
Dyson’s “Favorite” Identity and Chebyshev

Polynomials of the Third and Fourth Kind

by
George E. Andrews

Keyword: partitions, Dyson’s favorite identity, Bailey pairs, Bailey’s lemma,
partitions, Chebyshev polynomials, mock theta functions

AMS Classification Numbers: 05A17, 05A19, 11P83

Abstract

The combinatorial and analytic properties of Dyson’s “favorite” iden-
tity are studied in detail. In particular, a q-series analog of the anti-
telescoping method is used to provide a new proof of Dyson’s results with
mock theta functions popping up in intermediate steps. This leads to
the appearance of Chebyshev polynomials of the third and fourth kind in
Bailey pairs related to Bailey’s Lemma. The natural relationship with L.
J. Rogers’s pioneering work is also presented.

1 Introduction

Freeman Dyson, in his article, A Walk Through Ramanujan’s Garden [11], de-
scribes how his study of Rogers-Ramanujan type identities helped to preserve his
sanity during the dark days of World War II. Among the results he discovered
was his favorite:

(1.1)

∞∑
n=0

qn
2+n

n∏
j=1

(1 + qj + q2j)

(1− q)(1− q2) · · · (1− q2n+1)
=

∞∏
n=1

(1− q9n)

(1− qn)

Dyson’s proof of (1.1) [10, pp. 8-9] and the proof subsequently provided by
Slater [17, p. 161, eq.(92)] are based on what has become known as Bailey’s
Lemma [10, p. 3, eq.(3.1)].

We shall begin in Section 2 by providing a proof of (1.1) and three related
identities via q-difference equations. This will necessitate a q-series analog of
anti-telescoping [6] with several new intermediate q-series arising.

With an eye to understanding these new intermediate functions, we devote
Section 3 to connections between Vn(x) and Wn(x) (the Chebyshev polynomials
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of the third and fourth kind respectively) and surprising Bailey pairs. For
example, in Section 4, we prove

(1.2)
∑
n≥0

qn
2+n

n∏
j=1

(1 + 2xqj + q2j)

(1− q)(1− q2) · · · (1− q2n+1)
=

1
∞∏
n=1

(1− qn)

∑
n≥0

q3(
n+1
2 )Vn(x),

where Vn(x) is the Chebyshev polynomial of the third kind.
Section 4 returns to (1.1) itself to reveal how many other Rogers-Ramanujan

type identities are merely specializations of the natural generalization of (1.1).
Section 5 uses the work of Section 3 to establish that many of the new

functions are, in fact, mock theta functions or closely related.
Sections 6 and 7 are devoted to ninth order mock theta functions and their

generalizations containing Chebyshev polynomials of the third kind. For exam-
ple,

∑
n≥1

qn
2
n−1∏
j=1

(1 + 2xqj + q2j)

(1− q)(1− q2) · · · (1− q2n−1)
(1.3)

=

∞∏
n=1

1

1− qn
∑
m≥1

q2m
2−m(1− q2m)

m−1∑
j=0

Vj(x)q−j(j+1)/2.

To round out a full treatment of (1.1), we provide a natural interpretation
of (1.1) related to sequences in partitions [8] in Section 8.

Section 9 considers a companion to (1.1) arising from the quintuple product
identity, and Section 10 considers open questions.

Although he did not continue the terminology of Chebyshev polynomials, L.
J. Rogers [15] tacitly used them in his combinations of Fourier series. We shall
describe this relationship in Section 10.

2 A New Proof of Dyson’s Favorite Identity

The identities to be proved are the following:

D4,4(a; q) :=
∑
n≥0

anqn
2

(aq2n; q)∞
(q; q)n(aq3n; q3)∞

= Q4,4(a; q3)(2.1)

D4,3(a; q) :=
∑
n≥0

anqn
2+n(aq2n+2; q)∞

(q; q)n(aq3n+3; q3)∞
= Q4,3(a; q3)(2.2)

D4,2(a; q) :=
∑
n≥0

anqn
2+2n(aq2n+3; q)∞

(q; q)n(aq3n+3; q3)∞
= Q4,2(a; q3)(2.3)
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D4,1(a; q) :=
∑
n≥0

anqn
2+3n(aq2n+3; q)∞

(q; q)n(aq3n+3; q3)∞
= Q4,1(a; q3),(2.4)

where

(2.5) Qk,i(a; q) =
∑
n≥0

(−1)naknq
1
2 (k+1)n(n+1)−in(1− aiq(2n+1)i)

(q; q)n(aqn+1; q)∞

with

(2.6) (A; q)N = (1−A)(1−Aq) . . . (1−AqN−1)

and

(2.7) (A; q)∞ =

∞∏
n=0

(1−Aqn).

It has been proved in [1] that the Qk,i(a; q) as doubly analytic functions in a
and q are uniquely determined by the following initial conditions and q-difference
equations:

Qk,0(a; q) = 0,(2.8)

Qk,i(0; q) = Qk,i(a; 0) = 1 for 1 ≤ i ≤ k,(2.9)

and for 1 ≤ i ≤ k

(2.10) Qk,i(a; q)−Qk,i−1(a; q) = (aq)i−1Qk,k−i+1(aq; q).

Theorem 1. For 1 ≤ i ≤ 4,

(2.11) D4,i(a; q) = Q4,i(a; q3).

Proof. In light of the comments proceeding (2.8), the proof of the theorem
merely requires that (2.8)-(2.10) are established (with q → q3) for D4,i(a; q).

