ON GENERALIZATIONS OF EULER’S PARTITION THEOREM
George E. Andrews

1. INTRODUCTION

Sylvester’s memoir on partitions contains an interesting generalization of Euler’s
partition theorem [12, p. 293 (p. 45 in Collected Works)]. In any partition of n into
distinct parts, we may count the total number of sequences of consecutive integers
appearing. For example, 31 =10+ 8+ 7+ 3+ 2+ 1 consists of three such sequences,
namely 10; 8, 7; 3, 2, 1. Sylvester’s theorem is as follows.

THEOREM 1. Let Ayx(n) denote the numbey of partitions of n into odd parts
(repetitions allowed) with exactly k distinct parts appeaving. Let By(n) denote the
number of partitions of n into distinct paris such thatl exactly k sequences of con-
secutive integers appear in each pavtition. Then

Ay(n) = By(n).

For example, let n = 15, k = 3. Then the partitions enumerated by A3(15) are
11+3+1, 9+5+1, 9+3+1+1+1, 7+5+3, T+5+1+1+1,
T+3+3+1+1, 7+3+1+1+1+1+1, 5+5+3+1+1, 5+3+3+3+1,
54+3+3+1+1+1+1, 54+3+1+1+1+1+1+1+1.

Hence A3(15) = 11. The partitions enumerated by B 3(15) are
11+3+1, 10+4+1, 9+5+1, 9+4+2, 8+6+1, 8+5+2 8+4+2+1,
7+5+3, T+5+2+1, T+4+3+1, 6+5+3+1.

Hence B,(15) = 11.

This beautiful theorem was proved arithmetically [12, Section (46)]. F. Franklin
has deduced the result for k = 1 from a study of the generating functions involved
[12, Section (25) (C)]; however, there seems to be no known analytic proof for k > 1.
In Section 2 of this paper, we prove Sylvester’s theorem by means of generating
functions.

In Section 3, we give a new generalization of Euler’s theorem. Let Il4(n) denote
the set of partitions of n into distinct parts. If 7 is any partition of n, say
by + - +bg=n (b; >b;4q), let g(m) denote the number of solutions of the inequality
b; -b;,;>2 (i=1, -, s; define b_,; = 0). For example, in the partition
18=8+6+2+2, g(n) = 3.

THEOREM 2. Let C(n) denote the number of partitions of n with exactly k
distinct even parts appeaving (all other parts being odd), then
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2 (gl({ﬂ)) = Cy(n).

me Hd(n)

If k = 0, the above sum just counts the number of elements of II4(n), and we have
Euler’s theorem again. As an example, we take k = 2, n = 13. The partitions in
I;(13) for which g(m) > 2 are

11+2, 10+3, 9+4, 9+3+1, 8+5, 8+4+1, 8+3+2 T+5+1,
T+4+2 6+5+2 6+4+3, 6+4+2+1.
All of these partitions have g(r) = 2, except 7+ 4 + 2, which has g(7) = 3. Thus in
this particular case the sum given in the theorem is equal to 14. The partitions
enumerated by C,(13) are
10+2+1, 8+4+1, 8+3+2 B8+2+1+1+1, 6+4+3, 6+4+1+1+1,
6+5+2, 6+3+2+1+1 6+2+1+1+14+1+1 T7T+4+2 5+4+2+1+1,

4+3+3+2+1, 4+3+2+1+1+1+1, 4+2+1+1+1+1+1+1+1.

Hence C,(13) = 14,

As a corollary of our work, we obtain the curious identity
1 Bq 0 0 0

-1 1+q PBq? 0 0 -
0 -1 1+q% B3 O - II E‘Jﬁl_),
§=0 (1 - qZJ+1)

0 0 -1 1+q3 gg* -

----------------------

which resembles certain results of I. Schur [10], [11].

2. PROOF OF THEOREM 1

Clearly [12, Section (25) (C)], if E(a; q) denotes the generating function of
A, (N), then

(=] [~¢] o0
2j+1
(2.1) E(a;q) = 1+ 2 2 Ak(N)akqN = II (1+—2—q—-2-_—+—1-).
k=1 N=1 j=0 1-9%

Let F(a; q) be the generating function of B (N), and let F,(a; q) be the generat-
ing function of By(n; N), where By (n; N) denotes the number of partitions of N into
distinct parts with exactly k sequences appearing and with no part exceeding n.

