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1. INTRODUCTION

In 1898 MacMahon [7] presented his first study of symmetric higher
dimensional partitions, The most interesting part of his paper is a conjecture
concerning the generating function for M(j, s; n), the number of plane
partitions Zn;k of n with the added conditions that (i) n, = n,,, {ii} n,, =
o i>s, (i) n,, ). Thus M(j, s; n) is the number of symmetric plane
partitions with at most s rows and with each part at most j, MacMahon
[7. p. 153] conjectures

N H (I_qj+2i—lJ 5 (l_qZ{jw—Hh-l:]:’ .

_EO M 2 N II=—[1 [ (1—¢* 1 h:lla (1 —g2th=ty I (b
He demonsirates the truth of this conjecture in a few instances and remarks:
“The proof of this formula, the truth of which scems unquestionable, is
much to be destred.”

Subsequently, in his monumenta! treatise “Combinatory Analysis,”
MacMahon [8, pp. 262-271] again discusses this conjecture at length, and
again he asserts that, “The result has not been rigorously established.” At
the conclusion of his discussion [8, p. 270-271] MacMahon carefully
examines the symmetry in the product in (1.1) and states that, “This property
of the enumerating function is of great beauty and mathematical elegance.”

In the late 1960s, Gordon {3, 4] proved MacMahon’s conjecture when
5 = oo. Gordon [4, p. 158] observes that Sylvester’s mapping of self-conjugate
partitions into partitions with distinct odd parts may be directly extended
to plane partitions to show that M(j, s; n} is also the number of plane
partitions of n with strict decrease along rows where each part is odd and at
most 25 — 1 and there are at most j rows,
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Also in the late 1960s, Bender and Knuth [2] developed a very powerful
combinatorial method for treating many problems in plane partitions. They
also extended much of the work of Gordon {3, 4] and Gordon and Houten
[5, 6], and they showed [2, p. 50] that if

gilay =3 Mij,m: N)g", (1.2)
N2U
then
Gaalq) = det(C;_; + Civimthuns (1-3)“
and
F25+10q) = |:n 1+ qZ“‘)]det(Ci_j ~ Cie nxn (1.4)
i=1
where
Co = T4z, (1.5

and (), is the Gaussian polynomial (or g-binomial coefficient) defined by

(1 - qz\'r)(l _ qlN—l]r)_ . (1 - q[,\‘—‘ll+1}r)

. 0<MSZN
o | O )
M, M=0 (1.6)
0, M<0 M>N.

However, Bender and Knuth [2, p. 50] go on to state that, “We have not
been able to simplify these determinants any further, even for the limiting
case as ¢ — 1 ... But the known results, and calculations for small j give
overwhelming empirical evidence that the answer has a simple form.”

The object of this paper is to prove MacMahon's conjecture. In Section 2,
we prove preliminary lemmas that are simply results from basic hyper-
geometric series. In Sections 3 and 4, we prove the conjecture by transforming
the determinants in (1.3} and (1.4) three times each. In each case the third
transformation produces a lower triangular determinant, and MacMahon's
conjecture foltows immediately.

Int a subsequent paper we hope to treat a second conjecture of this nature
due to Bender and Knuth [2, p. 50]. Presumably, our methods are adequate
to treat it also. In [10, p. 265]. Stanley mentions that Gordon possesses
(unpublished) a proof of this latter conjecture; however, the implication
from Stanley's comments is that Gordon's methods differ substantially
from ours.
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2. SUMMATION LEMMAS

First we require two results that are merely extensions of the g-analog
of the Chu—-Vandermonde summation [ 1, p. 469, Theorem 4.2]:

LemMMa | Forintegersmz20.iz20 121,

W

i
=022 =1, P Wi—— Wil _
Z (mf?—j]Zq(I N (2!1_;)2@{) Hj-1 2m]+qU+I IWj+~i+2m 1:]
= LD g,
Proof. We split the left sum into two parts:

f = 12 Ji=1y P— I -
Z (m+! J h J)(Ij—jlhqu =i 2m)

-1
Z ( 2:—1) L=+ 12+ + 2m)
m+1 .I+; 24

-1

— 3 2i—1 2ilj+m+i—i
- (I ! Z (m+i f+J { i qu Jrmrizh
i=0

=g R D 2.1)

by the Chu-Vandermonde summation [ 1, p. 469, Theorem 4.27. Next

F— 228 — 15 Pl i+ —
; Z (m+l ;)2q{l 4 {ZI!_jlth A

2i+1 R
2 f—j~i~1 2i-1 2
= 3 b 2P 02 TR gt A
i=0
. 221’1 o )
= =q(l+l-1} Z (m i JI+l_‘_}]2(21'—.1]2q2_i(_,r1-m—1—!+l}
i=0
-1 _
: = gAY, 22)

again by the Chu-Vandermonde summation [1, p. 469, Theorem 4.2].
If we now add together identities {2.1) and (2.2) we obtain Lemma 1. |}
Lemma 2. Forintegersmz 0,iz 0,120,
S G gt I afgy I e sy
o 2m+20