First, we note that (2.8) is by definition and (2.9) follows by inspection.
Indeed we see also by inspection that

(2.12) D4,1(a; q) = D4,4(aq3; q)

which is (2.10) in the case k = 4, i = 1, q → q3.
Next

D4,2(a; q)−D4,1(a; q)(2.13)

=
∑
n≥0

anqn
2+2n(aq2n+3; q)∞

(q; q)n(aq3n+3; q)∞

−
∑
n≥0

anqn
2+3n(aq2n+3; q)∞

(q; q)n(aq3n+3; q3)∞
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=
∑
n≥0

anqn
2+2n(1− qn)(aq2n+3; q)∞
(q; q)n(aq3n+3; q3)∞

=
∑
n≥1

anqn
2+2n(aq2n+3; q3)∞

(q; q)n−1(aq3n+3; q3)∞

=
∑
n≥0

an+1qn
2+4n+3(aq2n+5; q)∞

(q; q)n(aq3n+6; q3)∞

=aq3D4,3(aq3; q)

which is (2.10) when k = 4, i = 2, and q → q3.
Before we proceed to the k = 4, i = 3 case, we shall make some observations

about the simplicity of (2.13). Namely, we merely subtracted the two series
term by term and the resulting new term was exactly what we wanted. As we
move to k = 4, i = 3, we see that this simplicity doesn’t exist. In order to
produce this simplicity, we require the following intermediate functions

M320(a; q) :=
∑
n≥0

anqn
2+2n(aq2n+2; q)∞

(q; q)n(aq3n+3; q3)∞
,(2.14)

M321(a; q) :=
∑
n≥0

anqn
2

(aq2n+1; q)∞
(q; q)n(aq3n+3; q3)∞

,(2.15)

M322(a; q) :=
∑
n≥0

anqn
2+n(aq2n; q)∞

(q; q)n(aq3n; q3)∞
.(2.16)

Hence

D4,3(a; q)−D4,2(a; q)(2.17)

=(D4,3(a; q)−M320(a; q)) + (M320(a; q)−D4,2(a; q))

=
∑
n≥0

anqn
2+n(1− qn)(aq2n+2; q)∞
(q; q)n(aq3n+3; q3)∞

+
∑
n≥0

anqn
2+2n(aq2n+3; q)∞((1− aq2n+2)− 1)

(q; q)n(aq3n+3; q3)∞

=
∑
n≥0

an+1qn
2+3n+2(aq2n+4; q)∞

(q; q)n(aq3n+6; q3)∞

−
∑
n≥0

an+1qn
2+4n+2(aq2n+3; q)∞

(q; q)n(aq3n+3; q3)∞

=aq2(M321(aq3; q)−M322(aq3; q))

=aq2
∑
n≥0

anqn
2+3n(aq2n+4; q)∞

(q; q)n(aq3n+3; q3)∞
× ((1− aq3n+3)− qn(1− aq2n+3))
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=aq2
∑
n≥0

anqn
2+3n(1− qn)(aq2n+4; q)∞
(q; q)n(aq3n+3; q3)∞

=aq2
∑
n≥0

an+1qn
2+5n+4(aq2n+6; q)∞

(q; q)n(aq3n+6; q3)∞

=(aq3)2D4,2(aq3; q),

which establishes (2.10) in the case k = 4, i = 3, q → q3.
Note that in all steps the same simple term by term subtraction occurs. The

intermediate functions provided the necessary component to allow this to take
place.

To complete the final case of k = 4, i = 4, we require four new intermediate
functions:

M432(a; q) =
∑
n≥0

anqn
2+n(aq2n+1; q)∞

(q; q)n(aq3n+3; q3)∞
(2.18)

M433(a; q) =
∑
n≥0

anqn
2+2n(aq2n+2; q)∞

(q; q)n(aq3n+3; q3)∞
(2.19)

M434(a; q) =
∑
n≥0

anqn
2+2n(aq2n; q)∞

(q; q)n(aq3n; q3)∞
(2.20)

M435(a; q) =
∑
n≥0

anqn
2+3n(aq2n+2; q)∞

(q; q)n(aq3n+3; q3)∞
(2.21)

This final step is sufficiently intricate that we shall first split it into the
several term by term subtractions that are straightforward.

D4,4(a; q)−M322(a; q) = aqM433(a; q)(2.22)

M322(a; q)−M432(a; q) = −a2q4M434(aq3; q)(2.23)

M432(a; q)−D4,3(a; q) = −aqM435(a; q)(2.24)

M433(a; q)−M435(a; q) = aq3M432(aq3; q)(2.25)

M432(aq3; q)−M434(aq3; q) = aq5D41(aq3; q)(2.26)

Each of (2.22) is proved simply using term by term subtraction.

D4,4(a; q)−M322(a; q)

=
∑
n≥0

anqn
2

(aq2n; q)∞(1− qn)

(q; q)n(aq3n; q3)∞

=aq
∑
n≥0

anqn
2+2n(aq2n+2; q)∞

(q; q)n(aq3n; q3)∞

=aqM433(a; q);
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M322(a; q)−M432(a; q)

=
∑
n≥0

anqn
2+n(aq2n+1; q)∞((1− aq2n)− (1− aq3n))

(q; q)n(aq3n; q3)∞

=− a2q4
∑
n≥0

anqn
2+5n(aq2n+3; q)∞

(q; q)n(aq3n+3; q)∞

=− a2q4M434(aq3; q);

M432(a; q)−D4,3(a; q)

=
∑
n≥0

anqn
2+n(aq2n+2; q)∞((1− aq2n+1)− 1)

(q; q)n(aq3n+3; q3)∞

=− aqM435(a; q);

M433(a; q)−M435(a; q)

=
∑
n≥0

anqn
2+2n(aq2n+2; q)∞(1− qn)

(q; q)n(aq3n+3; q3)∞

=aq3
∑
n≥0

anqn
2+4n(aq2n+4; q)∞

(q; q)n(aq3n+6; q3)∞

=aq3M432(aq3; q),

and finally

M432(aq3; q)−M434(aq3; q)

=
∑
n≥0

anqn
2+4n(aq2n+4; q)∞

(q; q)n(aq3n+3; q3)∞
((1− aq3n+3)− qn(1− aq2n+3))

=
∑
n≥0

anqn
2+4n(aq2n+4; q)∞(1− qn)

(q; q)n(aq3n+3; q3)∞

=aq5
∑
n≥0

anqn
2+6n(aq2n+6; q)∞

(q; q)n(aq3n+6; q3)∞

=aq5D4,1(aq3; q).

