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1. Introduction 

Recently Michael Hirschhorn (University of New South Wales) and G.E. Wall 
(University of Sydney) communicated the following two conjectures to me: 

Let Z,=X,(a,b,q) with ~ _ l = a ,  Zo=b and for n > 0  

X2n+ 1 = Z2n "~ q2n+ 1 Z2n- 1' (1.1) 

~2n+ 2 = t(2n+ 1 "q- q"+ 1( 1 + q~ + 1) (t(2n+ 1 + (1 - q 2 n  + 1) ~(2n-- 1)" (1.2) 

Let z(a, b, q) = lim z.(a, b, q). 

Conjecture 1 (Theorem 1 below): 

Conjecture 2 (Theorem 2 below): 

qi2 
~(1, 1,q)= i= -~  

oo 

I-I (1 -- q J) 
j = l  

~ qi(i+ 1) 

x(O, 1, q) = i--o 
II (1 -qS) 

j = l  

Wall described the history of these conjectures thus : "  [In [7] were] included 
generating functions for the numbers of conjugacy classes in the classical groups 
over finite fields. The power series Z(0, 1; 0 and Z(1, 1; t) are what one needs to 
know in order to write down the generating functions for the symplectic and 
orthogonal groups over finite fields of characteristic 2 (see Theorem 3.7.3 on 
p. 59 [of [7]]) . . . .  " 

"Early in 1976, Professor George Lusztig (of the Mathematics Institute, 
University of Warwick, in England) wrote to me saying, ' I  have very strong 
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reasons (coming from representation theory) to believe that [Conjecture 2 
holds]. I cannot prove this . . . .  Independently, [Ian] Macdonald [Queen Mary 
College, London] has conjectured [Conjecture 2] by computing the first 30 
terms of X(0, 1; T). I would also be interested in similar results for X(1, 1; T).' ... 
After receiving Lusztig's letter, I did some explicit calculations on Z(0, 1 ; T) and 
X(1, 1; T); my calculations up to T 25 confirmed Macdonald's for X(0, 1; T) and 
my calculations up to T ~6 on Z(1, 1; T) strongly suggested [Conjecture 1]." 

In the course of proving these conjectures it became necessary to prove an 
apparently new q-series identity: 

Theorem 3. 

~ q nz+m2-nm 

n= 0 m= 0 (q)n (q)m 

l + 2q + 2q4 + 2q9 + . .. 
1 _ q _ q 2 + q S + q T  q12 q15+q22+q26 . . . .  

= l~ ( l+qn) ( l+q2n-1 )  2, 
n =  1 

where (q), = (1 -q) (1  _q2).. .  (1-q"), (q)o = 1. 
Furthermore the identities in the conjectures (Theorems 1 and 2) imply two 

theorems on partition identities. 

Theorem 4. Let H~(n) denote the number of partitions of n into red, green or 
yellow parts each congruent to 2 modulo 4 and only yellow parts may be 
repeated. Let Wl(n ) denote the number of partitions of n into red or green parts 
with the restrictions that: (i) only even parts may be green (any part may be 
red); (ii) consecutive integers (i.e., j and j + 1) may not both appear as parts; (iii) 
each odd number appears twice or not at all; (iv) the same even part cannot 
appear in two different colors; (v) if an even part is green the next truly smaller 
part (if it exists) is at least 3 units smaller. Then Hl(n ) = Wl(n ) for all n. 

To illustrate Theorem 4, we consider partitions of 8 wherein plain integers 
are considered red, primed integers green, and double primed integers are 
yellow. The thirteen partitions enumerated by H~(8) are 6 +2, 6 + 2', 6 +2", 6' 
+2, 6'+2', 6'+2", 6"+2, 6"+2',  6"+2", 2"+2"+2"+2",  2 '+2" +2" +2" ,  2+2"  
+ 2"+ 2", 2 + 2 '+  2"+ 2". The thirteen partitions enumerated by I411(8) are 8, 8', 6 
+2, 6+2',  6 '+2,  6'+2', 6 + 1 + 1 ,  6 '+1+1 ,  4+4,  4'+4',  4 + 2 + 2 ,  4+2 '+2 ' ,  3+3  
+ 1 + 1 .  

