2} q^{2 n+1} \\
0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & -1 & 1
\end{array}\right| \tag{2.7}
\end{align*}
$$

As with (2.4) and (2.5), the validity of (2.6) and (2.7) follows easily by expansion along the last column and the initial values for χ_{0} and χ_{1}.

We may now expand all these determinants along the top row: from (2.4) we find that

$$
\begin{align*}
\chi_{2 n+1}(1,1, q ; z)= & \chi_{2 n+1}(0,1, q ; z)+z^{2} q \chi_{2 n-1}(1,1, q ; z q) \\
& +\left(z q+z^{2} q^{2}\right) \chi_{2 n-3}(0,1, q ; z q) \tag{2.8}
\end{align*}
$$

from (2.6)

$$
\begin{equation*}
\chi_{2 n+2}(0,1, q ; z)=\chi_{2 n}(1,1, q ; z q)+\left(z q+z^{2} q^{2}\right) \chi_{2 n}(0,1, q ; z q) . \tag{2.9}
\end{equation*}
$$

Now we let $n \rightarrow \infty$ in each of Equations (2.8) and (2.9); this yields

$$
\begin{align*}
& \chi(1,1, q ; z)=\chi(0,1, q ; z)+z^{2} q \chi(1,1, q ; z q)+\left(z q+z^{2} q^{2}\right) \chi(0,1, q ; z q) \tag{2.10}\\
& \chi(0,1, q ; z)=\chi(1,1, q ; z q)+\left(z q+z^{2} q^{2}\right) \chi(0,1, q ; z q) \tag{2.11}
\end{align*}
$$

We may eliminate $\left(z q+z^{2} q^{2}\right) \chi(0,1, q ; z q)$ from these equations and deduce that

$$
\begin{equation*}
\chi(0,1, q ; z)=\frac{1}{2}\left(\chi(1,1, q ; z)+\left(1-z^{2} q\right) \chi(1,1, q ; z q)\right) \tag{2.12}
\end{equation*}
$$

Now we apply (2.12) to (2.11) to eliminate both $\chi(0,1, q ; z)$ and $\chi(0,1, q ; z q)$; after simplification we obtain

$$
\begin{align*}
\chi(1,1, q ; z)= & \left(1+z q+z^{2} q+z^{2} q^{2}\right) \chi(1,1, q ; z q) \\
& +\left(z q+z^{2} q^{2}\right)\left(1-z^{2} q^{3}\right) \chi\left(1,1, q ; z q^{2}\right) \tag{2.13}
\end{align*}
$$

We now observe that the functional equation (2.13), the initial conditions $\chi(1,1, q ; 0)=\chi(1,1,0 ; z)=1$ and the requirement that $\chi(1,1, q ; z)$ be analytic in z and q for $|q|<1$ together uniquely define $\chi(1,1, q ; z)$. This is easily seen by consideration of the double series expansion

$$
\begin{equation*}
\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} a_{m n} z^{m} q^{n}=\chi(1,1, q ; z) \tag{2.14}
\end{equation*}
$$

The initial conditions show that $a_{00}=1$ and $a_{m, 0}=a_{0, m}=0$ for $m>0$. Finally if we substitute the double series expansion (2.14) into (2.13) and then compare coefficients of $q^{n} z^{m}$, we find a recurrence for the $a_{m n}$ which uniquely define them given the above initial conditions.

Next we consider

$$
\begin{equation*}
X_{1}(z)=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{q^{n^{2}+m^{2}-n m} z^{n+m}}{(q)_{n}(q)_{m}} \tag{2.15}
\end{equation*}
$$

where $(A)_{n}=(A ; q)_{n}=(1-A)(1-A q) \ldots\left(1-A q^{n-1}\right),(A)_{0}=1$, and

$$
\begin{equation*}
X_{2}(z)=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{q^{n^{2}+m^{2}-n m} z^{n+m}\left(q^{n}+q^{m}-q^{n+m}\right)}{(q)_{n}(q)_{m}} \tag{2.16}
\end{equation*}
$$