Hence

D4,4(a; q)−D4,3(a; q)(2.27)

=(D4,4(a; q)−M322(a; q))

+ (M322(a; q)−M432(a; q))

+ (M432(a; q)−D4,3(a; q))

=aq(M433(a; q)−M435(a; q))

− a2q4M434(aq3; q) (by (2.22), (2.23) and (2.24))
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=a2q4(M432(aq3; q)−M434(aq3; q)) (by (2.25))

=a3q9D4,1(aq3; q) (by (2.26)).

Now recall that [1, p. 408]

(2.28) Qk,i(1; q) =
(qi; q2k+1)∞(q2k+1−i; q2k+1)∞(q2k+1; q2k+1)∞

(q; q)∞
.

Hence Dyson’s favorite identity follows from Theorem 1.

Corollary 2. Identity (1.1) is valid.

Proof. Take a = 1, i = 3 in Theorem 1 and simplify.

In passing, we note the following instances of Theorem 1; a = 1, i = 4 yields
[17, p. 162, eq. (93)]; a = 1, i = 2, yields [17, p. 161, eq. (91)], and a = 1,
i = 1, yields [17, p. 161, eq. (90)]. See also [16, p. 109].

These observations raise the question: Are there identities of interest for the
Mxyz(a; q) functions when a = 1?

To answer this question requires that we take a short detour to study Cheby-
shev polynomials of the third and fourth kind.

3 Bailey Pairs and Chebyshev Polynomials

In the past, q-orthogonal polynomials have played an important role in the study
of Rogers-Ramanujan type identities and mock theta functions [4], [5], [9].

The surprise here is that classical Chebyshev polynomials (NOT q-Chebyshev)
play a central role in studying the Mxyz(a; q) introduced in the previous section.

We recall that a sequence of pairs of rational functions (αn, βn)n≥0 is called
a Bailey pair with respect to a provided [2, p. 278]

(3.1) βn =

n∑
j=0

αj
(q; q)n−j(aq; q)n+j

.

The identity (3.1) can be inverted [2, p. 278, eq. (4.1)] to the equivalent
formulation:

(3.2) αn =
(1− aq2n)

(1− a)

n∑
j=0

(a; q)n+j(−1)n−jq(
n−j
2 )βj

(q; q)n−j

In the following we shall also need the q-binomial coefficients;

(3.3)

[
A

B

]
=

{
0 if B < 0 or B > A

(q;q)A
(q;q)B(q;q)A−B

otherwise.
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The Chebyshev polynomials of the third kind, Vn(x) are given by [14, p.170]

(3.4) Vn(x) =


1 if n = 0

2x− 1 if n = 1

2xVn−1(x)− Vn−2(x) if n > 1

The Chebyshev polynomials of the fourth kind, Wn(x) are given by [14, p.
170]

(3.5) Wn(x) =


1 if n = 0

2x+ 1 if n = 1

2xWn−1(x)−Wn−2(x) if n > 1.

It is a simple exercise to show that

(3.6) Wn(x) = (−1)nVn(−x).

We choose to use both Wn(x) and Vn(x) for simplicity of notation.
Our object in the section is to fit these Chebyshev polynomials into very

natural Bailey pairs.

Theorem 3.

(3.7)

n∏
j=1

(1 + 2xqj + q2j) =

n∑
j=0

q(
j+1
2 )Vj(x)

[
2n+ 1

n− j

]
.

Remark. Identity (3.7) is equivalent to saying that

(3.8)

q
(n+1

2 )Vn(x)

1− q
,

n∏
j=1

(1 + 2xqj + q2j)

(q; q)2n+1


forms a Bailey pair at a = q.

Proof. Let us denote the left side of (3.7) by Ln(x). Then it is immediate that
Ln(x) is uniquely defined by

(3.9) Ln(x) =

{
1 if n = 0

(1 + 2xqn + q2n)Ln−1(x) if n > 0.

Let us denote the right side of (3.7) by Rn(x). Clearly R0(x) = 1. So to
conclude that Ln(x) = Rn(x) we need only show that for n > 0

(3.10) 2xqnRn−1(x) = Rn(x)− (1 + q2n)Rn−1(x).
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Now by (3.4),
2xVj(x) = Vj+1(x) + Vj−1(x).

Hence we must show that

qn
n∑
j=0

q(
j+1
2 )(Vj+1(x) + Vj−1(x))

[
2n− 1

n− 1− j

]
(3.11)

=
∑
j≥0

Vj(x)q(
j+1
2 )
([

2n+ 1

n− j

]
− (1 + q2n)

[
2n− 1

n− 1− j

])
Now the Vn(x) form a basis for the polynomials in x. Consequently the co-
efficients of Vj(x) on both sides of (3.11) must coincide. Thus we need only
prove

qn+(j
2)
[
2n− 1

n− j

]
+ qn+(j+2

2 )
[

2n− 1

n− 2− j

]
(3.12)

=q(
j+1
2 )
[
2n+ 1

n− j

]
− (1 + q2n)

[
2n− 1

n− j − 1

]
,

and multiplying both sides of (3.12) by (q; q)n−j(q; q)n−j+1/(q; q)2n−1, we see
that we finally must prove

qn+(j
2)(1− qn−j)(1− qn−j+1)(3.13)

+ qn+(j+2
2 )(1− qn−j)(1− qn−j+1)

=q(
j+1
2 )(1− q2n+1)(1− q2n)

− (1 + q2n)(1− qn−j)(1− qn+j+1)q(
j+1
2 ),

and one easily expands the expressions in (3.13) to determine its validity and
the truth of (3.7).