Theorem 5. Let Hz(n ) denote the number of partitions of n into red, green or 
yellow parts with each red or green congruent to 4 modulo 8 and each yellow 
congruent to 2 modulo 4. Let W2(n ) denote the number of those partitions 
enumerated by W1(n ) with the added restrictions that: (vi) each part is larger 
than 1; (vii) 2 may not be green. Then H2(n)= W2(n ) for all n. 

From examination of the partitions enumerated by W1(8), we see that I412(8) 
=7. The seven partitions enumerated by H2(8) are 6"+2", 4+4,  4+4' ,  4'+4', 4 
+2"+2" ,  4 '+2"+2" ,  2 " + 2 " + 2 " + 2 " .  
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In Section2 we shall prove the conjectures. Section 3 will be devoted to 
Theorems 3-5, and in the conclusion we shall mention open problems arising 
from this study. 

2. Proof of the Conjectures 

We start by considering a more general sequence than that considered by Wall. 
Namely, we let X.(z)=z.(a, b, q; z) with g_l(z)=a,  Zo(z)=b and for n>O 

Z2.+ 1(z) = Z2.(z) + z2 q2.+1 X2.- x(z), (2.1) 

Z2n+ 2(2) ---~ Z2n+ 1(Z) "~- Z q"+ 1(1 + Z q'+ 1). (Z2n+ 1(Z) "11-( 1 -2 -2  q2n+l) Z2n- 1 (g)), (2.2) 

and by applying (2.1) to the right side of (2.2) we see that 

~.2n+ 2(z)=Z2n+ l (Z)-k z qn+ l(1-.b z qn+ l) ()~2n(Z)-b )~2n_l(7.)). (2.3) 

Note that the initial values X_l(z)=a, Zo(z)=b, and the recurrences (2.1) and 
(2.3) uniquely define the X.(z). Furthermore we see that the coeff icient  of qN in 
Zu(z)  is some polynomial in z that is unaltered for any M >2N.  Consequently 
we see that X.(z) converges in the ring of formal power series in q whose 
coefficients are polynomial functions of z. Furthermore we see immediately that 
the X. sequence is dominated by the sequence 7-1 = 7o = A = max(a, b) (assumed 
positive): 

72.+ 1(z) =(1 + z 2 q2n+ 1) 72n(Z) 

~2. + 2(z) = (1 + 2z q" + 1 + 2z 2 q2n+ 1) 72. + I(Z)  9 

Clearly 
o~ 

lira 7.(z) = A YI (1 + z 2 q2.+ 1)( 1 + 2 z  q"+ 1 +2z  2 q2.+ 1) 
.~c~ "~0  

which is an absolutely convergent infinite product provided only that [q[<l  
with uniform convergence inside [ q [ < l - ~ ,  [ z l < M .  Hence we see that 
z(a, b, q; z) is analytic is z and q for fixed nonnegative a and b provided [q[ < 1. 

Let us now represent X2.+1(1, 1, z; q) by a ( 2 n + 2 ) x ( 2 n + 2 )  determinant: 

Z2,,+ 1(1, 1, q;z) 

1 z2q  z q + z 2 q  2 0 0 ... 
- 1  1 2 q + g 2 q  2 0 0 ... 

0 - 1  1 g2q3 z q 2 + z Z q 4  ... 
0 0 - 1  1 z q 2 + z 2 q  4 ... 
0 0 0 - 1  1 ... z q " + z 2 q  2" 
:  9 : : : z q  2 + z 2 q  2" 

- 1  1 
0 0 0 0 . . . . . . .  1 

0 
z2q2n+ 1 

1 

(2.4) 
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and for X2,+ 2( 1, 1, q;z) we have the (2 n + 3)x (2n + 3) determinant 

Z2n+2(1, 1, q;z) 
1 z2q z q + z 2 q  2 

- 1  1 z q + z 2 q  2 
0 - 1  1 
0 0 - 1  
0 0 0 

0 0 
0 0 

z2q 3 z q 2 q - z 2 q  4 
1 z q 2 + z 2 q  4 

- 1  1  9 1 7 6  

0 
0 

22q 2n+ l 

1 
- 1  

0 
0 

zqn+ 1 z2 q2n+ 2 
z q n + l -.]- z2 q 2n+2 

1 

(2.5) 

It is not difficult to" see that these representations are valid 9 By expansion 
along the final column we see that these determinants satisfy the recurrences 
(2.1) and (2.3). Furthermore if we set n=  - 1  in (2.4) and (2.5) we obtain the 
appropriate initial values X- 1 =~o = 1. 