We note immediately that

$$
\begin{align*}
X_{1}(z)- & z^{2} q X_{1}(z q) \\
= & \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{q^{n^{2}+m^{2}-n m} z^{n+m}}{(q)_{n}(q)_{m}}-\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{q^{n^{2}+m^{2}-n m+1} z^{n+m+2} q^{n+m}}{(q)_{n}(q)_{m}} \\
= & \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{q^{n^{2}+m^{2}-n m} z^{n+m}}{(q)_{n}(q)_{m}} \\
& -\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{q^{(n-1)^{2}+(m-1)^{2}-(n-1)(m-1)+1} z^{n+m} q^{n+m-2}}{(q)_{n}(q)_{m}} \cdot\left(1-q^{n}\right)\left(1-q^{m}\right) \tag{2.17}
\end{align*}
$$

(we have shifted $n \rightarrow n-1, m \rightarrow m-1$ in the second double sum)

$$
=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{q^{n^{2}+m^{2}-n m} z^{n+m}\left(1-\left(1-q^{n}\right)\left(1-q^{m}\right)\right)}{\cdot(q)_{n}(q)_{m}}=X_{2}(z)
$$

Next

$$
\begin{equation*}
X_{2}(z)+X_{1}(z q)=\sum_{n=0} \sum_{m=0} \frac{q^{n^{2}+m^{2}-n m} z^{n+m}\left(q^{n}+q^{m}\right)}{(q)_{n}(q)_{m}} \tag{2.18}
\end{equation*}
$$

Also

$$
\begin{align*}
X_{2}(z) & -X_{1}(z q) \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{q^{n^{2}+m^{2}-n m} z^{n+m}\left(\left(q^{n}-q^{n+m}\right)+\left(q^{m}-q^{n+m}\right)\right)}{(q)_{n}(q)_{m}} \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{q^{n^{2}+m^{2}-n m+n} z^{n+m}\left(1-q^{m}\right)}{(q)_{n}(q)_{m}}+\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{q^{n^{2}+m^{2}-n m+m} z^{n+m}}{(q)_{n}(q)_{m}}\left(1-q^{n}\right) \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{q^{n^{2}+m^{2}+2 m+1-n m} z^{n+m+1}}{(q)_{n}(q)_{m}}+\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{q^{n^{2}+2 n+1+m^{2}-n m} z^{n+m+1}}{(q)_{m}(q)_{n}} \\
& =z q \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{q^{n^{2}+m^{2}-n m}\left(q^{2 m}+q^{2 n}\right) z^{n+m}}{(q)_{n}(q)_{m}} . \tag{2.19}
\end{align*}
$$

Consequently by (2.18) and (2.19)

$$
\begin{aligned}
\left(X_{2}(z)\right. & \left.-X_{1}(z q)\right)-z q\left(X_{2}(z q)+X_{1}\left(z q^{2}\right)\right) \\
= & z q \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{q^{n^{2}+m^{2}-n m}\left(q^{2 m}+q^{2 n}\right) z^{n+m}}{(q)_{m}(q)_{n}} \\
& -z q \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{q^{n^{2}+m^{2}-n m+n+m} z^{n+m}\left(q^{m}+q^{n}\right)}{(q)_{m}(q)_{n}} \\
= & z q \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{q^{n^{2}+m^{2}-n m} q^{2 m}\left(1-q^{n}\right) z^{n+m}}{(q)_{m}(q)_{n}} \\
& +z q \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{q^{n^{2}+m^{2}-n m} q^{2 n}\left(1-q^{m}\right) z^{n+m}}{(q)_{m}(q)_{n}}
\end{aligned}
$$

$$
\begin{align*}
= & z q \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{q^{(n+1)^{2}+m^{2}-(n+1) m+2 m} z^{n+m+1}}{(q)_{n}(q)_{m}} \\
& +z q \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{q^{n^{2}+(m+1)^{2}-n(m+1)+2 n} z^{n+m+1}}{(q)_{m}(q)_{n}} \\
= & z^{2} q^{2} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{q^{n^{2}+m^{2}-n m}(z q)^{n+m}\left(q^{n}+q^{m}\right)}{(q)_{n}(q)_{m}} \\
= & z^{2} q^{2}\left(X_{2}(z q)+X_{1}\left(z q^{2}\right)\right) . \tag{2.20}
\end{align*}
$$