Theorem 4.

(3.14)

n−1∏
j=0

(1 + 2xqj + q2j) =

n∑
j=0

q(
j
2)Wj(x)(1− q2j+1)

(q; q)2n
(q; q)n(q; q)n+j+1

Remark. Identity (3.14) is equivalent to saying that

(3.15)


q(

n
2)(1− q2n+1)Wn(x)

1− q
,

n−1∏
j=0

(1 + 2xqj + q2j)

(q; q)2n


forms a Bailey pair at a = q. Also note that this result closely resembles
Theorem 3. The change in the second entry of the Bailey pair is the shift in the
index j and a shorter product in the denominator.
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Proof. As in Theorem 3, we denote the left side of (3.14) by Ln(x). Then it is
immediate that Ln(x) is uniquely defined by

(3.16) Ln(x) =

{
1 if n = 0

(1 + 2xqn−1 + q2n−2)Ln−1(x) if n > 0.

We now denote the right side of (3.14) by Rn(x). Clearly R0(x) = 1. To
conclude the proof that Ln(x) = Rn(x) we need only show that for n > 0

(3.17) 2xqn−1Rn−1(x) = Rn(x)− (1 + q2n−2)Rn−1(x).

Now by (3.5),

(3.18) 2xWj(x) = Wj+1(x) +Wj−1(x).

Hence we must show that

qn−1
n∑
j=0

q(
j
2)(Wj+1(x) +Wj−1(x))(1− q2j+1)

(q; q)2n−2
(q; q)n−j−1(q; q)n+j

(3.19)

=
∑
j≥0

q(
j
2)Wj(x)(1− q2j+1)

(
(q; q)2n

(q; q)n−j(q; q)n+j+1
− (1 + q2n−2)(q; q)2n−2

(q; q)n−1−j(q; q)n+j

)

As before, the Wn(x) form a basis for the polynomials in x. Consequently the
coefficients of Wj(x) on both sides of (3.19) must coincide. Thus we need only
prove that

qn−1+(j−1
2 )
(

(1− q2j−1)(q; q)2n−2
(q; q)n−j(q; q)n+j−1

+ q2j−1
(1− q2j+3)(q; q)2n−2
(q; q)n−1−2(q; q)n+j+1

)
(3.20)

=q(
j
2)(1− q2j+1)

(
(q; q)2n

(q; q)n−j(q; q)n+j+1
− (1 + q2n−2)(q; q)2n−2

(q; q)n−1−j(q; q)n+j

)
and multiplying both sides of (3.20) by (q; q)n−j(q; q)n+j+1/(q)2n−2 we see that
we finally must prove

qn−1+(j−1
2 )(1− qn+j)(1− qn+j+1)(1− q2j−1)

(3.21)

+ qn−1+(j+1
2 )(1− qn−j−1)(1− qn−j)(1− q2j+3)

=q(
j
2)(1− q2j+1)

(
(1− q2n)(1− q2n−1)− (1 + q2n−2)(1− qn−j)(1− qn+j+1)

)
,

and one easily expands the expressions in (3.21) to determine its validity and
the proof of (3.14).
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4 Generalizing Dyson’s Favorite Identity

This section will serve as a prototype for the types of identities that can be
derived using the Bailey pairs given in section 3.

Let us recall the weak form of Bailey’s Lemma in the case a = q [3, Th. 2].
Namely, if (αn, βn) form a Bailey pair at a = q, then

(4.1)
∑
n≥0

qn
2+nβn =

1

(q2; q)∞

∑
n≥0

qn
2+nαn.

Inserting the Bailey pair from (3.8) into (4.1), we obtain

∑
n≥0

qn
2+n

n∏
j=1

(1 + 2xqj + q2j)

(q; q)2n+1
(4.2)

=
1

(q; q)∞

∑
n≥0

q3(
n+1
2 )Vn(x).

Lemma 5. For n ≥ 0

Vn(−1) = (−1)n(2n+ 1)(4.3)

Vn

(
−1

2

)
=

{
−2 if n ≡ 1 (mod 3)

1 otherwise
(4.4)

Vn(0) =

{
1 if n ≡ 0, 3 (mod 4)

−1 otherwise
(4.5)

Vn

(
1

2

)
=


1 if n ≡ 0, 5 (mod 6)

0 if n ≡ 1, 4 (mod 6)

−1 if n ≡ 2, 3 (mod 6)

(4.6)

Vn(1) = 1(4.7)

Vn

(
3

2

)
= F2n+1(4.8)

Vn

(
−3

2

)
= (−1)nL2n+1,(4.9)

where Fn and Ln are the Fibonacci and Lucas numbers.

Proof. Each of (4.3)-(4.9) is a simple exercise in mathematical induction using
the initial values and recurrence from (3.4).

Theorem 6. Identity (1.1), Dyson’s “favorite identity” is valid.
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Proof. By (4.2) with x = 1
2

∑
n≥0

qn
2+n

n∏
j=1

(1 + qj + q2j)

(q; q)2n+1

=
1

(q; q)∞

∑
n≥0

(
q3(

6n+1
2 ) + q3(

6n+6
2 ) − q3(

6n+3
2 ) − q3(

6n+4
2 )
)

=
1

(q; q)∞

( ∞∑
n=−∞

(
q3(

6n+1
2 ) − q3(

6n+3
2 )
))

=
1

(q; q)∞

∑
n≥0

q9n(3n+1)/2(1− q9(2n+1))

=
1

(q; q)∞
(q9; q9)∞ (by [2, p. 22, Cor. 2.9]).