Next we represent Z2,+ 2( 0, 1, q;z)  by (2 n + 2)x (2 n + 2) determinant 

Z2.+2(0, 1, q;z) 
1 z q + z 2 q  2 

- 1  1 
0 - 1  
0 0 

0 " '  9  
z2q 3 z q2  + z2 q 4 ... 

1 z q 2 q - g 2 q  4 .." 

- 1  1 ... 

. . . .  1 z 2 q  2n+l z q n + l q - z 2 q  2n+2 
- 1  1 2qn+ l "{'- z2 q 2n+2 

- 1  1 

, ( 2 .6 )  

and for ~2,+ x( 0, 1, q; z) we have the (2n + 1) x (2n + 1) determinant 

Z2,+ 1(0, 1,q;z)_ 
1 z q + z 2 q  2 

- 1  1 
0 - 1  
0 0 

. . .  

0 " ' "  

z2q a 2q2 . - k z2q4  ... 
1 zq2"-bz2q  4 ... 

- 1  1 ... 

zqn + z 2 q2,, 
. . . .  1 1 z q " + z 2 q  2" 
. . . .  1 1 22q 2n+ l 

. . . . . . . . . . . . .  1 1 

(2.7) 

As with (2.4) and (2.5), the validity of (2.6) and (2.7) follows easily by expansion 
along the last column and the initial values for Zo and ~1. 
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We may now expand all these determinants along the top row: from (2.4) we 
find that  

~(2,+ 1( 1, 1, q; z) = ~2n+ 1( 0, 1, q; z) + z 2 qz2n- 1( 1, 1, q; zq) 
+ (zq + z 2 q2) X2, - 3( 0, 1, q; zq); (2.8) 

from (2.6) 

~2n + 2( 0, 1, q; z) = X2.(1, 1, q; z q) + (z q + z 2 q2) Z2~(O, 1, q; zq). (2.9) 

Now we let n ~ c ~  in each of Equations (2.8) and (2.9); this yields 

~((1, 1, q; z)=;((0, 1, q;z)+z2qz(1,  1, q;zq)+(zq+zZqZ)z(O , 1, q;zq); (2.10) 

x(O, 1, q;z)=z(1,  1, q;zq)+(zq+z2q2)x(O, 1, q;zq). (2.11) 

We may eliminate (zq+z2q2))s 1, q; zq) from these equations and deduce that  

~((0, 1, q; z)=  89 1, q; z)+(1 - z2 q) ;t(1, 1, q; zq)). (2.12) 

Now we apply (2.12) to (2.11) to eliminate both Z(0, 1, q;z) and Z(0, 1, q;zq); after 
simplification we obtain 

Z(1, 1, q ; z ) = ( l + z q + z 2 q + z 2 q 2 ) z ( 1  , 1, q;zq) 
-4- (zq + z 2 q2)(1 - 2 '2 q3) Z(1, 1, q; zq2). (2.13) 

We now observe that  the functional equation (2.13), the initial condit ions 
X(1, 1,q;0)=Z(1,  1 ,0 ;z )=  1 and the requirement that  X(1, 1,q;z) be analytic in z 
and q for [q[<l  together uniquely define Z(1,1,q;z). This is easily seen by 
consideration of the double series expansion 

~ a, , .z"q"=z(1,1,q;z) .  (2.14) 
m~O n=O 

The initial conditions show that  aoo = 1 and am, o = ao,,, = 0 for m > 0. Finally if 
we substitute the double series expansion (2.14) into (2.13) and then compare 
coefficients of q"z", we find a recurrence for the a,,.  which uniquely define them 
given the above initial conditions. 