Thus with F, (a; a) = 1, we get

Fl(a; q = 1+aq, Fz(a; q) = 1+ aq + ag? + aqg>,
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and in general,
(2.2) F (a;9) = F (a5 +d"(F,_,(a;0) - F__S(a;q)+aqg”F __.(a;q).

Now (2.2) is easily verified. We may divide the partitions enumerated by
By(n; N) into three disjoint classes: 1) those partitions with largest part less than
n; 2) those partitions with n, n - 1 as the two largest parts; 3) those partitions with
n as largest part and n - 1 not appearing. The partitions in the first class have
F,_i(a; q) as generating function. The partitions in the second class have
q*(F,_1(a; @) - F,_»(a; q)) as generating function, and the partitions in the third
class have aq™ F__,(a; q) as generating function.

We may rewrite (2.2) as
. q) = . - 1) .
(2.3) F(a;0) = (1+qM)F, (@0 +(-1)q"F ,(;4q).
From Tannery’s theorem [9, p. 371], it is easily deduced that if Iql < 1, then

Fla; q) = lim F,(a; q).

n-— oo

By (2.3) and the remarks preceding (2.2) we have the relation

1 (a-1)q 0 0
-1 1+q (a-1)g? 0
0 -1 1+¢* (a- 1)
T I
(a - 1)gn-1 0
1+qn-l (a-1)n
-1 1+qg™
Define
1+x xBq 0 0
-1 14+xq xﬁqZ 0
0 -1 14+x¢® xBq3
GolB; X @) = | ettt e it e e e e
xBq-1 0
1+xq™!  xpg®
-1 1+ xg™
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Then expansion along the first row yields the formula
(2.4) G,(8; x; @) = (1+x)G,_1(8; xa; @) + xBqG,, _,(8; xq%; q) .

Also, setting x = 1, expanding along the first row, and comparing the result with
the determinant for F,(a; q), we find that

(2.5) Fya;q) = Ga-1;1;q) - G, ;(a - 15 q; q).
Again by Tannery’s theorem, there exists G(B; x; q) such that if |q| < 1, then

lim G, (B8; x;q) = G(B; x; q).

Hence, by (2.4),

(2.6) G(8; x; q) = (1+x)G(B; xq; @) + xBaG(8; xa®; @),

and by (2.5),

(2.7 Fla; @) = Gla-1;1;q) - Gla - 1595 q) .
Now, if

G*(B- - q) - Z) qV(V-l)/Z xV (1 +ﬁq) cos (1 +ﬁqy)
o V=0 (1-q - (1-q?) ’

then G*(8; 0; q) = 1, and by substitution of G*(8; x; q) into (2.6) and comparison of
coefficients of xV, we see that (2.6) is satisfied by G*(B; x; q). Therefore, since the
relation G(B; 0; q) = 1 and (2.6) determine G(B; x; q) uniquely, we find that

(2.9) G(8; x; a) = G*(B; x; @) .

Hence, by Heine’s transformation of basic hypergeometric series [7, p. 1086], we
obtain the formula

(210) @@ x5 q) = IT (1+pgh) IT (1 +xq) & ——CBD™

m~l *
h=1 =0 m=0 I (1-q% I (1+xd9
s=1 t=0
Thus
G(B; 1;q9) = IT 1+8gh) IT (1+qi) 2 m(_Bq)m(l;qum)
b=l =1 ™0 (1-9%) IT (1+qY
s=1 t=1

st e . hod - 2\ym
GB; )+ I (L+pq) IT (1+q) D P
h=1 j=1 m=0 H (1 ) q25)

s=1

]
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=GB;q; )+ IT (1+8a®) IT A +qd) II (1+B8q%Y)-1 (by [12, Section (4)])
h=1 j=1 v=1
= G(B; a; @) + II (1+g?+) II (1+4qJ).
h=0 j=1
Hence
F(a; q) = G(a - 1; 1; @) - G(a - 1; q; q)
* © « 2h+1
(2.11) =II A+(@-1rt1) IT (1+qi) = II 1+ (- 1g™") [9, p. 13]
h=0 s j=1 : n=0 (1 -q?hth

[~e]
2h+1
II 1+-24 "~ ) - E(a; q),
oo 1 - g2btl

and therefore A,(n) = B, (n).