= (Gnt (gt - gt
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Proof. We split the left sum into two parts:

fral
2 (=1 2 - D=2
E (.rn+'£"—_f)2‘i*l ! (e-»_;]“’qu Y ™
j==w

21

Z (,,,_?T;+J-]2q‘i_{+j}?(22 )og’t

=
i=e

21

i—i? 2 21 2jfj+m+i—1i)

=g Z {mei T~ 205 )2g%Y
i=0

i-DE2m-2
= g" TGN,

(2.3)
by the Chu—Vandermonde summation [ 1, p. 469, Theorem 4.2]. Finally,

2 =22 j+ DG ++2
Z [m+,In—j}2q(‘ / (:+j.}2‘10+ Wit 2m)

2
_ 2 G- F+0320y i+ 2
= Z ST DY/ A [;)zq‘“ ™
i=0
2
)2 2 Uy 2jjrm—i—!
=4t z (m-ivi- 205 )24 Agrm=imh
j=o

=gt 2n H),, (2.4)
by the Chu-Vandermonde summation [ I, p. 469, Theorem 4.2].

If we now subiract identity {2.4) from identity (2.3), we obtain Lemma

2. |

Our next result is a disguised form of the g-analog of the Plaff-Saalschutz
summation [9, p. 97, Eq. {3.3.2.2)].

LeMMa 3. Forintegersnz k 2z 1, b=0orl,iz0,mz0,

jtkiq2 2j+1-#b 9 -kj
kil Im+2i—k (_I)” {q mra sz—zth(”” ki
Z (m‘i+::'—b]1

i=1

- . 6=hs
T,

_ {— l]kﬂql -k(QJ2m+2k—b{qu{q1_E}k‘l(qb+l_i_k]_k—l(q4]m+k—b
(7] NPT () SR 1 ) M 1{Q]m+k—x(qb_' ' m_k)k—l ’

where (), = (1 — g){1 —g*)--- (1 — g™

Proof.

f+ks 2 2j+1-b if+1y—kj
Im+2i—b (_'1}J+ (q mrTaT ]Zk—?.jqb('H S k—1
(m+i+::‘—b)l

1 (qm+j+k_bjk—j|.qm+j)k—j G-

- Z (Q)2m+2k—b(-’1]j+kq§ju+1}_U{q]m+j+k—b—I(Q)m-—j—l k1)
i=1 (Q]m+i+j—b(q}m—.-+j{fﬂm+zk—b—1{Q]m+k—1 o

0] =

i
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_ (—1)** 1('?)2m+ 2k~ 5@+ k- 5(@)m
(Dt 266 - 1 Dmta— 1@ i—be tl@hmmin1
kil {q—k+1]j(qm+k-b* lllj(qf"LI}jqj
o I(qm-i-i-b-Z]j(qm—(*Z]j
=(-1)k+l 1 k(q 2m1—2k b(q)m*—k b( )m(qi_i]k‘-l(ql
(q)m+2k—b—](q)m+k—1(q}m*i—b+I(QJm+k-i(qb_l_m_k)k—1 ’

b+1-i—k}k X

by the g-analog of the Pfaff-Saalschutz summation [9, p. 97, Eq. (3.3.2.2)].
We remark that the above is meaningful and valid provided b m + i + 1;
however the more restricted cases b = 0 or 1 are sufficient forus. |

Our next two lemmas treat g-identities that are really further formulas
for sums of basic hypergeometric series. Since we were unable to find them
or generalizations of them in the literature, we choose to prove them de novo
using Dougail’s method [10, pp. 55, 95).

LEMMA 4. Forintegersszjz l,izl.mz 1, :f
(=@, %) lq Pl e @ g
@7 P irs 5 Phmmeadll — 47 TN — g7 7- 2)
(l + q2|—l)[ 4r‘-") {i—5i+(s-r)
X 2r-1 q 2r. 2
(1 + g%~ g™ ¢%)- (0% ; 4%,

ar, s) =

G202 (2.3)

then

S afr, )2y gt (L 4 g NI D)
= (THID (L + g h@im {2.6)

and

i (P" Zm+25+1 (r—s—142 (l + q(lr'—li(28+l})
a; S m+rt+s )q (1 +q{2m+ls+l](25+1]]

2m+2s+1 qtr—nz—zm-s?— {1+q2r_1) ]

m+rt+s W

[1 + q[2i—1}l2s+1])

(2m+25+1]2 (i—-5-1)=%
[1 -+ q(2m+23*1}(25+1})

m+tits

-__(2m+3§_+1) q{i—lll—lms—sl {1 +q2E_1]
m+its f2 (1 +q2m+25+1)s (2?]
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where

{=1(1—= A}l — Aq)---(1 ~ Ag"~Y)ywhen n is a positive integer).

Remark. The apparent singularity of adr,s) for i=r or —r 4+ 1 is re-
movable since factors (1 — g~ *")and (1 — ¢*'**"~ ) appear in the numera-
tar of gz, 5). Note also that 1°(g%; ¢2)_, = 0 for any positive integer n.