Next we consider 

c~ ~ qn2+m2-nmzn+ra 
X l ( z ) = , ~ o  m= 0 (q),,(q)m ' (2.15) 

where (A), = (A; q), = (1 - A)(1 - A q). . .  (1 - A q"- t), (A)o = 1, and 

X2(z)= ~ ~ q"~+m~-"mz"+"(q"+q'n-q "+") 
.= o .=  o (q).(q)., 

(2.16) 
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We note immediately that 

Xt(z)-zZqXx(zq) 
qn2+m2-nmzn+m 

= ~ ~ (q)n(q)m ~ ~ n = 0  m = 0  n = 0  m = 0  

qn2 + m2 -nm gn + m 

n=Om=O 
-- ~ ~,  q(n-1)2+(m-1)2-(n--1)(m-l)+lzn+mq n+m-2 

~= o ,~= o (q).(q)m 

qnZ +mZ-nm+ l zn+m+ 2 qn+m 

(q),(q)m 

 9 (1 - -q") ( l -q~)  
(2.17) 

(we have shifted n ~ n - 1 ,  m ~ m - 1  in the second double sum) 

= ~ ~ q"2+"2-""z"+m(1--(1--q")(1--q"))=X2(z)" 
.= o m= o (q).(q)., 

Next 

X2(z)+ X,(zq)= Z 
n=Om=O 

Also 

q.~ +,.2_.,. z. +,.(q. + qm) 
(q).(q)., (2.18) 

X2(z)-Xl(zq)  
= ~ ~ q"~+~*-"~z"+~((q"-q"+~)+(q~-q"+~)) 

.=o ~=o (q).(q)m 
= ~ ~ q"2+m2-"m+"Z"+m(1--qm)~ ~ 

.=O m=O (q).(q). .=0 ~=0 

.=0 .=0 (q),(q), +.=o m=0 
=zq ~ ~ q.2+,. . . . .  (q2,.+q2.)z.+,,, 

n= o ,.= o (q).(q)m 

Consequently by (2.18) and (2.19) 

(X2(z ) -  X x(zq) ) - z q ( X 2 ( ~ q  ) + X l(zq2)) 
~-~ qn2+m2-nm(q2m +q2n) zn+m 

=zq 
.= 0 m= 0 (q)m(q). 

--zq ~ ~. q"2+m2-"m+"+"z"+"(q'+q") 
.= o m= o (q)m(q), 

=zq ~ ~ qn2+m2-"mq2m(1--qn)z"+" 
.= o ,,,= o (q)m(q)n 

+zq ~ ~. qn2+m2--nmqZn(1--qm)zn+m 
, .= o .= o (q)m(q)n 

qn 2 +m 2 --nm4-mzn+m 
(1 _q.) (q).(q)., 

qn2+ 2.+ 1 +m2-nm Zn+.,+ 1 

(q),.(q). 

(2.19) 
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~_~ ~ q(n+l)2+m2-(n+l)m+2mzn+m+l 
=zq 

n= 0 m= o ( q ) n ( q ) m  
+ z q ~  ~ qnz+(ra+l)2-n(m+l)+2ngn+rn+l 

n= o ,,,= o (q)m (q)n 

=z2q z ~ ~ q"2*'2--"~(zq)'~*r"(q"+qr") 
n =  0 m =  0 (q),(q)r, 

= Z 2 q2(X2(zq) + Xl(zq2)). (2.20) 

We now define 

Xo(z)= 89 -z2q)) ,  (2.21) 

and we are prepared to establish the most important identifies of this section. 
Namely 

Lemma 1. 

X ~ (z) = X(1, 1, q; z), (2.22) 

X o(z) = x(O, 1, q; z). (2.23) 

Proof We note that each of the four functions defined in (2.22) and (2.23) is 
analytic in z and q for Iq] < 1. Furthermore each of these four functions reduces 
to 1 when either z or q is set equal to 0. 

Let us substitute the expression for X2(z ) from (2.17) into (2.20) in order to 
eliminate X2(z ) and X2(zq); after simplification we see that 

Xl(z)=(l+zq+z2q+z2q2)Xl(zq)+(zq+z2q2)(1-z2q3)Xl(zq2).  (2.24) 

We recall our remark following equation (2.13) (which is merely (2.24) with 
~((1, 1,q; z) replacing Xl(z)); since (i) Xl(z ) is analytic in z and q for Iql< 1, (ii) 
Xl(z ) equals 1 for z = 0  or q =0, and (iii) Xl(z  ) satisfies (2.13), we deduce that 

X t(z) = X(1, 1, q; z). (2.25) 

Finally comparing (2.21) with (2.12) and bearing (2.25) in mind, we see that 
X o(z) = x(O, 1, q; z). (2.26) 