We now define

$$
\begin{equation*}
X_{0}(z)=\frac{1}{2}\left(X_{1}(z)+X_{1}(z q)\left(1-z^{2} q\right)\right) \tag{2.21}
\end{equation*}
$$

and we are prepared to establish the most important identifies of this section. Namely

Lemma 1.

$$
\begin{align*}
& X_{1}(z)=\chi(1,1, q ; z) \tag{2.22}\\
& X_{0}(z)=\chi(0,1, q ; z) \tag{2.23}
\end{align*}
$$

Proof. We note that each of the four functions defined in (2.22) and (2.23) is analytic in z and q for $|q|<1$. Furthermore each of these four functions reduces to 1 when either z or q is set equal to 0 .

Let us substitute the expression for $X_{2}(z)$ from (2.17) into (2.20) in order to eliminate $X_{2}(z)$ and $X_{2}(z q)$; after simplification we see that

$$
\begin{equation*}
X_{1}(z)=\left(1+z q+z^{2} q+z^{2} q^{2}\right) X_{1}(z q)+\left(z q+z^{2} q^{2}\right)\left(1-z^{2} q^{3}\right) X_{1}\left(z q^{2}\right) \tag{2.24}
\end{equation*}
$$

We recall our remark following equation (2.13) (which is merely (2.24) with $\chi(1,1, q ; z)$ replacing $X_{1}(z)$); since (i) $X_{1}(z)$ is analytic in z and q for $|q|<1$, (ii) $X_{1}(z)$ equals 1 for $z=0$ or $q=0$, and (iii) $X_{1}(z)$ satisfies (2.13), we deduce that

$$
\begin{equation*}
X_{1}(z)=\chi(1,1, q ; z) \tag{2.25}
\end{equation*}
$$

Finally comparing (2.21) with (2.12) and bearing (2.25) in mind, we see that

$$
\begin{equation*}
X_{0}(z)=\chi(0,1, q ; z) \tag{2.26}
\end{equation*}
$$

This establishes Lemma 1.
To obtain Wall's conjectures we require one identity from the theory of basic hypergeometric functions:

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{q^{n^{2}-n} c^{n} x^{n}}{(q)_{n}(c)_{n}}=\frac{1}{(c)_{\infty}} \sum_{n=0}^{\infty} \frac{(x)_{n}(-1)^{n} c^{n} q^{n(n-1) / 2}}{(q)_{n}} \tag{2.27}
\end{equation*}
$$

where $(A)_{n}=(1-A)(1-A q) \ldots\left(1-A q^{n-1}\right)$ and $(A)=\lim _{n \rightarrow \infty}(A)_{n}$. This result follows from the second iterate of Heine's fundamental transformation; in identity (I2) of $\left[1 ;\right.$ p. 576] replace τ by $\frac{c x}{\alpha \beta}$, replace γ by c and let α and $\beta \rightarrow \infty$.

Theorem 1. $\chi(1,1, q)=\frac{\sum_{i=-\infty}^{\infty} q^{i^{2}}}{(q)_{\infty}}$.
Proof. $\chi(1,1, q)=\chi(1,1, q ; 1)$ (by definition)

$$
\begin{aligned}
& =X_{1}(1) \quad(\text { by Lemma 1) } \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{q^{n^{2}+m^{2}-n m}}{(q)_{n}(q)_{m}}(\text { by }(2.15)) \\
& =\sum_{n=0}^{\infty} \frac{q^{n^{2}}}{(q)_{n}^{2}}+2 \sum_{n=1}^{\infty} \sum_{m=0}^{n-1} \frac{q^{n^{2}+m^{2}-n m}}{(q)_{n}(q)_{m}} \\
& =\frac{1}{(q)_{\infty}}+2 \sum_{m=0}^{\infty} \sum_{n=m+1}^{\infty} \frac{q^{n^{2}+m^{2}-n m}}{(q)_{n}(q)_{m}} \quad(\text { by }(2.27) \text { with } c=q, x=1) \\
& =\frac{1}{(q)_{\infty}}+2 \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{q^{(n+m+1)^{2}+m^{2}-(n+m+1) m}}{(q)_{n+m+1}(q)_{m}} \\
& =\frac{1}{(q)_{\infty}}+2 \sum_{n=0}^{\infty} q^{(n+1)^{2}} \sum_{m=0}^{\infty} \frac{q^{m^{2}+m(n+1)}}{(q)_{m}(q)_{m+n+1}} \\
& =\frac{1}{(q)_{\infty}}+2 \sum_{n=0}^{\infty} \frac{q^{(n+1)^{2}}}{(q)_{\infty}} \\
& \left(b y(2.27) \text { with } c=q^{n+2}, x=1\right) \\
& =\frac{\sum_{i=-\infty}^{\infty} q^{i 2}}{(q)_{\infty}}
\end{aligned}
$$