Proof. Ifi>m+sori< —m—s, then (2.6) is trivial since both sides
are identically zero. Multiply both sides of (2.6} by

—(i—s5)? . . . - P—1y—
q s {qzy qz)m+i+s— 1[q2= qzjm—iﬂ—s{qza q2)2m1+2j—‘1{1 + q2 ]) ]-
Since we may assume —m — s <[ £ m + s, this quantity 1s neither infinite
nor zero, and we have the equivalent identity:

5
Z {_ 1)r+s(q}!:’|'|+2.r+2_;';qZ)s_j_(quu'|+2_{'—2r+i‘_;(!,2]5_‘r'q(.sr-—r]+{r-'j}2

r=1

) (1 + qilr—l}(lj—.l]]{qZE—Zs; q-l}s(qm'; qZ}s{l _ q4r—2) G:i

O e e (e e T O NN PP L W

(1 +qt2_i-1]{2j—llj
(1+¢* 1

{2i-j=sHs— Zm+ 2i~2j,

(g 1%, - Ag?

m+2j-2i+2

=4 ;qz]s—j'

(28)

Now identity (2.8) can be viewed as a polynomial identity in ¢*', where the
left polynomial has degrec at most 2s — 2 and the right polynomial also
has degree at most (s — j) + (s - j} + (2j — 2) = 25 — 2. If we can prove that
the two sides of (2.8) are identical for at least 25 — 1 values of g%, then identity
(2.8) must be valid for all i.

First let i =t with 1 £ ¢ & 5. Then each term on the left of (2.8) vanishes
with the exception of r = ¢; so in this case the left side of (2.8} is just

120~ 1H2f- 1y
s - fiZ {1 +4q )

2+ 2r=2j. 2
r 4 g Js—Jq (] +q21—]}

L] qz]s—j[q

2m+2j-2i-2.

(q ,
and this is the right side of (2.8) when i = 1.

Next let i = —~¢ with 0 &£ ¢ € s — 1. Then again each term on the left of
(2.8) vanishes with the exception of r = ¢ + 1; se in this case the left side of
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(2.8) is just
1+ q(2!+ 1625=-1}

Ty

Imw 2t 2j+2,

(q ] qz)s— ;(q

Zm+ 25— 2r, 2
) )s—-j

U—r)?—(s+r12~4r—2j+2,
and this is precisely the right side of {(2.8) when i = —t. Consequently (2.8)
is valid in general and thus (2.6} is valid in general.

We now pass to the proof of (2.7). Ifi>m+ s+ 1l ori< —m — s, then
(2.7) 1s trivial since both sides are identically zero. Multiply both sides of
(2.7) by

2i—ti—s)?

q (qz; qz}m+1+s(q2: qz}m—1*5+ l(qz; qz}l‘_ml+25+ 1(1 + qzi_l:'_ 1‘

Since we may assume —m —~s i E€m+ s+ 1, this quantity is neither
infinite nor zero, and we have the equivalent identity:

2m+2i+23](1 _ q2m-—2i+25+2)

7l —q
. zs: (_ I}r+sq{s—r)+(r—s—l}z[qzi—ls; ql)s(qu’ qZ)S

(l _ q2m+2r+25](] _ q2m+23—2r+2)

r=1
9 (I —g¥ 3G Da

(1 +¢ Y1 = g1 - g2 H)g?; )= 1(a™ 5 47

|: [1 -+ q(lr—l}(lﬁ'l} q-2sv2,rs—2ms—2sl{1 + qzr—1}]

(I +q(2m+23+11{23+l:] (1 +q2m+23+1)
2s+1

q
= (1 + q!2m+2§+l}(25+1))

(l + q{2i~1]{25+ 1]) e ee [1 + ql2m+2s+11(254—l|)
|: 2i- 1 - qll o 2m+ 25+ 1 : {2.9)
(1 +g°"7%) (I+qg )

As before, identity (2.9) can be viewed as a polynomial identity in g,
where the left pelynomial has degrec at most 2s and the right polynomial
has degree at most 2s. We must now show that identity (2.9) is valid for
25 + 1 values of i in order to establish it for all i. First of all we note that if
i=m + s + 1 then both sides of (2.9} are identically zere.

Next let i = ¢ with 1 € t € 5. Then each term on the left of (2.9) vanishes
with the exception of r = ¢; s0 in this case the left side of (2.9} is just

q25+1 (1+q(2:—1j[25+1}) qufl—m—-s-I}[l +q(2m+2541](25+1}}
[1+q[2m-—ls+])(25+1}) (l_l_qZI—l} - {1+q2m+2x-—1:‘

and this is precisely the right side of (2.9} when i = 1.
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Now let i = —t with 0 €t € s — 1. As before each term on the left of
(2.9) vanishes with the exception of r =t + 1; hence for i = —1 the left side
of (2.9) is just

q23+ 1

(1 + q{2m+ 25+‘1)(25+1})

N Ui R JRPRPP RSN VL. i/
{1 +q2r+1) (1 +q2m+25+11 !

and this is the right side of {2.9) when i = —t.
Hence both sides of (2.9) are identical for i=m +s+ 1 and —s+ 1§
i € s: hence (2.9) is valid for all i. Thus (2.7) is established. ||