We isolated (1.1) and gave a detailed proof. The remaining values of Vn(x)
given in Lemma 5 yield the following identities.

Theorem 7. ∑
n≥0

qn
2+n(q; q)n

(qn+1; q)n+1
=

(q3; q3)3

(q; q)∞
,(4.10)

∑
n≥0

qn
2+n(−q3; q3)n

(−q; q)n(q; q)2n+1
=

1

(q; q)∞

(
ψ(q3)− 3q3ψ(q27)

)
(4.11)

∑
n≥0

qn
2+n(−q2; q2)n
(q; q)2n+1

=
1

(q; q)∞

∞∑
n=−∞

q24n
2+6n(1− q12n+3)(4.12)

∑
n≥0

qn
2+n(−q; q)2

(q; q)2n+1
=

ψ(q3)

(q; q)∞
(4.13)

∑
n≥0

qn
2+n

n∏
j=1

(1 + 3qj + q2j)

(q; q)2n+1
=

1

(q; q)∞

∑
n≥0

q3(
n+1
2 )F2n+1(4.14)

and

(4.15)
∑
n≥0

qn
2+n

n∏
j=1

(1− 3qj + q2j)

(q; q)2n+1
=

1

(q; q)∞

∑
n≥0

q3(
n+1
2 )(−1)nL2n+1

12



where

(4.16) ψ(q) =
(q2; q2)∞
(q; q2)∞

=

∞∑
n=0

q(
n+1
2 ).

Remark. Of these six identities, (4.10) appears in [7], and (4.13) is from [16, p.
154, eq. (22)]. The remaining four appear to be new.

Proof. Each of these identities follows from direct substitution of the values
given for Vn(x) in Lemma 5 into (4.2). The only instance where an auxiliary
result is use is (4.10) which additionally requires Jacobi’s famous result [2, p.176]

(4.17)

∞∑
n=0

(−1)n(2n+ 1)q(
n+1
2 ) = (q; q)3∞.

5 Implications of Theorem 4

Just as Theorem 3 provided seven corollaries, so too does Theorem 4. We begin
by inserting the Bailey pair from (3.15) into (4.1) to obtain

∑
n≥0

qn
2+n

n−1∏
j=0

(1 + 2xqj + q2j)

(q; q)2n
(5.1)

=
1

(q; q)∞

∑
n≥0

qn(3n+1)/2(1− q2n+1)Wn(x).(5.2)

In light of (3.6), we can use Lemma 5 to provide the special evaluation of Wn(x).

Theorem 8.

∑
n≥0

qn
2+n

n−1∏
j=0

(1− 3qj + q2j)

(q; q)2n

(5.3)

=
1

(q; q)∞

∑
n≥0

qn(3n+1)/2(1− q2n+1)(−1)nF2n+1

1 =
1

(q; q)∞

∑
n≥0

qn(3n+1)/2(1− q2n+1)(−1)n

(5.4)

13



1 +
∑
n≥1

qn
2+n(−q3; q3)n−1

(−q; q)n−1(q; q)2n

(5.5)

=
−1

(q; q)∞

∑
n≥0

qn(3n+1)/2(1− q2n+1)

(
n− 1

3

)
=

1

(q; q)∞
(1− q − q7 + q12 + q15 − q22 − · · · )

∑
n≥0

qn
2+n(−1; q2)n

(q; q)2n

(5.6)

=
1

(q; q)∞

∞∑
n=−∞

qn(3n+1)/2χ4(n)

(where χ4(n) = +1 if n ≡ 0, 1( mod 4) and −1 otherwise

1 +
∑
n≥1

qn
2+n(q3; q3)n−1

(q; q)n−1(q; q)2n
=

1

(q; q)∞

∞∑
n=−∞

qn(3n+1)/2χ12(n),

(5.7)

(where χ12(n) = +1 if n ≡ 0, 1, 7( mod 12), −1 if n ≡ 4, 10( mod 12), 0 otherwise)

∑
n≥0

qn
2+n(−1; q)2n
(q; q)2n

=
1

(q; q)∞

∞∑
n=−∞

(2n+ 1)n(3n+1)/2

(5.8)

∑
n≥0

qn
2+n

n−1∏
j=0

(1 + 3qj + q2j)

(q; q)2n

(5.9)

=
1

(q; q)∞

∑
n≥0

qn(3n+1)/2(1− q2n+1)L2n+1

Proof. Each of these seven identities follows successively from the instances
x = − 3

2 ,−1,− 1
2 , 0,

1
2 , 1,

3
2 of Wn(x) in (5.2).

6 Generalized Hecke Series

In the previous sections we have restricted attention to results where Chebyshev
polynomials have been inserted into the theta-type series, e.g. (4.2) and (5.3).
In this section we consider a similar phenomenon related to Hecke-type double
series involving indefinite quadratic forms.

14



Throughout this section we will require instances of the following identity

(6.1)
∑
n≥0

qn
2+αn

(q; q)n(q; q)n+β
=

1

(q; q)∞

∑
n≥0

∑
n≥0

(qα−β ; q)n(−1)nqβn+(n+1
2 )

(q; q)n
,

which follows from Heine’s second transformation [12, p. 241, eq. (III.2), a =
b = 1

τ , z = qα+1τ2, c = qβ+1, and τ → 0].

Theorem 9.