as desired.
Theorem 2. $\chi(0,1, q)=\frac{\sum_{i=0}^{\infty} q^{i(i+1)}}{(q)_{\infty}}$.
Proof. $\chi(0,1, q)=\chi(0,1, q ; 1) \quad$ (by definition)
$=X_{0}(1) \quad($ by Lemma 1$)$
$=\frac{1}{2}\left(X_{1}(1)+X_{1}(q)(1-q)\right) \quad(b y(212))$.
$=\frac{\sum_{i=-\infty}^{\infty} q^{i^{2}}}{2(q)_{\infty}}+\frac{(1-q)}{2} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{q^{n^{2}+m^{2}-n m+n+m}}{(q)_{n}(q)_{m}} \quad$ (by Theorem 1 and $\left.(2.15)\right)$
$=\frac{\sum_{i=-\infty}^{\infty} q^{i^{2}}}{2(q)_{\infty}}+\frac{(1-q)}{2} \sum_{n=0}^{\infty} \frac{q^{n^{2}+2 n}}{(q)_{n}^{2}}+(1-q) \sum_{n=1}^{\infty} \sum_{m=0}^{n-1} \frac{q^{n^{2}+m^{2}-n m+n+m}}{(q)_{n}(q)_{m}}$

$$
\begin{align*}
&= \frac{\sum_{i=-\infty}^{\infty} q^{i 2}}{2(q)_{\infty}}+\frac{(1-q)}{2} \sum_{n=0}^{\infty} \frac{q^{n^{2}+2 n}}{(q)_{n}^{2}} \\
&+(1-q) \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{q^{(n+m+1)^{2}+m^{2}-(n+m+1) m+n+2 m+1}}{(q)_{n+m+1}(q)_{m}} \\
&= \frac{\sum_{=-\infty}^{\infty} q^{i^{2}}}{2(q)_{\infty}}+\frac{(1-q)}{2} \sum_{n=0}^{\infty} \frac{q^{n^{2}+2 n}}{(q)_{n}^{2}}+(1-q) \sum_{n=0}^{\infty} q^{(n+1)^{2}+(n+1)} \sum_{m=0}^{\infty} \frac{q^{m^{2}+(n+1) m+2 m}}{(q)_{m}(q)_{n+m+1}} \\
&= \frac{\sum_{i=-\infty}^{\infty} q^{i^{2}}}{2(q)_{\infty}}+\frac{1}{2(q)_{\infty}} \sum_{n=0}\left(1-q^{n+1}\right)(-1)^{n} q^{n(n+1) / 2} \tag{2.27}\\
&+\sum_{n=0}^{\infty} q^{(n+1)^{2}+(n+1)} \frac{1}{(q)_{\infty}} \sum_{m=0}^{\infty}\left(1-q^{m+1}\right)(-1)^{m} q^{(n+1) m+m(m+1) / 2} \\
&= \frac{\sum_{i=1}^{\infty} q^{i 2}}{}+\sum_{n=0}^{\infty}(-1)^{n} q^{n(n+1) / 2}+\sum_{n=1}^{\infty} q^{n^{2}+n} \sum_{m=0}^{\infty}\left(1-q^{m+1}\right)(-1)^{m} q^{n m+m(m+1) / 2} \\
&= \frac{1}{(q)_{\infty}}\left\{\sum_{i=1}^{\infty} q^{i 2}+\sum_{n=0}^{\infty}(-1)^{n} q^{n(n+1) / 2}\right. \\
& \quad+\sum_{n=2}^{\infty} \sum_{m=-2}^{\infty} q^{n^{2}+n+n m+m(m+1) / 2+m+1}(-1)^{m} \\
&\left.\quad-\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} q^{n^{2}+n+n m+m(m+1) / 2+m+1}(-1)^{m}\right\} \\
&= \frac{1}{(q)_{\infty}}\left\{\sum_{i=1}^{\infty} q^{i 2}+\sum_{n=0}^{\infty}(-1)^{n} q^{n(n+1) / 2}\right. \\
&\left.+\sum_{n=2}^{\infty} q^{n^{2}-n}-\sum_{n=2}^{\infty} q^{n^{2}}-\sum_{m=0}^{\infty}(-1)^{m} q^{(m+3)(m+2) / 2}\right\} \\
&= \frac{1}{(q)_{\infty}}\left\{q+1-q+\sum_{n=2}^{\infty} q^{q^{2}-n}\right\}=\frac{\sum_{i=0}^{\infty} q^{i(i+1)}}{(q)_{\infty}},
\end{align*}
$$