This establishes Lemma 1. 
To obtain Wall's conjectures we require one identity from the theory of basic 

hypergeometric functions: 
qn2-"c~x~ 1 ~. (x).(--1)nc~q "'~-1'/2 

,=o (q),,(c),, =(c)oo n~o (q), , (2.27) 

where ( A ) n = ( 1 - A ) ( 1 - A q )  ... ( 1 - A q  ~-1) and (A)= lim (A)~. This result follows 
11400 

from the second iterate of Heine's fundamental transformation; in identity (I2) 
cx 

of [1; p. 576] replace z by ~--~, replace y by c and let ~t and fl--. oo. 
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qi2 
Theorem 1. X(1, 1, q) = i= - 

(q)oo 
Proof  ;((1, 1, q )~z(1 ,  1, q; 1) (by definition) 

= X I ( 1  ) (by L e m m a  1) 
qn2 + m2 --nm 

=,~=o ~ m~O ~ (q)n(q)m (by (2.15)) 

n 2 oo , t q~2+=~_nm 

,= o (q), n=l ,= o (q)n(q)m 

=(q)m+2m~ o n=m+ ( (q)~(q)m 

~,=o .=o (q), +,,+ l(q),, 
_ 1 w ~ q,,2+m(n+~) 

(q)~ t- 2n~= o q(n+ l)2m~ 
- 0 ( q ) , ~ ( q ) . ~ + , .  t 

1 oo q( , ,+  1)2 

(q )~  ' 

(by (2.27) with c=q,  x = 1) 

(by (2.27) with c =qn+2, X----- 1) 

as desired. 
~ qi(i+ t) 

Theorem 2. x(O, 1, q) = i= o 
(q)~ 

Proof. x(O, 1, q) = x(O, 1, q; 1) (by definition) 

= Xo(l)  (by L e m m a  1) 
=  89  (1) + X ,  (q)(1 - q)) 

qi2 

2(q)~ 

qi  2 

i= -oo  

2(qLo 

(by (2.12)). 

oo qn2+m2 - n m + n + m  

2 ,= o m= o (q),,(q),,, 
(by Theorem 1 and (2.15)) 

_ _ _ ~ ' - u J  z.,xF ~__2 t - (1 -q )~  Z 2 ,~ o (q)n ~ 1 ,~- o (q),(q)m 
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qi 2 :4 \ O0 n2+2n i=-oo , t t - q )  ~ q 
+ - - L  77a 2(q)~ 2 n=o (q),, 

+(1 -q) 
m = 0 n = 0 (q) .  +,,, + a  ( q ) , , ,  

qi2 
i= -- ~.) 

2(q) oo 

i =  - - ~  

2(q)~o 

q- ~ q (n+l)2+(n+l) 

~q i~  + 
i = 1  

" "11 ~ *'1 q(n+l)2+(n+l) - I - - - ~  ~ + ( l - q )  
2 ,,= o (q),, ,,= o ,.= o (q),,,(q).+,,,+ 1 

1 ,,~o(1 _q.+X)(_l).q.~.+a)/2 
oo 1 ,~=o(l__q.,+l)(__l)mqr 

(q)~ = 

(by (2.27)) 

(__l)nqn,n+l)/2+ ~ qn2+n ~ (l__qm+a)(__l)mqnm+m,rn+l)/z 
n=0 n=l m=O 

(q) o~ 

1 
(q) ~o 

1{ 
=(q)o~ q +  

(q)~ 
ao 

q i2 q" n~=O ( -- 1)" q,,O, + 1)/2 

"t- ~ ~ qn2+n+nm+m(m+l)/2+m+l(--1)m 
n=2 m=-2 

--n= l ~ m=O ~ qn2+n+nm+m(m+l)[2+m+l(--1)m t 

{~i=1 qi:+ .=o ~ ( -  1)'q""+ ')/2 

"q'-n=2 ~ qn2--n--n=2 ~ qn2-m=O ~ (--1)mq(m+3)(m+2)/2} 

~'~ qi(i+ 1) 
1 - q  +.--~2 q"~-~ =i= o = (q) 

as desired. 

3. Applications 

The results in Section 2 may be applied to both the q-series and partition 
theorems stated in the introduction. 
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Proof of Theorem 3. By (2.15) and Theorem 1: 
1 +2 ~ q i2 

n=om=o (q)n(q)m--'XI(1)= (q)~ 
1 +2q+2q4+2q9+"" 

=l--q--q2 +qS +qT--qle--qlS +q22 +q26 . . . .  
(by Euler's Pentagonal Number Theorem [3; p. 177]) 

= f l  ( 1 - - q 2 n + 2 ) ( l q - q 2 n + l ) 2  

~=o ( l + q  "+1) 
(by Jacobi's Triple Product Identity [3; p. 170]) 

= f i  (1 + q~)(1 +qZn- 1)2. 