LemMa 5. Forintegersszjz lizl.mz1,if

0 § AU L o W R o W (/ St L N [ Lo o N
bir.s mer s R TE T T
= (@5 i e @5 Gmoiasll ~ g7 N — g7
(1_q ]q::~s>1-{s—r| .
T P2, 2.10
VY L NP EaEs J,( 1) (210)
then

L B ET A" - g = (R - g @1

and
. - (I. _q4r{s+l})
2: byr, s {:$1:3§+%) q' 1F(1 PTIE VR
“(va s+2 q(r—1]2—2m—52{1 _q‘"}
mirist1) (1 — g %%

(i—s-1)2 dis+ 1}
_(2m+25+2 q‘ ¥ }[l"’q” )
= (mhits+1)2 (1 _q4;s+1;(s+m+1])'

{l 1P —2ms—s2 4
_ 2m+2:+2} (1 —q }
m+i+s+ 112

(l _ q4m+4s+4} M (212]

Remark. The apparent singularity of b(r, s) for i = r or —r is removable

since factors (1 — g%~ %) and (1 — g* ™ *") also appear in the numerator of
bi'(r's SJ
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Proof. Hi>m+sori< —m—s5sori=0, then (2.11) is trivial since
both sides are identically zero. Multiply both sides of {2.11) by

3G @5 (075 @m0 l6: @5 (1 — )L

Since we may assume —m — s € i € m + sand i # 0, this quantity is neither
infinite nor zero, and we have the equivalent identity:

) Zm42r+2j+2, 2 Im+2j—2r+2. 2 - -
(Sl VA C i AR o NP 1 R R Y L R L A
i

IIMm

(1 — ¢* )} g™ ™% g*)lg™* 2; g%),

s—1
U= = N ah G-z

2m+2j-2i+2.

47 - g g%,
(2.13)

{2i—f—s)s— j) (- qdlf){qzm—n—z;f—z
(1-q*)

=4q

Identity (2.13) may be viewed as a polynomial identity in ¢, where the left
polynomial has degree at most 2s — 2 and the right polynomial also has
degree at most 25 — 2. If we can prove that the two sides of (2.13) are identical
for at least 25 — 1 values of g%, then (2.13) is valid for all i.

First let i = ¢ with 1 § t §€s. Then each term on the left of (2.13) vanishes
with the exception of r = ¢; 50 in this case the left side of (2.13} is just

P,
2m+2r-v—2j+2.q2}s_j(q2m+2j-2r.+2;qz)s_jq(zr-j—s)(s_ﬁ(l — 4 U]

(g ;

(1-4%)"
and this is the right side of (2.13) when i = .
Now let i = —1 with 1 § t £ s. In this case cach term on the left of (2.13)
vanishes with the exception of r = t; hence for i = —t the left side of {2.13)
is just

_ gy
—{2t+j+sﬂs—j}{1 4 )

1—-q¢7%)

and this is the right side of (2.13) when i = —t. Consequently (2.13) is valid
for all 4, and so (2.11) is also.

To conclude the proof of Lemma 5 we treat identity (2.12). If i > m + s + 1
ori< —m—s5— 1, ori=0, then (2.12) is trivial since both sides are identi-
cally zero. Multiply both sides of (2.12) by

- 2j=2, f 2,2
{q2m 2+ 2f ,q2]s_j(q2m+211—2r+ g }s~j,

.

VA UL o SPSP Y LY o IR U S S IS | A

Since we may assume —m ~ 5 — 1 S i€ m+ s+ 1andi# 0, this quantity
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is neither infinite nor zero and we have the equivalent identity:
q2i(1 _ q2m-‘-2i+25+2][1 _ q2m*2l'+ls~ 2}

8 i [_])r*sq{s—rl
. (1 - q2m+2r1—25+2}(1 _ qzm—2r+2.\i+2)

r=

(g% q°)4q% " %1 ¢°) (1),
(1= g* )1 = ¢* g% g% 1(g* %5 9%,

5 I:q{r—s—ljz{l _ q4r(s+lij q{r—ljz—Ims—sz(I _ q4r'}:|

_(I'_q4('s+n(s+m+;.) (l—q4m+4’+4]
g=! (1 -q4“5'”] qz-"{"'m'S‘IJl'l_q.a{s-1||s+m+1l]
=(]_q415+1]{3'M91})|: (l_q.“} o (l—q"‘m"4s~4j }

{2.14)

Identity {2.14) can be viewed as a polynomial identity in g2’ where each
side has degree at most 2s. We must now show that identity (2.14) is valid
for 2s + 1 values of 7 in order to establish it for all i.

If i = m + s + 1, then both sides of (2.14) arc¢ identically zero.

Ifi=1 with | £t & s then each term on the left side of (2.14) vanishes
with the exception of r = ¢; hence in this case the left side of (2.14) 15 just

q2s+1 (1 _ qa&li_s-—lJJ qZ.s‘{I—m—s—l}(l —- q¢is+l](s-—m+ll]

1 — q4(s+1}(5+m+11}|: (1 — qu - [1 — q4mv4s+4j :|s
and this is, in fact, the right side of (2.14) when i = ¢.

