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Abstract

Richmond and Szekeres {1977) have conjectured that certain of the coefficients in the power
series expansions of certain infinite products vanish. In this paper, we prove a general family of
resuits of this nature which includes the above conjectures.

Subject classification (Amer. Marh. Scc. (MOS) 1970): primary 10J 20, 10 A 45; secondary
33 A 30,33 A25

1. Introduction

Richmond and Szekeres (1977) have determined Hardy—Ramanujan-Rademacher
expansions for quotients of certain infinite products that have arisen 1n continued
fraction expansions of the Rogers~Ramanujan type. From these results they deduce
that if
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Their results also lead them to conjecture that if
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then ag, . s is always zero, and if
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then b, . 1 is always zero.
We shall prove two theorems concerning the quotient of infinite products
« (1 _q2h+r)(1 _qzu+u—r)

Folg) = mI;Io(] g (] _ g iy

where 1<r<k are integers. The first theorem gives a nice identity for treating
such congruence problems.

THEOREM 1.

a 112 2 qp___q{k—r)(n—l]_q(k+r]n—k
(z qh,{” ” ) Fk.r(q} = Z 2kn -k .

n={ r=1 1 —-g
THeoREM 2. If 1<r<k are relatively prime integers of opposite parity and
Fo k@) =200 9ad" then Qua s x4 1,2 i always zero.
We remark that cases k=4, r=3 and k =4, r =1 are the results proved by

Richmend and Szekeres for the C,, while thecases k=6, r=5and k=6, r = 1
establish the two conjectures for the d,,.

2. Proof of Theorem 1

Theorem | relies on one of Ramanujan’s elegant summations:
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where (a), = (1—a)(1—aq)... (1 —ag"~ ') when n is positive and more generally
(@), =T];50(l —ag")(1 —ag’*")"!. We must also require for the convergence of the
series in (2.1) that (bfa| < |z| < 1, |g| < 1. For proofs of (2.1) see Andrews (1969),
Andrews and Askey (1977) and Ismail {1977).

Let us now replace ¢ by g%, then set z =¢**", a =g * b=4g" and multiply
both sides by {1 —g*)~". The resulting formula is
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Theorem 1 follows immediately when we recall Gauss’s formula (Andrews (1976),
p. 23):
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3. Proof of Theorem 2

From Theorem | it js immediate that to prove Theorem 2, we need only prove
that the coefficient of g+ &7+ 142 jg

q{k—r](n- 1) _q(l-i-r)n—k

2kn—k

3.1 éi =g

is identically zero since ¥ %, ¢*"* 12 is a function of ¢*. Now the terms of the
series that contribute something to these coefficients either have

(3.2) (k—rY(n—1) =rlk—r+1)2 (modk)
or
3.3 k+ryn—k =r(k—r+1)2 (modk).

Since we are assuming & and r are relatively prime, we see that n = (k—r+1)/2 is
the unique solution of (3.3} lying in [1,k— 1] while n = (X +r+1)/2 is the unique
solution of (3.2) lying in [2,%]. Hence the portion of (3.1) that contains powers
qkn+r{t-—r+1}12 iS given by
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Hence the expression (3.4) is identically zero. Thus all the coefficients

Prp+rik—r+ 112

in the expansion of F; ,(g) are identically zero. This concludes the proof of Theorem
2.
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