Binary and Semi-Fibonacci Partitions

by
George E. Andrews
Dedicated to my friend, Ashok Agarwal, on the occasion of his 70th birthday

1

Abstract

It is proved that the partitions of n into powers of two with all parts appearing an odd number of times equals the number of Semi-Fibonacci partition of n. The parity of the number of such partitions is also exhibited.

1 Introduction

The set $\mathfrak{S z}(n)$ of semi-Fibonacci partitions is defined as follows: $\mathfrak{S F}(1)=\{1\}$, $\mathfrak{S} \mathfrak{F}(2)=\{2\}$. If $n>2$ and even the $\mathfrak{S} \mathfrak{F}(n)$ consists of the partitions of $\mathfrak{S} \mathfrak{F}\left(\frac{n}{2}\right)$ wherein each part has been multiplied by 2 . If n is odd, $\mathfrak{S F}(n)$ arises from two sources: first a 1 is inserted in each partition of $n-1$ and second a 2 is added to the single odd part of $\mathfrak{S}(n-2)$ (note: it is easily seen by induction that semi-Fibonacci partitions have at most one odd part).

Thus here are the first seven $\mathfrak{S F}(n)$:

$$
\begin{aligned}
& \mathfrak{S F}(1)=\{1\} \\
& \mathfrak{S F}(2)=\{2\} \\
& \mathfrak{S F}(3)=\{2+1,3\} \\
& \mathfrak{S F}(4)=\{4\} \\
& \mathfrak{S F}(5)=\{4+1,3+2,5\} \\
& \mathfrak{S F}(6)=\{4+2,6\} \\
& \mathfrak{S} \mathfrak{F}(7)=\{4+2+1,6+1,4+3,5+2,7\}
\end{aligned}
$$

We now define

$$
\operatorname{sf}(n)=|\mathfrak{S} \mathfrak{F}(n)|
$$

Thus $\operatorname{sf}(1)=\operatorname{sf}(2)=1, \operatorname{sf}(3)=2, \operatorname{sf}(4)=1, \operatorname{sf}(5)=3, \operatorname{sf}(6)=2, \operatorname{sf}(7)=5$.

[^0]From the definition of $\mathfrak{S f}(n)$, we see that $\operatorname{sf}(-1)=0, \operatorname{sf}(0)=1$, and for $n>0$

$$
\operatorname{sf}(n)= \begin{cases}\operatorname{sf}\left(\frac{n}{2}\right) & \text { if } n \text { is even } \tag{1.1}\\ \operatorname{sf}(n-1)+\operatorname{sf}(n-2) & \text { if } n \text { is odd }\end{cases}
$$

It appears that Jonathan Vos Post is the first one to consider the semiFibonacci sequence $\operatorname{sf}(n)$ [2]. Numerous properties are listed in [2] including a function equation for $g(x)=F(x)-1$; however, both our theorems are not there.

George Beck [1] appears to be the first to consider semi-Fibonacci partitions, and in [1], he proves a nice theorem for a set of related polynomials. I thank George Beck for drawing my attention to semi-Fibonacci partitions.

Binary partitions are partitions into powers of 2 . We let $\mathrm{ob}(n)$ denote the number of binary partitions of n in which each part appears an odd number of times. Thus $\mathrm{ob}(7)=5$ because the relevant partitions are $4+2+1,4+1+1+1$, $2+2+2+1,2+1+1+1+1+1$, and $1+1+1+1+1+1+1$.

Theorem 1. For each $n \geq 0$

$$
\begin{equation*}
\operatorname{sf}(n)=\operatorname{ob}(n) \tag{1.2}
\end{equation*}
$$

We shall also treat the parity of these sequences.
Theorem 2. For each $n>0, \operatorname{sf}(n)$ is even if $3 \mid n$ and odd otherwise.
Section 2 is devoted to the proof of Theorem 1. Section 3 treats Theorem 2, and Section 4 considers open questions.

2 Proof of Theorem 1

We define

$$
\begin{equation*}
F(x)=\sum_{n \geq 0} \operatorname{sf}(n) x^{n} \tag{2.1}
\end{equation*}
$$

Then

$$
\begin{aligned}
& F(x)=\sum_{n \geq 0} \operatorname{sf}(2 n) x^{2 n}+\sum_{n \geq 0} \operatorname{sf}(2 n+1) x^{2 n+1} \\
& =\sum_{n \geq 0} \operatorname{sf}(n) x^{2 n}+\sum_{n \geq 0}(\operatorname{sf}(2 n)+\operatorname{sf}(2 n-1)) x^{2 n+1} \\
& =F\left(x^{2}\right)(1+x)+x^{2} \sum_{n \geq 0} \operatorname{sf}(2 n+1) x^{2 n+1} \\
& =F\left(x^{2}\right)(1+x)+\frac{x^{2}}{2}(F(x)-F(-x))
\end{aligned}
$$