Finally,let i = —f with 1 £t £ s. As before, each term on the left of (2.14)
vanishes with the exception of r = 1: so for i = —1 the left side of (2.14)

P
reduces to
qZS'-*l [1 _ q'—d-ll's*‘l}} q—Zs{l+m+s+1)“ _ q4{s—ljls+m+1})
(1 — q4[s+11(s+m+l)]l: (1 — q_“} - (1 — q4m*45+4} ]s

and this is the right side of (2.14) when f = —¢.
Thus identity (2.14)isvalidfori=m+s+ [, 1 §igs,and —sSi§ —1;

this implies that (2.14) is valid for all i. Identity {2.12) now follows. |

We now have all the necessary summations. These will be used in the
next section for matrix multiphcation lemmas.

3. DETERMINANTS AND MATRICES

To accomplish our goal. we must prove six lemmas that involve the
following six matrices:
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e 3% _( - }]2(m+| J]Z +q{l“._“2(m~—i2:'j l)z)nxm {31)
_( (I*;]Z(M_H J)Z U le[m+|+J) )nxny {3‘2}
ﬁ B [ 2m+2j—1) q(x—f}‘{] + q(h—ll(ZJ-l)) {3 ‘;}
n= _m+i+j—l 2 (1 +q(2m+2j-n{2j-1)) ”
o[ amean 49770 = ¢*9)
ﬁn = 31+T-Ej}2 {1 4_:{m ﬂ) xﬂ’ (34}
I (2m+2J 1) qf:—l)z—-ZMU—ll——{j—nZ(l +q2i_l) (3.5)
in myi+vi=1 (] +q2m+2j—1] nkn, o
N _2m+21) q‘{‘_llz‘zm(i‘ll'(}'—llz(l _'q4i . [F% 6)
In hm+1+;2 (1 _q4m+4j} “x“‘ .
LevMa 6. Let
—2 . (q{i—j)(s—j—zm;+q(i+j—1)(i+j+2m—1))
= J -
8, = i 1+ qu.f—]}[Zf“'zm_l]) :|n”‘

Thendetd, =1, and o, - 6, = B,.

Proof. We note immediately that 8, is upper triangular with ones on
the main diagonal. Hence det &, = 1.
The {i, /)th entry in «, - 8, is

Z [qti—-kjl +:“ k}Z + q{f+k-ljz{m_”27 IJZJ

k=1
k= jik—j-2 k+j—1)k+j+ 2m— |
2_; L (q( Ik —j M)+q{+J M+ j+ 2m })
x ¥ h

1+ q{Zj— W +2Zm - IJ]

B 1k — jik—j—2m) {k+j—LIWk+j—2m—1)
_ Z { m ) i k)1(2j—1] (q +q }
= . m+i—k)2d -k )2 1+ q(?,j—l}(Zj+2m—1J}
==1r
_— (l".f')z(l + qtli—lllz.f—l}}
+
- l'|'-!-|+j—1}1?.

{1 +q{2j—lj{2j-r2m—1}} »

by Lemma 1. Since this last expression is precisely the (i, j)th entry of 8,,
Lemma 6 is established. ||

LEMMA 7. Let

., . ( (O —JWi—J—2m) _ i+ Wi+ i+ 2m)
0y = (ﬁr}.‘)z 9 4'q-r—m ) '
(1-g¢g i }} nEn

Thendeté, = 1,and a, -6, =B,
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Proof. The matrix 8, is upper triangular with ones on the main diagonal.
Hence detd,” = 1.
The (i, j)th entry in «, - 8, is

Z (@G — ¢ 2 )

k=1
. (qik—ﬁ(k—j—2m} _ q(k+j)'[ﬁ+_r'+ 2?!!})
X {‘E-Jk] .+
: (I = %07 m)

- Wk —Jj=2m) ik k= j+ 21'"]}

4
(1 _ q4JU+ m}]

Z {m+| l't “ ”:(_jijk}I [q

_ 2m+2] q{'_ﬂ (1 —¢*)
= (mai i)z —{i“:-ézm—...,,.j'}“

by Lemma 2. Since this last expression is the (i, j)th entry of £, we have
established Lemma 7. ||

LeEMMA 8.

m (l _ q2n*—2|‘—1} m (1 _ q2(2nri+h-l]}
dety, = - - :
e i]=—Il |: (1 —g* .‘r=l|'—-l+l (1 —g*** 1

Proof .

-2 =2mi-1)—{(j—1)? 2i—-1
mt2j-1, 4 (L+4""7)
dety, = det[(,iﬁff-}}z

(1 + q2m+2j—])
q—mn{n-l}(

(—¢g

q q ]Rd t£{2m*2J_1)2}H’xﬂ’

2m+]. J m+i+j—1
n

Define

€, =( ( ]+J{q4m ‘h 2)2; ZIqI Him2i j—l)z) .