as desired.

3. Applications

The results in Section 2 may be applied to both the q-series and partition theorems stated in the introduction.

Proof of Theorem 3. By (2.15) and Theorem 1:

$$
\begin{aligned}
\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{q^{n^{2}+m^{2}-n m}}{(q)_{n}(q)_{m}} & =X_{1}(1)=\frac{1+2 \sum_{i=1}^{\infty} q^{i 2}}{(q)_{\infty}} \\
& =\frac{1+2 q+2 q^{4}+2 q^{9}+\cdots}{1-q-q^{2}+q^{5}+q^{7}-q^{12}-q^{15}+q^{22}+q^{26}-\cdots}
\end{aligned}
$$

(by Euler's Pentagonal Number Theorem [3; p. 177])

$$
=\prod_{n=0}^{\infty} \frac{\left(1-q^{2 n+2}\right)\left(1+q^{2 n+1}\right)^{2}}{\left(1+q^{n+1}\right)}
$$

(by Jacobi's Triple Product Identity [3; p. 170])

$$
=\prod_{n=1}^{\infty}\left(1+q^{n}\right)\left(1+q^{2 n-1}\right)^{2}
$$

Now we treat the two partition theorems implied by Theorems 1 and 2.
Proof of Theorems 4 and 5. Let us replace q by q^{2} and z by 1 in the defining recurrences (2.1) and (2.3). This yields

$$
\begin{align*}
\chi_{2 n+1}= & \chi_{2 n}+q^{(2 n+1)+(2 n+1)} \chi_{2 n-1} \tag{3.1}\\
\chi_{2 n+2}= & \chi_{2 n+1}+\left(q^{2 n+2}+q^{(2 n+2)+(2 n+2)}\right) \chi_{2 n} \\
& +\left(q^{2 n+2}+q^{(2 n+2)+(2 n+2)}\right) \chi_{2 n-1} \tag{3.2}
\end{align*}
$$

Now it is clear that $\chi_{N}(1,1, q ; 1)$ is the generating function for the partitions of the type enumerated by $W_{1}(n)$ (n arbitrary) subject to the restriction that each part is $\leqq N$. This made obvious by (3.1) and (3.2). For example we split the considered partitions with parts $\leqq 2 n+1$ into two exhaustive and disjoint classes: (1) those in which $2 n+1$ does not appear, (2) those in which $2 n+1$ appears twice. Those in the first class are enumerated by $\chi_{2 n}$ and those in the second class are enumerated by $q^{(2 n+1)+(2 n+1)} \chi_{2 n-1}$. The same reasoning applies to Equation (3.2) once we observe that the third term on the right side takes care of the "green" appearances of even parts. Hence

$$
\begin{align*}
\sum_{n=0}^{\infty} W_{1}(n) q^{n} & =\lim _{N \rightarrow \infty} \chi_{N}\left(1,1, q^{2} ; 1\right)=\chi\left(1,1, q^{2}\right) \\
& =\prod_{n=1}^{\infty}\left(1+q^{2 n}\right)\left(1+q^{4 n-2}\right)^{2} \quad(\text { by Theorem } 1) \\
& =\prod_{n=1}^{\infty} \frac{\left(1+q^{4 n-2}\right)^{2}}{\left(1-q^{4 n-2}\right)} \quad \text { (by Euler's identity [3; pp. 164-165]) } \\
& =\sum_{n=0}^{\infty} H_{1}(n) q^{n} . \tag{33}
\end{align*}
$$

Now comparing coefficients of q^{n} in the extremes of (3.3) we deduce that $W_{1}(n)$ $=H_{1}(n)$ for all n.