∑
n≥0

qn
2
n∏
j=1

(1 + 2xqj + q2j)

(q; q)2n
(6.2)

=
1

(q; q)∞

∑
n≥0

q2n
2+n(1− q6n+6)

n∑
j=0

Vj(x)q−(j+1
2 )

Proof. By (3.7)

∑
n≥0

qn
2
n∏
j=1

(1 + 2xqj + q2j)

(q; q)2n

=
∑
n≥0

qn
2

n∑
j=0

q(
j+1
2 )Vj(x)

[
2n+ 1

n− j

]
(q; q)2n

(6.3)

Thus to prove Theorem 9, we need only identify the coefficients of Vj(x) in (6.3)
with those in (6.2). Namely, we must prove

∑
n≥j

qn
2+(j+1

2 )
[
2n+ 1

n− j

]
(q; q)2n

(6.4)

=
1

(q; q)∞

∑
n≥j

q2n
2+n−(j+1

2 )(1− q6n+6)

Now

∑
n≥j

qn
2+(j+1

2 )
[
2n+ 1

n− j

]
(q; q)2n

(6.5)

= qj
2+(j+1

2 )
∑
n≥0

qn
2+2nj(1− q2n+2j+1)

(q; q)n(q; q)n+2j+1

15



=
qj

2+(j+1
2 )

(q; q)∞

(∑
n≥0

(q−1; q)n
(q; q)n

(−1)nq(2j+1)n+(n+1
2 )

− q2j+1
∑
n≥0

(q; q)n
(q; q)n

(−1)nq(2j+1)n+(n+1
2 )

)
(by (6.1))

=
qj

2+(j+1
2 )

(q; q)∞

1 + q2j+1 − q2j+1
∑
n≥0

(−1)nq(
n+1
2 )+(2j+1)n


Comparing the right sides of (6.4) and (6.5), we see (shifting n→ n+ j on the
right of (6.4)) that to complete the proof, we must show that∑

n≥0

q2n
2+4nj+n(1− q6n+6j+6)(6.6)

= 1− q2j+1
∑
n≥1

(−1)nq(
n+1
2 )+(2j+1)n,

and

1− q2j+1
∑
n≥1

(−1)nq(
n+1
2 )+(2j+1)n

=1 +
∑
n≥1

q(
2n
n )+2n(2j+1) −

∑
n≥0

q(2j+1)+(2n+3
2 )+(2j+1)(2n+2)

=
∑
n≥0

q2n
2+4nj+n −

∑
n≥0

q2n
2+4nj+7n+6j+6

=
∑
n≥0

q2n
2+4nj+n(1− q6n+6j+6),

thus (6.6) is proved and with it (6.2).

Theorem 10.

∑
n≥0

qn
2+2n

n∏
j=1

(1 + 2xqj + q2j)

(q; q)2n+1
(6.7)

=
1

(q; q)∞

∑
n≥0

q2n
2+3n(1− q2n+2)

n∑
j=0

Vj(x)q−(j+1
2 )

Proof. This is proved exactly as Theorem 9 is proved; so we suppress some of
the more tedious details

∑
n≥0

qn
2+2n

n∏
j=1

(1 + 2xqj + q2j)

(q; q)2n+1
(6.8)
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=
∑
n≥0

qn
2+2n

(q; q)2n+1

n∑
j=0

q(
j+1
2 )Vj(x)

[
2n+ 1

n− j

]
(by (3.7))

Thus to prove (6.7) we must check that the coefficients of Vj(x) in (6.7) and
(6.8) coincide. Hence we must prove

(6.9)
∑
n≥j

qn
2+2n+(j+1

2 )

(q; q)n−j(q; q)n+j+1
=

1

(q; q)∞

∑
n≥j

q2n
3+3n−(j+1

2 )(1− q2n+2),

and identity (6.9) is proved by applying (6.1) to the left side.

7 Ninth Order Mock Theta Functions

In this section we shall study some of the series arising as intermediate functions
in section 2. We now remove the infinite products from the Mxyz(a; q). Namely

(7.1) mxyz(a; q) =
(a; q)∞
(a; q3)∞

Mxyz(a; q)

Theorem 11.

m320(1; q) :=
∑
n≥0

qn
2+2n(q3; q3)n

(q; q)n(q; q)2n+1
(7.2)

=
1

(q; q)∞

∞∑
n=0

q2n
2+3n(1− q2n+2)

bn3 c∑
j=−bn+1

3 c

(−1)jq(−3j(3j+1)/2)

Proof. In Theorem 10, set x = 1
2 . Then prove

(7.3)

n∑
j=0

Vj

(
1

2

)
q−j(j+1)/2 =

bn3 c∑
j=−bn+1

3 c

(−1)jq(−3j(3j+1)/2)

by mathematical induction using (4.6) .

Theorem 12.

m321(1; q) :=
∑
n≥0

qn
2

(q3; q3)n
(q; q)n(q; q)2n

(7.4)

=
1

(q; q)∞

∞∑
n=0

q2n
2+n(1− q6n+6)

bn3 c∑
j=−bn+1

3 c

(−1)jq−3j(3j+1)/2(7.5)

Proof. In Theorem 9, set x = 1
2 , and invoke (7.3).
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Lemma 13.∑
n≥1

qn
2

(q3; q3)n−1
(q; q)n−1(q; q)2n−1

=
1

(q; q)∞

∑
n≥0

q2n
2+3n+1(1− q2n+2)

bn3 c∑
j=−bn+1

3 c

(−1)jq−3j(3j+1)/2

Proof. Shift n to n− 1 on the left side of (7.2) and multiply by q.

