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Abstract

Fraenkel and Peled have defined the minimal excludant or “mex” func-
tion on a set S of positive integers to be the least positive integer not in
S. For each integer partition π, we define mex(π) to be the least positive
integer that is not a part of π.

Define σmex(n) to be the sum of mex(π) taken over all partitions of
n. It will be shown that σmex(n) is equal to the number of partitions of
n into distinct parts with two colors.Finally the number of partitions π of
n with mex(π) odd is almost always even.
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1 Introduction

The minimal excludant of an integer partition π to be the smallest positive
integer that is not a part of π. Thus if π is 5 + 3 + 2 + 2 + 1, then mex(π) = 4.
This paper will be devoted to two arithmetic functions related to mex(π).

(1.1) σmex(n) =
∑
π`n

mex(π),

where the sum is over all partitions of n.
We define

a(n) =
∑
π`n

mex(π) odd

1.

Thus there are five partitions of 4: 4 with mex(π) = 1; 3 + 1, with mex(π) = 2;
2+2 with mex(π) = 1; 2+1+1, with mex(π) = 3; 1+1+1+1 with mex(π) = 2.
Hence σmex(4) = 9 and a(4) = 3.

Also D2(n) is to denote the number of partitions of n into distinct parts
using two colors. Thus D2(4) = 9 in light of the fact that the partitions of 4
in question are 41, 42, 31 + 11, 31 + 12, 32 + 11, 32 + 12, 22 + 21, 22 + 12 + 11,
21 + 12 + 11.

Theorem 1. σmex(n) = D2(n).
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Theorem 2. a(n) is almost always odd and is even exactly when n = j(3j± 1)
for some j.

The partition statistic mex(π) has been studied explicitly in [3] and implicitly
in [2] and [4]. Hopefully, the surprise of these further theorems will inspire
further studies of mex(π).

Section 2 is devoted to the proof of Theorem 1; section 3 is devoted to the
proof of Theorem 2. The final section considers open questions.

For reference, we note that a(n) is the same as p1,1(n) from [3]. Indeed,
the results in [3] for p1,1(n) could have been used to prove Theorem 2, but this
would have hidden the relation to Theorem 1.

2 Proof of Theorem 1

First Proof Let us define M(z, q) to be the double series in which the coeffi-
cient of zmqn is the number of partitions π of n with mex(π) = m.

Clearly,

M(z, q) =

∞∑
m=0

zmq1+2+···+(m−1)

∞∏
n=1
n 6=m

(1 − qn)

=
1

(q; q)∞

∞∑
m=0

zmq(
m
2 )(1 − qm),

where

(A; q)∞ =

∞∏
n=0

(1 −Aqn)

Thus∑
n≥0

σmex(n)qn =
∂

∂z

∣∣∣
z=1

M(z, q)

=
1

(q; q)∞

∞∑
m=0

mq(
m
2 )(1 − qm)

=
1

(q; q)∞

( ∞∑
m=1

mq(
m
2 ) −

∞∑
m=1

(m− 1)q(
m
2 )

)

=

∞∑
m=0

q(
m+1

2 )

(q; q)∞

=
(q2; q2)∞

(q; q)∞(q; q2)∞
(by [1, p. 23, eq. (2.2.13)])
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= (−q; q)2∞ (by [1, p. 5, eq. (1.2.5)])

=
∑
n≥0

D2(n)qn.

Second Proof Let Mi(n) denote the number of partitions π of n for which
mex(π) > i. We see that

Mi(n) = p(n− i(i+ 1)/2)

because each partition π counted byMi(n) must contain as summands 1, 2, 3, . . . , i
(and the sum of these parts is i(i+1)/2) with remaining parts being an arbitrary
partition of n− i(i+ 1)/2.

Furthermore
σmex(n) =

∑
i≥0

Mi(n)

because each partition π with mex(π) = m gets counted once by eachM0(n),M1(n), . . . ,Mm−1(n)
and consequently this sum is the sum of all the mex values for the partitions of
n.

Hence ∑
n≥0

σmex(n)qn =
∑
n≥0

qn
∑
i≥0

Mi(n)

=
∑
n≥0

qn
∑
i≥0

p(n− i(i+ 1)/2)

=
∑
n≥0

p(n)qn
∑
i≥0

qi(i+1)/2

=

∞∑
m=0

qm(m+1)/2

(q; q)∞
,

and as in the first proof, we see that this expression equals (−q; q)2∞.

3 Proof of Theorem 2

Lemma 3. σmex(n) is almost always even and is odd exactly when n is of the
form j(3j ± 1).

Proof. By Theorem 1,

∑
n≥0

σmex(n)qn =

∞∏
n=1

(1 + qn)2
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≡
∞∏
n=1

(1 − q2n)( mod 2)

=

∞∑
j=−∞

(−1)jqj(3j+1) (by [1, p. 11, eq. (1.3.1)])

Clearly
σmex(n) ≡ a(n)( mod 2)

because when we add up all the mex(π) the parity is determined precisely by
exactly how many of the mex(π) are odd.

Theorem 2 now follows from Lemma 3.

4 Minimal Odd Excludant

The idea of minimal excludant for the parts of a partition can obviously be
restricted to parts in a specific arithmetic progression. As an example, we
define moex(π) to be the smallest odd integer that is not a part of π.

σmoex(n) =
∑
π`n

moex(π).

Theorem 4.
∑
n≥0 σmoex(n)qn = (−q; q)∞(−q; q2)2∞.

Proof. In analogy with the first proof of Theorem 1,∑
n≥0

σmoex(n)qn =
1

(q; q)∞

∑
n≥0

q1+3+···+(2n−1)(2n+ 1)(1 − q2n+1)

=
1

(q; q)∞

∑
n≥0

(2n+ 1)
(
qn

2

− q(n+1)2
)

=
1

(q; q)∞

∑
n≥0

(2n+ 1)qn
2

−
∑
n≥1

(2n− 1)qn
2


=

1

(q; q)∞

(
1 + 2

∞∑
n=1

qn
2

)

=
(q2; q2)∞(−q; q2)2∞

(q; q)∞

= (−q; q)∞(−q; q2)2∞.
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5 Conclusion

It would be of great interest to have a bijective proof of Theorem 1. Also
combinatorial proofs of Theorem 2 and Lemma 3 would be very interesting.

Finally we note that

∞∏
n=1

(1 + qn)2 =

∞∏
n=1

(1 + 2qn + q2n)

≡
∞∏
n=1

(1 − 2qn + q2n)( mod 4)

=

∞∏
n=1

(1 − qn)2

=

( ∞∑
n=−∞

(−1)rqn(3n+1)/2

)2

.

Given the behavior of the number of representations of n as a sum of two fixed
quadratic polynomials, it will surely be possible to prove that σmex(n) is almost
always divisible by 4, a task left for the reader.
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