(q2m+21+2; Z,q ]; ‘{q2m+2|,q )1_1 i-1

Then ¢, is upper triangular, and its (j,j)th entry is g~/*~/ Therefore
dete, = [J7-; ¢/ If we let

?n* = [ iﬂTEJL }}Z]Juxn
then the (i, j)th entry of y.* - ¢, is (by Lemma 3 with b = 1 and ¢ replaced
by ¢°):

(=1 0% 4P ame 2= 1l%; @)l ™25 4% - 1(a
(R & NPT P L L W P o WU I Lk s

2=-2i 4=-2i=2j

sq }_;—l
,qz); 1
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Now since this last expression is zero for j > i, we see that y,* - €, is lower
triangular. Consequently,

_ @™ =g g l_[
( q2m+l’q2)"{det€ i
L= }’“ 272q%, @ ame 25— 102 8- da* Y 6740
(@7 @mr 27— 2005 G AGP ¥, g5
__(—a:d%, M (@%; 8")am=25-1(0"; 97);- 1{q ' 8%
{(—g® ™5 g%, o1 (@5 P2+ 2007 @ (@™ 20 0%

__(=a:q%, ]1[ (@ @*)ams 25 IQ'q)zJ 2
(=5 9%, =1 @ 2= 2085 v 2y

(q2n+l

L]

4 m (@25 @) ame 2j- 24475 425
{qsq)m j=1(qz'qz]mnj—z{qziqz]muj—:
_(q2n+1;q2)m H;=1 4j- 2,q Yom

- @) H?il{q‘

3 @ w10 (q” s 0 )am

(g5 @9 ([T221 6% @M 1= 1 (6%; a%)am)
g 4 O L1321 (@72, ¢

TS HJ—I M m

2j+2m

2n+1] n

2n+1 n

_ @' g%, J1(qr 597
(@9 [13=1 (g% q )m( Y1)

Zn—1 m Im~2;+2i
G‘ )

@5 ¢

(4 @ )m =i

Im+2i

=(q2"+qu ml—l{q vq)ln

;4 )m i=1 Y q )n
"H,q )m (q . q }Zn+i+m—1(qz;q2)2i‘—1
(@97 =i @7 @I i-1(0% @) 2ns 201

(4

2Zn+1 2(2n+i+ j— 1])

@ N G 1 q
(39 f[“l_l g

_ q2n+21 1) m {1 _ q2{2u+i+j—1)]
= .'I=_I1 { TIEPER ﬂ (1—g2*i-my I

4 =it
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LeMMa G,

m (1 _ q2n+ 2{) m [1 — q2(2n-—i*—h])
—a g detv. = i . .
( qu )m et Fn H l:[l _ q2l_'1} ﬁ=1;'_-l!—1 (l _ q2ll+h—li}

i=1

Proof.
u—l::—zmu—n—u—l}l(l _ q4f)
dety,” = det| (2n+2)), 4 - j
7y [{m+.+J} (L — g™+ %) .
=mnaln=1}¢ 4. 4
q [q ] q )n m+
= _._W det[f.ﬂfj)z]nu
Define

e ({_1}:’+J(q4m+4|+2,q ]2_; 21qizd-:'-zij J-;_IJZ) .
(@29, (g™ 9%,

Then ¢, is upper triangular, and its (j, /)th entry is ¢~/ Therefore

dete, = []7-, ¢/ 7. If we let

" #® Im+2j

n { m+|+;)2)nxnr

then the (i, j)th entry of v,* - €, is (by Lemma 3 with » = 0 and q replaced

by ¢°):

Sl O C ST PP IC S0 L PR C St SRt Sk i)
(@%:0 Ime 2= 180558 e 10 (G730 e -ilg ™2 2 g7

This last expression is zero for j > i, so we see that y,* - €, is lower triangular,
Consequently,

(= 4;4% g~ ™"~ (g% g*){det 7, %)
[q4m+-t. 4) T
Y 0 R T
(g*™* % g%, (det €,)
y H (=Y g% " 2H0% 0%)oma 200" 207 -0(@° 7* 074t — ¢
= {qz;qz}m‘fzj—}{qz;qz}m?j"'l(q_zm 4J9 2])—1
(—ga)akata%, ﬂ (8% )2m~ 25007 30%)- 107 2547,

- (_ 2m+12 Im+2j+4,
b

RN o W N O S0 ) WO/ L W 7
:{ ;9% — qz.qz}"ﬁ (qz;qz)2m+2j(q2;q2}2j—l

( 2m+21q ] (qz'qz)m—ez;—1(‘?2§q2)m+2;‘
A= 4:q%)— Q'q)l'L @ 2% om

T (=g T (q“’ 20

(—gq;9),dety, =

2+ Zj}

4 ]




PLANE PARTITIONS (1) THE MACMAHON CONJECTURE 145

_ (49— 4" ¢ [ 21 (37771972
(=g 2ig 122 @Y g0, (H,-=1{q 4% 2m)
_(=ggm(—¢’ q) e 1(q2f”""2:q2).,.
( 2m+2 1_[; l j; m
_ (=24~ q qz),.l-[f" (q””’"‘z;qz),..
(=g %0, [I5- l(q“’ q“)". Y2 6%,
( Z)M{ q q 2n- m q2m+2J+2:+2)