Theorem 14.

m322(1; q) = 1 +
∑
n≥0

qn
2+n(q3; q3)n−1

(q; q)n(q; q)2n−1

=
1

(q; q)∞

∑
n≥0

q2n
2+n(1− q2n+1)

bn3 c∑
j=−bn3 c

(−1)jq−3j(3j+1)/2

Proof. Define d4,i(a; q) = (a;q)∞
(a;q)∞

d4,i(a; q). Then by [16, p. 162, eq. (93)]

d4,4(1; q) = 1 +
∑
n≥1

qn
2

(q3; q3)n−1
(q; q)n(q; q)2n−1

(7.6)

=
1

(q; q)∞

∑
n≥0

(−1)nq3(9n
2+n)/2(1− q24n+12)

So

(7.7) d4,4(1; q3)−m322(1; q) =
∑
n≥1

qn
2

(q3; q3)n−1
(q; q)n−1(q; q)2n−1

;

thus by (7.6) and Lemma 13, m322(1; q) is equal to

1

(q; q)∞

(∑
n≥0

(−1)nq(27n
2+3n)/2(1− q24n+12)(7.8)

−
∑
n≥0

q2n
2+3n+1(1− q2n+2)

bn3 c∑
j=−bn+1

3 c

(−1)jq−3j(3j+1)/2

)

=
1

(q; q)∞

(∑
n≥0

(−1)nq(27n
2+3n)/2(1− q24n+12)

−
∑
n≥0

q2n
2+3n+1

bn3 c∑
j=−bn+1

3 c

(−1)jq−3j(3j+1)/2
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+
∑
n≥1

q2n
2+n

bn3 c∑
j=−bn3 c

(−1)jq−3j(3j+1)/2

)

=
1

(q; q)∞

(∑
n≥0

(−1)nq(27n
2+3n)/2(1− q24n+12

−
∑
n≥0

q2n
2+3n+1

bn3 c∑
j=−bn3 c

(−1)jq−3k(3j+1)/2

−
∑
n≥0

q2(3n+22+3(3n+2)+1(−1)−n−1q−3(−n−1)(3(−n−1)+1)/2

+
∑
n≥0

q2n
2+n

bn3 c∑
j=−bn3 c

(−1)jq−3j(3j+1)/2

−
∑
n≥0

q2(3n)
2+3n(−1)nq−3n(3n+1)/2

=
1

(q; q)∞

∑
n≥0

q2n
2+n(1− q2n+1)

bn3 c∑
j=−bn3 c

(−1)jq−3j(3j+1)/2.

We remark that Ian Wagner has studied these and many related functions in
his Ph.D. thesis (directed by Ken Ono). He observes that some are mock theta
functions (Theorem 12 and 13), and some are “near misses” (Theorem 15).

8 Partition Identities

Let us recall B. Gordon’s celebrated generalization of the Rogers-Ramanujan
identities [13] (cf. [1]).

Gordon’s Theorem. Let Ak,i(n) denote the number of partitions of n into
parts 6≡ 0,±i( mod 2k + 1). Let Bk,i(n) denote the number of partitions of n
of the form λ1 +λ2 + . . .+λs, where λj−λj+k−1 ≥ 2 and λ1 ≥ λ2 ≤ . . . λk and,
in addition, at most i− 1 of the λj are equal to 1. Then for 1 ≤ i ≤ k, n ≥ 0,

Ak,i(n) = Bk,i(n).

The simplest proof [1] of Gordon’s theorem reveals that Qk,i(z; q) is the
generating function for partitions of the Bk,i-type where the exponent of z
counts the number of parts. Thus

Qk,i(1; q) =
∑
n≥0

Bk,i(n)qn,

and the result follows by invoking (2.28).
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Now one could assume that nothing more needs to be said about Q4,i(1; q3).
After all this is just Gordon’s theorem at k = 4 with all parts multiplied by 3.

However, the work in [8] points to a natural alternative interpretation of
partitions generated by Q4,i(x; q3). In the new interpretation, we begin with
R, the set of all integer partitions in which parts differ by at least 2. We also
speak of maximal sequences of parts in such partitions. We shall say that in the
partition

λ1 + λ2 + · · ·+ λs (λi − λi+1 ≥ 2)

that
λm + λm+1 + . . .+ λm+j

is maximal if λm−1 − λm > 2, λm+j − λm+j+1 > 2 and λm+i − λm+i+1 = 2 for
0 ≤ i ≤ j − 1.

Theorem 15. Let Ci(n) (1 ≤ i ≤ 4) denote the number of partitions of n in R
with the added condition that

all parts are > 4− i,(8.1)

if j, j + 2, j + 4, . . . , j + (2r − 2)(8.2)

is a maximal sequence of parts then
when j ≡ 0 (mod 3), r must be ≡ 0, 1 (mod 3)
when j ≡ 1 (mod 3), r must be ≡ 0 (mod 3) and
when j ≡ 2 (mod 3), r must be ≡ 0, 2 (mod 3),
Then

(8.3) Ci(n) = A4,i

(n
3

)
= B4,i

(n
3

)
(note that if n

3 is not an integer all entries in (8.3) = 0.)

Remark. As an example, in case n = 12 and i = 4, B4,4(4) = 4 (the partitions
considered are 4, 3 + 1, 2 + 2, 2 + 1 + 1), C4(12) also equals 4 with the relevant
partitions being 12, 3 + 9, 5 + 7, 2 + 4 + 6.

Proof. We need only show that the generating function Ki(z; q) for partitions
with m parts among the partitions enumerated by Ci(n) is Q4,i(z; q

3). Clearly
the initial conditions (2.8) and (2.9) hold. Thus we need only show that (2.10)
with q → q3 holds for the Ki(z; q). Namely

K4(z; q)−K3(z; q) = z3q1+3+5K1(zq3; q)(8.4)

K3(z; q)−K2(z; q) = z2q2+4K2(zq3; q)(8.5)

K2(z; q)−K1(z; q) = zq3K3(zq3; q)(8.6)

K1(z; q) = K4(zq3; q)(8.7)

The proof of each of these four identities is similar so we provide full details
for (8.4). We note that Ki(z; q)−Ki−1(z; q) generates those partitions in which
5− i is the smallest part. Thus when i = 4, we can only consider partitions that
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have 1 as the smallest part. By (8.2), the shortest allowable sequence starting
with 1 is 1 + 3 + 5. The partitions generated by K1(zq3; q) are K1 partitions
with 3 added to each part. Thus the smallest part is ≤ 7. Hence either 1+3+5
attaches to a previously maximal sequence of length now increased by 3 and thus
still preserving (8.2) or else 1 + 3 + 5 is itself a legitimate maximal sequence.
Hence (8.4) is established. Identities (8.5)-(8.7) follow in the same way.