3. PROOF OF THEOREM 2

We shall prove our theorem in a slightly altered form. Define a k-partition of n
to be a partition of n of the form

with
aj-aj+1_>_2 G=1,,k-1), a > 2,
by ~by,; >1 (=1, v - 1),
2 #by for any j and £, aj—laébg for any j and £.

We denote such a partition by a; , -, 2, l by, =+, by.

Thus more briefly, a k~partition 7 of n is a partition of n into distinct parts
with g(7) > k; however, we now consider two such partitions distinct if merely the
set of a; (or the set of b;) in one partition differs from that in the other. Thus
6, 2 I 4, 4, 2 [ 6, and 6, 4 | 2 are to be considered three distinct 2-partitions of 12.
We restate Theorem 2 as follows.

THEOREM 2'. Let C, (N) denote the number of partitions of N with exactly k
distinct even parts appearing (all other parts being odd). Let Dy (N) denote the

number of k-partitions of N. Then
Ck(N) = Dk(N).

Remark. Clearly
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py= 2 (&™),
K 7 €T (N) ( k )

g(m)
k

since we may form exactly ( ) distinct k-partitions from any given partition of

N into distinct parts.

Proof of theorem., Define
0if k<0,or n<0,or N<O,andnot k=n=N=0,

l1if k=n=N=0,
D(k, n; N) =
the number of k-partitions of N with n parts

(that is, k+ v = n) fk>0,n>0, N>0.
Then

(3.1) D(k,n;N) =Dk, n;N-n)+Dk,n-1;N-n)+Dk-1,n-1; N-2n).

This identity is established as follows. Divide the partitions enumerated by
D(k, n; N) into three groups. In group (A), consider those partitions in which a; = 2.
In group (B), consider those partitions in which b;, = 1. In group (C), consider those
partitions in which a, # 2 and b, # 1.

If we subtract 2 from every summand of a partition in group (A), we decrease the
number being partitioned to N - 2n; the number of parts is decreased by 1, and the
number of a; is reduced by 1. Hence this process establishes a one-to-one corre-
spondence between the partitions enumerated by group (A) and those enumerated by
Dk-1,n~-1; N - 2n).

If we subtract 1 from every summand of a partition in group (B), we decrease the
number being partitioned to N - n; the number of parts is decreased by 1, but the
number of a; is not reduced. Hence this process establishes a one-to-one corre-
spondence between the partitions enumerated by group (B) and those enumerated by
D(k, n - 1; N - n).

Applying the same process as in the preceding paragraph to the partitions in
group (C), we find that the number of partitions in group (C) is just D(k, n; N - n).
Hence we have established (3.1). Thus, if

(3.2) TB; x;q) = 1+ IEDIEDY: D(k, n; N)kanqN,
k=0 n=1 N=1

then by (3.1)
I'(8; x; @) = (1+ xq) I(B; xq; q) + xBq? T(B; xq%; q) .
Since I'(8; 0; q) = 1, we find on comparison with (2.4) that
T'(B; x; q) = G(B; xq; q) .

Therefore, by (2.10)
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@ 1;q) = I (1+8q") IT 1+ gf) 2 (- Bg)™
V= ) L) o T - (e
= I @+ I (1+d) I (1+82™) ! (by [12, Section (4)])
h=1 1=1 m=0
(3.3) ’
= II (1+pg?") IT (1 - 23*1)"1  (by [12, p. 263 (p. 13)])
h=1 j=0
=1+ 2 2 C (N)B&qN.
k=0 N=1
But by (3.2)

r(g; 1;q) = 1+ 20 2 D (N)5qV.
k=0 N=1
Hence Ck(N) = Dk(N).

4. CONCLUSION

Along with the generalizations of Euler’s theorem, we have obtained some inter-
esting side results. First of all, we have shown that each of the expressions in the
last identity stated in the introduction is F(8 + 1; q).

Also, comparing (3.3) with (2.9), we find that

(4.1) » 2 (14 pg) e (14 697) II (1+pg™) (1 +d).
e (-a - (-q¥) e

Several papers have dealt with (4.1) both in the study of continued fractions and in
the study of partition theorems of the Rogers-Ramanujan type [3], [4], [5], [6]; (4.1)
was also studied by Bachmann in [2, p. 42], and it is originally due to Lebesgue [5,

p. 42].

Finally it would greatly simplify the proof of Sylvester’s,theorem if one could
prove directly that

©0

-1
Fa; g = 5 L4 - 1) (1t @- 1)
v=1 (1-q) - (1-q¥1)
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