The only alteration when we pass to Theorem 5 is that the change in initial conditions for $\chi_{N}(0,1, q ; 1)$ produces the restrictions on appearances of 1 's and 2's. Hence

$$
\begin{aligned}
\sum_{n=0}^{\infty} W_{2}(n) q^{n} & =\lim _{N \rightarrow \infty} \chi_{N}\left(0,1, q^{2} ; 1\right)=\chi\left(0,1, q^{2}\right) \\
& =\frac{\prod_{n=1}^{\infty}\left(1-q^{4 n}\right)\left(1+q^{4 n}\right)^{2}}{\left(q^{2} ; q^{2}\right)_{\infty}}
\end{aligned}
$$

(by Theorem 2 and Jacobi's Triple Product Identity [3; p. 170])

$$
\begin{aligned}
& =\prod_{n=1}^{\infty}\left(1+q^{2 n}\right)\left(1+q^{4 n}\right)^{2} \\
& =\prod_{n=1}^{\infty} \frac{1}{\left(1-q^{4 n-2}\right)\left(1-q^{8 n-4}\right)^{2}}
\end{aligned}
$$

(by Euler's identity [3; pp.164-165])

$$
\begin{equation*}
=\sum_{n=0}^{\infty} H_{2}(n) q^{n} \tag{3.4}
\end{equation*}
$$

and comparing coefficients of q^{n} in the extremes of (3.4) we deduce that $W_{2}(n)$ $=H_{2}(n)$ for all n.

4. Conclusion

The proof of the conjectures given in Section 3 appears to be unmotivated since the function $X_{1}(z)$ appeared from nowhere in (2.15). It was discovered from an empirical examination of the lower powers of z in $\chi(1,1, q ; z)$. The technique of representing recurrent sequences by determinants and then passing to q difference equations was utilized in [2] to treat Sylvester's generalization of Euler's theorem. Subsequently, M.D. Hirschhorn [5] has greatly simplified the treatment in [2], and V. Ramamani and K. Venkatachaliengar [6] have given a nice combinatorial treatment.

It seems surprising that an identity as elementary and as elegant as Theorem 3 has not been discovered previously. This naturally leads to the question: For what positive definite quadratic forms $Q(m, n)$ is

$$
\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{q^{Q(m, n)}}{(q)_{m}(q)_{n}}
$$

summable to an infinite product. The only nondiagonal forms I know of are km^{2} $+k n^{2}-(2 k-1) m n$ (k positive integral) and $n^{2}+2 m^{2}+2 n m$ [4; Eq. (1.8)]. Obviously this question can be generalized to k-fold series where a number of such results have recently been found; one such family is given in [4; Th. 1].

References

1. Andrews, G.E.: q-Identities of Auluck, Carlitz and Rogers. Duke math. J. 33, 575-582 (1966)
2. Andrews, G.E.: On generalizations of Euler's partition theorem. Michigan math. J. 13, 491-498 (1966)
3. Andrews, G.E.: Number Theory. Philadelphia: W.B. Saunders 1971
4. Andrews, G.E.: An analytic generalization of the Rogers-Ramanujan identities for odd moduli. Proc. nat. Acad. Sci. USA 71, 4082-4085 (1974)
5. Hirschhorn, M.D.: Sylvester's partition theorem and a related result. Michigan Math. J. 21, 133136 (1974)
6. Ramamani, V., Venkatachaliengar, K.: On a partition theorem of Sylvester. Michigan Math. J. 19, 137-140 (1972)
7. Wall, G.E.: On the conjugacy classes in the unitary, symplectic, and orthogonal groups. J. Australian Math. Soc. 3, 1-62 (1963)

[^0]: * Partially supported by National Science Foundation Grant MCS75-19162