Also

$$
\begin{align*}
\frac{1}{2}(F(x)+F(-x)) & =\sum_{n \geq 0} \operatorname{sf}(2 n) x^{2 n} \tag{2.2}\\
& =\sum_{n \geq 0} \operatorname{sf}(n) x^{2 n} \\
& =F\left(x^{2}\right)
\end{align*}
$$

From (2.2) we deduce that

$$
\begin{equation*}
F(-x)=2 F\left(x^{2}\right)-F(x) \tag{2.3}
\end{equation*}
$$

Substituting (2.3) into (2.1), we find

$$
\begin{align*}
F(x)=(1+x) & F\left(x^{2}\right)+\frac{x^{2}}{2} F(x) \tag{2.4}\\
& -x^{2}\left(F\left(x^{2}\right)-\frac{1}{2} F(x)\right)
\end{align*}
$$

Simplifying we obtain

$$
\begin{equation*}
\left(1-x^{2}\right) F(x)=\left(1+x-x^{2}\right) F\left(x^{2}\right), \tag{2.5}
\end{equation*}
$$

or

$$
\begin{equation*}
F(x)=\frac{1+x-x^{2}}{1-x^{2}} F\left(x^{2}\right) \tag{2.6}
\end{equation*}
$$

and iterating (2.6), we obtain

$$
\begin{align*}
F(x) & =\prod_{n=0}^{\infty} \frac{1+x^{2^{n}}-x^{2^{n+1}}}{1-x^{2^{n+1}}} \tag{2.7}\\
& =\prod_{n=0}^{\infty}\left(1+\frac{x^{2^{n}}}{1-x^{2^{n+1}}}\right) \\
& =\prod_{n=0}^{\infty}\left(1+\sum_{m=0}^{\infty} x^{2^{n}(2 m+1)}\right) \\
& =\sum_{m \geq 0} \mathrm{ob}(n) x^{n}
\end{align*}
$$

Finally comparing coefficients in (2.1) and (2.7), we obtain Theorem 1.

3 Proof of Theorem 2

Here we must utilize the fact that every positive integer is uniquely the sum of distinct powers of 2 . In terms of generating functions, this is the identity

$$
\begin{equation*}
\frac{1}{1-x}=\prod_{n=0}^{\infty}\left(1+x^{2^{n}}\right) \tag{3.1}
\end{equation*}
$$

We now proceed modulo $2($ where $-x \equiv x(\bmod 2))$. Hence

$$
\begin{align*}
& \sum_{n \geq 0} \operatorname{sf}(n) x^{n}=\prod_{n=0}^{\infty} \frac{\left(1+x^{2^{n}}-x^{2^{n-1}}\right)}{1-x^{2^{n+1}}} \tag{3.2}\\
& \equiv \prod_{n=0}^{\infty} \frac{1+x^{2^{n}}+x^{2^{n+1}}}{\left(1-x^{2^{n}}\right)^{2}} \quad(\bmod 2) \\
& =\prod_{n=0}^{\infty} \frac{\left(1-x^{3 \cdot 2^{n}}\right)}{\left(1-x^{2^{n}}\right)^{3}} \\
& \equiv \prod_{n=0}^{\infty} \frac{\left(1+x^{3 \cdot 2^{n}}\right)}{\left(1+x^{2^{n}}\right)^{3}} \quad(\bmod 2) \\
& =\frac{(1-x)^{3}}{1-x^{3}} \\
& =1+\frac{-3 x+3 x^{2}}{1-x^{3}} \\
& \equiv 1+\frac{x+x^{2}}{1-x^{3}} \quad(\bmod 2) \\
& =1+\sum_{n=0}^{\infty}\left(x^{3 n+1}+x^{3 n+2}\right)
\end{align*}
$$

and Theorem 2 follows by comparing coefficients in the extremes of (3.2).

4 Conclusion

It would be nice to have combinatorial proofs of both theorems. In light of the recursive nature of the definition of $\operatorname{sf}(n)$, this should be quite tractable. One only need note that the recurrence (1.1) for $\mathrm{ob}(n)$ works as follows. The top line follows by multiplying each part in the partition of $\frac{n}{2}$ by 2 . The bottom line arises by inserting a 1 in the partitions of $n-1$ and inserting two ones in the partitions of $n-2$.

References

[1] G. Beck, http://demonstrations.wolfram.com/SemiFibonacciPartitions/
[2] On Line Encyclopedia of Integer Sequences, sequence A030067.
The Pennsylvania State University
University Park, PA 16802, USA
gea1@psu.edu

[^0]: ${ }^{1} 2010$ Mathematics Subject Classification: 11P81, 05A19
 Key Words and Phrases: binary partitions, semi-Fibonacci partitions