Now we treat the two partition theorems implied by Theorems 1 and 2. 
Proof of Theorems 4 and 5. Let us replace q by q2 and z by 1 in the defining 
recurrences (2.1) and (.2.3). This yields 

Z2n+ 1 = ZZn -Jr" q(2n+ 1)+(2n+ 1)Z2n_ 1, (3.1) 

~2n + 2 ~- Z2n + 1 -1- (q2n + 2 .At_ q(2n + 2) + (2n + 2))Z2 n 

d- (q2n+ 2 q_ q(2n+ 2)+ (2n+ 2)) ~(2n_ 1" (3.2) 

Now it is clear that ZN(1, 1,q; 1) is the generating function for the partitions of 
the type enumerated by Wl(n ) (n arbitrary) subject to the restriction that each 
part is =N. This made obvious by (3.1) and (3.2). For example we split the 
considered partitions with parts < 2 n + 1  into two exhaustive and disjoint 
classes: (1) those in which 2n+1 does not appear, (2) those in which 2n+1 
appears twice. Those in the first class are enumerated by Z2~ and those in the 
second class are enumerated by q(2n+l)+(2n+D~(2n_l. The same reasoning ap- 
plies to Equation(3.2) once we observe that the third term on the right side 
takes care of the "green" appearances of even parts. Hence 

~Wl(n)q~= lira XN(1, 1,q2; 1)=Z(1, 1,q 2) 
~/~ 0 N "* co 

= f i  (1 +q2n)(1 +q4~-2)z (by Theorem 1) 

- -  f i  ( 1 - I - q ' n - 2 ) 2  
n= 1 (1 _q4n-2) (by Euler's identity [3; pp. 164-165]) 

= ~ Hl(n)q ~. (33) 
n= 0 

Now comparing coefficients of qn in the extremes of (3.3) we deduce that Wl(n ) 
,= Hl(n ) for all n. 
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The only alteration when we pass to Theorem 5 is that the change in initial 
conditions for XN(0, 1,q; 1) produces the restrictions on appearances of l's and 
2's. Hence 

~,W2(n)q"= lim XN(0, 1,q2; 1)=Z(0, 1,q 2) 
n=O N ~  

(1 - q4")(1 + q4,,)2 
n = l  

(by 

n = l  

=fi 
n = l  

= ~ H2(n)q", 
n=O 

(q2 ; q2)o ~ 

Theorem 2 and Jacobi's Triple Product Identity [3; p. 170]) 

(1 + q2n)(1 _]_ q4n)2 

1 
(1 - q 4 . -  2)( 1 _ q 8 . - 4 ) 2  

(by Euler's identity [3; pp. 164-165]) 

(3.4) 

and comparing coefficients of q" in the extremes of (3.4) we deduce that W2(n ) 
= H2(n) for all n. 

4. C o n c l u s i o n  

The proof of the conjectures given in Section 3 appears to be unmotivated since 
the function Xl(z  ) appeared from nowhere in (2.15). It was discovered from an 
empirical examination of the lower powers of z in X(1, 1, q; z). The technique of 
representing recurrent sequences by determinants and then passing to q- 
difference equations was utilized in [2] to treat Sylvester's generalization of 
Euler's theorem. Subsequently, M.D. Hirschhorn [5] has greatly simplified the 
treatment in [2], and V. Ramamani and K. Venkatachaliengar [6] have given a 
nice combinatorial treatment. 

It seems surprising that an identity as elementary and as elegant as Theo- 
rem 3 has not been discovered previously. This naturally leads to the question: 
For what positive definite quadratic forms Q(m, n) is 

,,= o ,,,= o (q),.(q). 

summable to an infinite product. The only nondiagonal forms I know of are km 2 
+ k n 2 - ( 2 k - 1 ) m n  (k positive integral) and n2+2m2+2nm [4; Eq.(1.8)]. Ob- 
viously this question can be generalized to k-fold series where a number of such 
results have recently been found; one such family is given in [4; Th. 1]. 
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