(q q2m+2 ]_[ H 1 —
=0 i=1 q

q
2m+2n-2 2}
2n

_{—q:qz)m(—q ;qz).. (g
- {_qZM*Z;qZ) iljl. (qd-:'.
(=487l — q q U:q q)z..+,..+.q2;q’]z; )

( q2m+2 n Ci' -q )2n+21 lq »4 ]m+|

_ (a3 q‘q),,“ (L-g) o (hq‘*“”f”f)]

2;1-4:}

( 2m+21q ) (1 _ Zm-rzi} it (l _ qZ(i+j—1j]
_(=a:dY.(-¢ qz)n{q“"*“,q 1"'_[ N
( q2m+2,q ) (q2m+1 e (1 _-qizfiﬁj— 1])
_(=q Al Vil ~ 2% ¢ ..,(q g7, i H qz{zﬁnﬂ)
[q ] ]n{*q aqz)mh»:q :qz}Zm i=1 j=i+1 2(1"1 1))
. [_q;qz)m(qz;qz)m+n(q4;q m H ITl (1 — q2(2rl"-|+ﬂ)
{qz'qz) (@*:4%0la* 1% 21 o (1= g7 D)

2n+2

_ ,q),.,l—!

[qq;’m i=1j=it1 (1 — g

m {1 ln*!i) m (1 __q2:2n+i+j;)
l:[[ 21-) I-[ (1_ 2(I'+J'—ll):|' I

m (1 - q2{2n+|+;)}

zu+j—1p)

) j=i+1 4

LeMMa [0.  There exist c;; such that ¢;=0if i > j, ¢y = 1, and for all n
ﬁn ' (Cij)nxn = }'n'
Proof. We proceed by induction on n. In the case n = 1, the result is
trivial since §, and y, are the | x 1 matrix whose single entry is

2m+1 ll +q}
m+1 2(1 +q2m+l)'
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Now we assume that the ¢;; have been found for i < n and j<n We
choose ¢,;, =0 for j<mn c,, =1, and for 1 £ h < n we choose c,, so that
the following system of equations is valid:

(i—ﬁ*“ + qui- 1H2i— 1))

m+2J—l .
E +itj-1)2 (L + g2+ 2= D=1 Cin
_ 2mein qli—nz—z-n(n—n—(n—n?-(l +q2.‘—1) (37)
+i+n-1/2 [l +q2m+2u—1] :
where 1 £ i< n— 1. Now ¢, = |, so that (3.7) is a system of (n — 1) cqua-

tions in (n - I) unknowns, The determinant of the system is det 8,.,, and
by the induction hypothesis

detﬁ = det:"‘n—l

=1 dety,_, #£0
det(cij}n- 1*xn-1 a1

by Lemma 8. Therefore the ¢, exist and are unique.
I claim now that (3.7} is valid for every i 2 1. This is because by Lemma 4,

n ) [: j]l(l +q(24-1){2_: 1})

Z m+Ij- 1) C:
. +i+f—1/2 (1+q(2m*’2J 1M2j- ”] m

q(:—l}z—Zm(n—IJ—{n-l}“(l + qZ‘i—I}

_ jZm+tin—1
m+i+n— 112 (} _q2m+2|'!—l)
n—1n=-1 r— J}21_+_ (2r—1K2j-1}
=3 ¥ alrnn-HEnr3c l)zq (cz +q2 ;=11 }fjn
i=1r=1 {14 g¥m*2-aiml)

B[ gneze-yy @77 £ g
+ Z - +roas 12 ST T 2n- e 1)

_ 2m+2"_1) q{r—l}z—lmln—lj—(n—l)z(l +q2r—l)
tr+tn-1/2 (] + q2m+2n—1}

r—1 r— (2r—13n2j-1})
air,n— 1) E{ZM*—Z_;l 47U + 4 .
mert)-1 (1+q{2m+2; Tz 1) Cin

i=1

r=1)2-2ma—11—i(n—1}2 -
st 2m— 1 q( 1) - 2mie— 10— 1}(1+q2 l)
- +r+n-1/2 (I +q2m+2ﬁ—1]

Il
M

=0,
since the internal expressions are zero by (3.7) with 1 € r € n — 1. Therefore
in multiplying §, on the right by (c;;),«, we see that the (i, jjth entry is the
(i, ith entry in 9, il j < n and i < n by the induction hypothesis and if j =
by (3.7). When i = n and j =j, < n, we see that our above argument ¢s-
tablishes (3.7) for all i with n replaced by j,, and so again the resulting
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(i, /)th entry is the (4, jo)th entry of y,. Hence
Bo cihxn=7a §
Lemma 11, There exist d,; such that di; =0 if i > j, dy = 1, and for ali n
Br (dinxn =74
Proof. We proceed by induction on n. In the case 7 = 1. the result is
trivial since $," and y,’ are the ! x | matrix whose single entry is

- 2m+2} [1 _q‘t) .
m+2 /2 (1 _ qdm+4)