Therefore since (2.8)-(2.10) uniquely determine Qk,i(a; q), we see that for
1 ≤ i ≤ 4

(8.8) Ki(z; q) = Q4,i(z; q
3),

and Theorem 16 follows by setting z = 1 in (8.8) and comparing coefficients of
qn.

9 One More Identity

We note that Dyson’s favorite identity (1.1) may be written in the form of an
instance of the quintuple product identity. Namely

∞∑
n=0

qn
2+n(q3; q3)n

(q; q)n(q; q)2n+1
(9.1)

=
(−q3; q9)∞(−q6; q9)∞(q9; q9)∞(q3; q18)∞(q15; q18)∞

(q; q)∞

One may naturally expect that there is an equally elegant quintuple product
companion for (9.1), and this is revealed in the following:

Theorem 16.∑
n≥0

qn
2

(q3; q3)n
(q; q)n(q; q)2n+1

(9.2)

=
1

(q; q)∞

∞∑
n=−∞

(−1)nq3n(9n+1)/2(1 + q9n+1)

=(−q8; q9)∞(−q; q9)∞(q9; q9)∞(q7; q18)∞(q11; q18)∞/(q; q)∞

Proof. It is an exercise in mathematical induction to show that

m∑
j=0

qj
2

(q3; q3)j
(q; q)j(q; q)2j+1

−

1 +

m∑
j=1

qj
2

(q3; q3)j−1
(q; q)j(q; q)2j−1

(9.3)

− q
m∑
j=0

qj
2+2j(q3; q3)j

(q; q)j(q; q)2j+2
=
−qm2+4m+3(q3; q3)m

(q; q)m(q; q)2m+2
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Letting m→∞ in (9.3), we see that

∑
n≥0

qn
2

(q3; q3)n
(q; q)n(q; q)2n+1

=1 +

∞∑
n=1

qn
2

(q3; q3)n−1
(q; q)n(q; q)2n−1

+ q

∞∑
n=0

qn
2+2n(q3; q3)n

(q; q)n(q; q)2n+2

=
1

(q; q)∞

( ∞∑
n=−∞

(−1)nq(27n
2+3n)/2

+ q

∞∑
n=−∞

(−1)nq(27n
2+21n)/2

)
(by [17, pp. 161-162, eqs. (91) and (93)])

=
1

(q; q)∞

∞∑
n=−∞

(−1)nq3n(9n+1)/2(1 + q9n+1).

=
1

(q; q)∞
(−q8; q9)∞(−q; q9)∞(q9; q9)∞(q7; q18)∞(q11; q18)∞

by the quintuple product identity with q → q9, z = q [12, p. 134, Ex. 5.16].

10 Relation to L. J. Rogers’s Work

We have treated all the discoveries in this paper using standard polynomial
notation. This, in turn, has simplified many of our computations some of which
have been extremely intricate. However, it is important to stress that the sorts
of results in section 3 are effectively finite versions of theorems of L. J. Rogers
[15]. This is not obvious on the surface because Rogers couched his work in
terms of Fourier series.

To make this relationship clear, we reprove Theorem 3 in the style of L. J.
Rogers.

Second proof of Theorem 3

In (3.7) replace x by cos θ = (eiθ + e−iθ)/2. Thus (3.7) becomes

n∏
j=1

(1 + eiθqj)(1 + e−iθqj)(10.1)

=

n∑
j=0

q(
j+1
2 )Vj(cos θ)

[
2n+ 1

n− j

]
Now noting

(10.2) (−x; q)N+1(−q/x; q)N = x−Nq(
N+1

2 )(−xq−N ; q)2N+1,
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we may expand the right side of (10.2) by the q-binomial theorem [2, p. 36, eq.
(3.3.6)] to obtain

(−xq; q)N (−q/x; q)N(10.3)

=
1

1 + x

2N+1∑
j=0

xjq(
j
2)−Nj

[
2N + 1

j

]

=

N∑
j=0

q(
j+1
2 )x

j+ 1
2 + x−j−

1
2

x
1
2 + x−

1
2

[
2N + 1

N − j

]

Now setting x = eiθ in (10.3) and noting that

(10.4) Vj(cos θ) =
cos(θ(j + 1

2 ))

cos θ
,

we deduce (10.1) from (10.4).
Now if we let N → ∞ in (10.1), we obtain the actual starting point for

Rogers in his second proof of the Rogers-Ramanujan identities [15]. A similar
treatment can be used for Theorem 4.

11 Conclusion

The entire project began in an attempt to better understand Dyson’s mod 27
identities especially the favorite (1.1). The natural appearance of Mxyz(a; q)
functions naturally led to a quest for proofs of the mock theta specializations.
This in turn led to the Chebyshev polynomials.

It is the latter phenomenon that is so surprising. Orthogonal polynomials
have arisen several times before in the treatment of q-series (cf. [4], [5], [9]).
However, in each instance the orthogonal polynomials were q-analogs of classical
orthogonal polynomials.

This is the first instance where classical orthogonal polynomials (namely
Chebyshev polynomials of the third and fourth kinds) entered naturally into
the world of q. This leaves us with at least three topics worthy of further
exploration.

(11.1) Following the lead of Rogers briefly described in Section 10, one should
be able to use the other Chebyshev polynomials in further studies of this
nature.

(11.2) There are many more explicit results to be obtained for mxyz(1; q). The
object here was to illustrate the method without obscuring the project
with too many details.

(11.3) In addition to mock theta type results for mxyz(1; q), there should be
natural combinatorial interpretations related to the ideas in section 8.
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