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Abstract

It is proved that the partitions of n into powers of two with all parts
appearing an odd number of times equals the number of Semi-Fibonacci
partition of n. The parity of the number of such partitions is also exhib-
ited.

1 Introduction

The set SF(n) of semi-Fibonacci partitions is defined as follows: SF(1) = {1},
SF(2) = {2}. If n > 2 and even the SF(n) consists of the partitions of SF(n

2 )
wherein each part has been multiplied by 2. If n is odd, SF(n) arises from two
sources: first a 1 is inserted in each partition of n− 1 and second a 2 is added
to the single odd part of S(n − 2) (note: it is easily seen by induction that
semi-Fibonacci partitions have at most one odd part).

Thus here are the first seven SF(n):

SF(1) = {1}
SF(2) = {2}
SF(3) = {2 + 1, 3}
SF(4) = {4}
SF(5) = {4 + 1, 3 + 2, 5}
SF(6) = {4 + 2, 6}
SF(7) = {4 + 2 + 1, 6 + 1, 4 + 3, 5 + 2, 7}

We now define
sf(n) = |SF(n)|.

Thus sf(1) = sf(2) = 1, sf(3) = 2, sf(4) = 1, sf(5) = 3, sf(6) = 2, sf(7) = 5.
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From the definition of SF(n), we see that sf(−1) = 0, sf(0) = 1, and for
n > 0

(1.1) sf(n) =

{
sf(n

2 ) if n is even

sf(n− 1) + sf(n− 2) if n is odd

It appears that Jonathan Vos Post is the first one to consider the semi-
Fibonacci sequence sf(n) [2]. Numerous properties are listed in [2] including
a function equation for g(x) = F (x) − 1; however, both our theorems are not
there.

George Beck [1] appears to be the first to consider semi-Fibonacci partitions,
and in [1], he proves a nice theorem for a set of related polynomials. I thank
George Beck for drawing my attention to semi-Fibonacci partitions.

Binary partitions are partitions into powers of 2. We let ob(n) denote the
number of binary partitions of n in which each part appears an odd number of
times. Thus ob(7) = 5 because the relevant partitions are 4+2+1, 4+1+1+1,
2 + 2 + 2 + 1, 2 + 1 + 1 + 1 + 1 + 1, and 1 + 1 + 1 + 1 + 1 + 1 + 1.

Theorem 1. For each n ≥ 0

(1.2) sf(n) = ob(n)

We shall also treat the parity of these sequences.

Theorem 2. For each n > 0, sf(n) is even if 3|n and odd otherwise.

Section 2 is devoted to the proof of Theorem 1. Section 3 treats Theorem 2,
and Section 4 considers open questions.

2 Proof of Theorem 1

We define

(2.1) F (x) =
∑
n≥0

sf(n)xn.

Then

F (x) =
∑
n≥0

sf(2n)x2n +
∑
n≥0

sf(2n + 1)x2n+1

=
∑
n≥0

sf(n)x2n +
∑
n≥0

(sf(2n) + sf(2n− 1))x2n+1

= F (x2)(1 + x) + x2
∑
n≥0

sf(2n + 1)x2n+1

= F (x2)(1 + x) +
x2

2
(F (x)− F (−x)).
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Also

1

2
(F (x) + F (−x)) =

∑
n≥0

sf(2n)x2n(2.2)

=
∑
n≥0

sf(n)x2n

= F (x2)

From (2.2) we deduce that

(2.3) F (−x) = 2F (x2)− F (x).

Substituting (2.3) into (2.1), we find

F (x) = (1 + x)F (x2) +
x2

2
F (x)(2.4)

− x2(F (x2)− 1

2
F (x))

Simplifying we obtain

(2.5) (1− x2)F (x) = (1 + x− x2)F (x2),

or

(2.6) F (x) =
1 + x− x2

1− x2
F (x2),

and iterating (2.6), we obtain

F (x) =

∞∏
n=0

1 + x2n − x2n+1

1− x2n+1(2.7)

=

∞∏
n=0

(
1 +

x2n

1− x2n+1

)

=
∞∏

n=0

(
1 +

∞∑
m=0

x2n(2m+1)

)
=
∑
m≥0

ob(n)xn.

Finally comparing coefficients in (2.1) and (2.7), we obtain Theorem 1.

3 Proof of Theorem 2

Here we must utilize the fact that every positive integer is uniquely the sum of
distinct powers of 2. In terms of generating functions, this is the identity

(3.1)
1

1− x
=

∞∏
n=0

(1 + x2n).
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We now proceed modulo 2 (where −x ≡ x (mod 2)). Hence

∑
n≥0

sf(n)xn =

∞∏
n=0

(1 + x2n − x2n−1

)

1− x2n+1(3.2)

≡
∞∏

n=0

1 + x2n + x2n+1

(1− x2n)2
(mod 2)

=

∞∏
n=0

(1− x3·2n)

(1− x2n)3

≡
∞∏

n=0

(1 + x3·2n)

(1 + x2n)3
(mod 2)

=
(1− x)3

1− x3

= 1 +
−3x + 3x2

1− x3

≡ 1 +
x + x2

1− x3
(mod 2)

= 1 +

∞∑
n=0

(x3n+1 + x3n+2),

and Theorem 2 follows by comparing coefficients in the extremes of (3.2).

4 Conclusion

It would be nice to have combinatorial proofs of both theorems. In light of the
recursive nature of the definition of sf(n), this should be quite tractable. One
only need note that the recurrence (1.1) for ob(n) works as follows. The top
line follows by multiplying each part in the partition of n

2 by 2. The bottom
line arises by inserting a 1 in the partitions of n − 1 and inserting two ones in
the partitions of n− 2.
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