Now we assume that the d;; have been found for i < n and j < n. We
choose d,; = 0 for j < n, d,, =1, and for 1 € h < n, we choose d,, so that
the following system of equations is valid:

q
Z (mm-:_fj _ 2m+2:!}2

(-‘—ﬂz(l _ q4ij] (i - 1)2—2mrn—11—(n—112(

l _ qd-i)

4m-—4n) »

(3.8)

where 1 £ 7% n— 1. Since d,, = 1, (3.8) is 4 system of (n — 1) equations in
(n — 1) unknowns. The determinant of the system is det §,_,, and by the
induction hypothesis det 8, | = dety,_ /det(d;},— x,—; = dety,_; # 0 by
Lemma 9. Therefore the d;, exist and are unique. T claim now that (3.8) is

valid for every { 2 1. This is because by Lemma §,
¥ e =G g @I g
m"'l*’J' ( q4J{m+_§] I +'+" ‘[1 _q4m+4n}

v mezpy 4770 — g*)
= _Z ,Z bilr, n — 131 H), Wﬂf}n

lr—n}3{1 _ q4m)

Im+2n 9
Z {?’ n— li[m-rr+n2_(_lw

T IV A L q‘“)}
- 2

m+r+n (1 _q4m+4NJ

n—1 n r—j»? rf
me2j, 4 (L —g™)
rgl b,-{r, - 1) [}Z (31+r3'j‘}2 _ qu(m+j}) d_m

=1 0
o Zme2n q("—l}z—zmiﬂ—l}—(n—l}z(l _ qdr)
+r+nl2 (1 _ q¢m+4ﬂ}
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since the internal expressions are zero by (3.8) with 1 € r £ n — 1. Therefore
in multiplying 8, on the right by (d,}), ., we see that the (i, j}th entry is the
(i, fith entry in 3, if j < n and i < » by the induction hypothesis and if j = n
by (3.8). When i =n and j = j, < n, we see that our above argument ¢s-
tablishes (3.8) for all { with n replaced by jg, and so in any event the resulting
(i, joith entry is the (i, jo)th entry of 7. Therefore

Bnr ’ (dij}ﬂ"ﬂ = }'nr' I

4. MacManoN's CONJECTURE
Tueorem 1 (MacMahon’s conjecture).

m qn+2| 1] m (l _ q2(n+i-h-1})
U|: 2: 1 kl_!-l (1 _qi:in-n) ENCAY

> M(n,m; N)g

N=0

Proof. We must treat separately the cases n even and n odd. First
3 M2a,m; Nyg¥

REYY
= g2.(9) (by (1.2))
= det x, (by (1.3)and (3.1)
= det §, {by Lemma 6)
= dety, {by Lemma 10)
m q2n+ 2i- l] m {1 _ q2(2n+i+.||— 1))
l;-[ [ 2! 1] };:I{—!-] (I _ qz(,‘.‘.h_ “) (by Lemma 8)

Hence (4.1) is valid when n is even.
When n = 1, the right side of (4.1) 1s

ﬁ l—q N0 =g" (@4 e g
i g (1—g¢%) {2; ¢ mla™: 4*)e
_ @5 @%)m
(@ @5)mla*; G
_ 4% 4%q"; ¢m
(2: 5 )m(g*; @ )n
= (=454

On the other hand M1, m; N) is clearly just the number of linear partitions
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with distinct odd parts each at most 2m — 1. Hence
Y MUomNg =1+l +4°) 11 +¢" ) =(—4: )n-

N20

Thus (4.1) is valid whenn = 1.

r

z M(2n + 1, m; Nig®

NzO
= 93,-1(9) (by (1.2))
={—g; g%, deta, (by (1.4) and {3.2))
={-g:¢*),det§, (by Lemma 7)
=(—gq:q*)pdety, {by Lemma 11)

m {1 "+2‘} m (1 _ qZV’J’!"'l—-h]}}
Hivh- by Lemma 9).

U { qli—l) hzlll [l _ q‘u.h 1}] { Y J
Hence {41} is valid when »n is odd and larger than 1. Therefore (4.1} is valid
foralin §

5. CoNCLUSION

First of all we remark that the Bender-Knuth conjecture [2, p. 50] is so
clearly of the same type as MacMahon's comjecture that it ought to be
provable by our metheds.

We also mention that the case ¢ = 1 of MacMahon's conjecture can be
treated much more easily in that Lemmas 4, 5, 10, and 11 are unnecessary.

Note added in proof. lan Macdonald of Queen Mary College has independently obtained
a proof of MacMahon's conjecture from group representation theory. The interrelationship
of Lemmas 4 and 5 with reciprocal polynomtials and basic hypergeometric series is explored in
my paper Implications of the MacMahon conjecture. i “Combinatoire et réprésentation du
groupe symetrique’ (D, Foata, ed.}, Lecture Notes in Mathematics, No. 579, Springer-Yerlag,
Berlin and New York pp. 287-296, 1977 The relationship between MacMahon™s conjecture
and the Bender—Knuth conjecture has been established in my paper Plane partitions (II}: The
equivalence of the Bender-Knuthand MacMahon conjectures, Pac. J. Marh T2(1977), 283-291.
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